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CHAPTER 1

Locally compact groups and lattices

1. The Haar measure

Definition 1.1. A topological group is a group G endowed with a topology for which the
map (g, h) ∈ G×G→ gh−1 is continuous. G is said to be locally compact if every point
admits a compact neighborhood, or equivalently if the trivial element admits a compact
neighborhood.

In the above terminology, the term compact includes the Hausdorff axiom, according to
the French convention.

Example 1.2. We will encounter many locally compact groups.

• All Lie groups are examples of locally compact groups.
• Any group can be made locally compact by considering its discrete topology.

This is the topology we will usually use for countable groups.
• The additive group (Qp,+) is locally compact (for the topology given by its

ultrametric norm), and the subgroup Zp ⊂ Qp is a compact neighborhood of 0.

Definition 1.3. A Haar measure on a locally compact group is a (non-zero) Radon
measure λ on G which is invariant under left translation, in the sense that for all g ∈ G,
and all Borel set A ⊂ G, λ(gA) = λ(A).

We recall that a Radon measure is a Borel measure which is finite on compact sets and
regular, meaning that for any Borel set A,

λ(A) = sup{λ(K) | K ⊂ A compact} = inf{λ(U) | U open set containing A}.

Example 1.4. If G = (R,+), the Lebesgue measure is a Haar measure. The counting
measure on a discrete group is a Haar measure.

The following observation follows from standard considerations on measurable functions.

Lemma 1.5. A Radon measure λ on a locally compact group is a Haar measure if and
only if for every f ∈ Cc(G) and every g ∈ G, we have

∫
G
f(x)dλ(x) =

∫
G
f(gx)dλ(x).

Theorem 1.6. If G is a locally compact group it always admits a Haar measure. More-
over, any two Haar measures on G are proportional.

We will not prove the existence part in this theorem because, one, it is rather long to
do and not much more instructive than the usual construction of the Lebesgue measure,
and two, because for our examples a Haar measure can often be found by more concrete
methods. For example, one can easily construct a left invariant volume form on a Lie
group: just pick an n-form on the tangent space at the identity of the Lie group G (where
n = dim(G)) and propagate it using the left translations Lg, g ∈ G. We shall see how to
concretely compute a Haar measure for G = SL2(R). Moreover, for all discrete groups
we already explained that the counting measure is a Haar measure.
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1. THE HAAR MEASURE 3

Proof. Let us prove the proportionality statement. Fix a Haar measure λ.

Claim 1. For all non-zero function f ∈ Cc(G) such that f ≥ 0 we have
∫
G
fdλ 6= 0.

To prove this claim, note that given such a function f , there exists ε > 0 such that
U := {x ∈ G | f(x) ≥ ε} is non-empty, and of course we have f ≥ ε1U . So it suffices to
prove that λ(U) > 0 for any non-empty open set U in G. By assumption, λ is non-zero
so there exists a Borel set A such that λ(A) 6= 0. Since λ is moreover regular we may
actually find a compact subset K ⊂ A such that λ(K) 6= 0.

If U ⊂ G is a non-empty open set, the collection of translates gU , g ∈ G is an open cover
of G, and in particular, of K. By compactness of K, we may extract from it a finite
sub-cover. In other words we find a finite set F ⊂ G such that K ⊂ ∪g∈FgU . But this
leads to an inequality on measures:

0 < λ(K) ≤
∑
g∈F

λ(gU) = |F |λ(U).

So we indeed arrive at the conclusion that λ(U) 6= 0, and Claim 1 follows.

Fix two non-zero functions f, g ∈ Cc(G), such that f, g ≥ 0. For notational simplicity,
we denote by λ(f) :=

∫
X
f dλ and λ(g) =

∫
X
g dλ.

Claim 2. The ratio λ(f)/λ(g) makes sense thanks to Claim 1. It does not depend on λ.

Assume that µ is another Haar measure on G. We consider the function h : G×G→ R
given by the formula

h(x, y) = f(x)a(x)g(yx), where a(x) = (

∫
G

g(tx) dµ(t))−1.

This is easily seen to be a compactly supported continuous function. Moreover, our choice
of normalization by a(x) gives

∫
G
h(x, y)dµ(y) = f(x) for all x ∈ G. Therefore,∫

G

∫
G

h(x, y) dµ(y) dλ(x) = λ(f).

On the other hand, since h is compactly supported and continuous, it is integrable, and
Fubini theorem applies. Combining it with the fact that λ and µ are left invariant we get∫

G×G
h(x, y) dµ(y) dλ(x) =

∫
G×G

f(x)a(x)g(yx) dλ(x) dµ(y)

=

∫
G×G

f(y−1x)a(y−1x)g(x) dλ(x) dµ(y)

=

∫
G×G

f(y−1)a(y−1)g(x) dµ(y) dλ(x).

So we arrive at

λ(f) =

∫
G

g(x) dλ(x)

∫
G

f(y−1)a(y−1) dµ(y) = Cλ(g),

where C =
∫
G
f(y−1)a(y−1) dµ(y), which does not depend on λ. This proves Claim 2.

Now if λ′ is another Haar measure, we get for any two non-negative, non-zero functions
f, g ∈ Cc(G),

λ(f) =
λ(g)

λ′(g)
λ′(f).
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Fixing g once and for all and setting α := λ(g)/λ′(g), we arrive at λ(f) = αλ′(f) for
every f ∈ Cc(G). So λ and αλ′ coincide as linear functionals on Cc(G), which implies
that these two Radon measures are equal. �

Example 1.7. Consider the group P := {M(a, b) | a ∈ R∗, b ∈ R}, where

M(a, b) =

(
a b
0 1/a

)
.

This group is parametrized by R∗ × R. The Haar measure on this group is given by
da db/a2. One easily checks that indeed this formula defines an invariant measure. Ob-
serve that if we only allow positive a’s then the group that we obtain acts transitively by
homography on the upper half plane, and the stabilizer of every point is trivial. In fact
the Haar measure that we gave above is exactly the one coming from the usual hyperbolic
metric on the upper half plane (for which the group actually acts by isometries).

Example 1.8. The Haar measure on G := SL2(R) can be described as follows. Observe
that every element of G can be uniquely written as a product hk, where h ∈ P 0 :=
{M(a, b) | a ∈ R∗+, b ∈ R} and k ∈ K := SO(2). This follow for instance by considering
the action by homography of G on the upper half plane. The action is transitive and the
stabilizer of the point i is K. So the decomposition follows from Example 1.7.

More explicitly, for any g ∈ G, we can find a > 0, b ∈ R and θ ∈ [0, 2π[ such that

g = M(a, b)

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

With this parametrization, one checks that the measure 1
a2
dθ da db is a Haar measure on

G.

Let’s get back to the general setting where G is an arbitrary locally compact group.
Then a (left) Haar measure on G as we defined above needs not be right invariant, that
is, λ(Ag) needs not be equal to λ(A) for all g ∈ G, A ⊂ G. But there is a nice way to
measure this defect.

Fixing g ∈ G, the Radon measure defined by A 7→ λ(Ag) is again left invariant, because
h(Ag) = (hA)g for all Borel set A. So it is again a Haar measure and by the previous
theorem, it follows that there exists a constant ∆(g) ∈ R∗+, depending on g such that

∆(g)λ(Ag) = λ(A), for every set A ⊂ G.

Applying the above formula to Ag−1 gives ∆(g)λ(A) = λ(Ag−1), and thus we see that
∆(g) is characterized by the formula∫

G

f(xg) dλ(x) = ∆(g)

∫
G

f(x) dλ(x), for all f ∈ Cc(G).

This equation shows that ∆ is a continuous map from G to R∗+, and it is readily seen
that it is in fact a group homomorphism. Moreover, It does not depend on a choice of
the Haar measure λ.

Definition 1.9. The group homomorphism ∆ : G→ R∗+ is called the modular function
on the locally compact group G. G is called unimodular if this homomorphism is trivial.

Example 1.10. We make the following observations.

• Discrete groups are obviously unimodular since the counting measure is clearly
both left and right invariant.



2. LATTICES IN LOCALLY COMPACT GROUPS 5

• Compact groups are unimodular. To see this observe that any Haar measure λ
on such a group G is finite. Thus we have ∆(g)λ(G) = λ(Gg−1) = λ(G) for all
g ∈ G, showing that ∆ has constant value 1.
• Since the modular function is a character G → R∗+, any group that does not

admit a character is unimodular. For instance simple groups are unimodular.
This also gives another proof that compact groups are unimodular.

Remark 1.11. One should be careful that unimodularity doesn’t pass to subgroups. In
particular, the restriction of the modular function ∆G of a group G to a subgroup H
needs not be the modular function ∆H of the subgroup.

For example, we deduce from the previous exemple that SL2(R) is unimodular, since it has
no character. On the other hand it contains the subgroup H := {M(a, b) | a ∈ R∗, b ∈ R},
where

M(a, b) =

(
a b
0 1/a

)
.

But one verifies that the modular function on H is given by ∆H(M(a, b)) = a2, which is
non-trivial.

2. Lattices in locally compact groups

Definition 1.12. If G is a topological group, a discrete subgroup Γ < G is a subgroup
which is discrete in G for the induced topology. This amounts to saying that there is a
neighborhood U ⊂ G of the trivial element e ∈ G such that U ∩ Γ = {e}.

We will restrict our attention to locally compact, second countable groups (i.e. those
admitting a countable basis of open sets). We write lcsc for short.

Lemma 1.13. For any discrete group Γ in a lcsc group there always exists a Borel fon-
damental domain, i.e. a Borel subset F ⊂ G such that FΓ = G and Fg ∩Fh = ∅ for all
distinct elements g, h ∈ Γ.

Proof. Fix a neighborhood V ⊂ G of e such that V ∩Γ = {e}, and pick a neighbor-
hood U ⊂ G of e such that U−1U ⊂ V . This is possible because the map (g, h) 7→ g−1h
is continuous on G × G. Since G is second countable, there exists a countable set of
elements (gn)n≥1 in G such that G =

⋃
n≥1 gnU .

Define inductively a sequence of Borel sets Fn ⊂ G, n ≥ 1 as follows. Set F1 = g1U and

Fn+1 = gn+1U \

(
gn+1U ∩

n⋃
k=1

gkUΓ

)
.

These are disjoint sets and better, for every n 6= m we have FnΓ ∩ FmΓ = ∅, while
n⋃
k=1

FkΓ =
n⋃
k=1

gkUΓ.

So the set F =
⋃
nFn is a Borel set such that FΓ = G. Assume now that g, h ∈ Γ are two

elements such that Fg ∩ Fh 6= ∅. There exist two indices such that Fng ∩ Fmh 6= ∅. By
construction this forces n and m to be equal. Since Fn ⊂ gnU we can then find x, y ∈ U
such that gnxg = gnyh, which leads to x−1y = gh−1 ∈ V ∩ Γ = {e}. So we conclude that
g = h.

Thus F is indeed a Borel fundamental domain. �
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Definition 1.14. A discrete subgroup Γ in a locally compact group G is called a lattice
if it admits a Borel fundamental domain with finite Haar measure.

Example 1.15. It is trivial to see that Zn is a lattice in Rn, for which a fundamental
domain is given by [−1, 1[n.
A less trivial example is that of SL2(Z) inside SL2(R). To see that this is indeed a lattice,
one can use the fact that the action of SL2(Z) on the hyperbolic half-plane admits a
Borel fundamental domain with finite measure. We leave the details as an exercise. In
the same spirit, the fundamental group of any compact surface with negative curvature
embeds as a lattice inside PSL2(R).

Lemma 1.16. Let Γ be a discrete subgroup in a lcsc group G. Then any two Borel
fondamental domains for Γ have the same right-Haar measure.

Proof. Let F and F ′ be two fundamental domains and denote by λ a right-Haar
measure on G. Then we have

λ(F) =
∑
g∈Γ

λ(F ∩ F ′g) =
∑
g∈Γ

λ(Fg−1 ∩ F ′) = λ(F ′).

We used implicitly the fact that Γ is countable, which is automatic if it is discrete and
G is lcsc. �

Corollary 1.17. If G is a lcsc group admitting a lattice Γ then it is unimodular. More-
over, there exists a G-invariant Borel probability measure on G/Γ.

Proof. Let λ be a right Haar measure on G, and denote by F a fundamental domain
for Γ. Then for every g ∈ G, gF is also a fundamental domain for Γ. So λ(F) = λ(gF),
hence λ is left invariant, which implies that G is unimodular.

Moreover, let us restrict the projection map p : G → G/Γ to the Borel subset F . Then
the restriction of λ to F is a finite measure (and we may normalize it so that it is a
probability measure). Its push forward on G/Γ is also a finite measure νF which depends
a priori on F . Let us check that this is not the case. Take another fundamental domain
F ′. Take A ⊂ G/Γ, and denote by B := p−1(A). We have

νF(A) = λ(B ∩ F) =
∑
g∈Γ

λ(B ∩ F ∩ F ′g).

In the last inequality above, we used the fact that G is the disjoint union of the sets
Fg, g ∈ Γ. Now since the measure λ is right-invariant and since B is globally right
Γ-invariant, we further find

νF(A) =
∑
g∈Γ

λ(B ∩ Fg−1 ∩ F ′) = λ(B ∩ F ′) = νF ′(A).

Now observe that for g ∈ G, the left translation by g maps the fundamental domain F
to F ′ = gF , and since it preserves the Haar measure λ, we find that g∗νF = νgF . Since
νF does not depend on F , we get that it is g-invariant. �

Proposition 1.18. Let G be a unimodular lcsc group and take a discrete subgroup Γ in
G. The following facts are equivalent.

(i) Γ is a lattice in G;
(ii) There exists a Borel set Ω ⊂ G with finite right Haar measure such that ΩΓ = G;

(iii) There exists a G-invariant Borel probability measure on G/Γ.
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Proof. The implication (i) ⇒ (ii) is tautologic and its converse is proved similarly
to Lemma 1.13 (one just needs to intersect all the sets with Ω all along the proof of that
lemma). The previous corollary showed (i) ⇒ (iii). Let us prove the converse. This is
where we will use the unimodularity assumption.

Denote by ν ∈ Prob(G/Γ) a G-invariant probability measure. The choice of a Borel
fundamental domain F for Γ gives rise to an isomorphism of measure spaces

G/Γ× Γ ' F × Γ ' G.

We only need to check that the measure ν × c, where c is the counting measure on Γ,
is transported to a left invariant measure on G. Once we do this, we will conclude that
the fundamental domain F ⊂ G has finite left Haar measure, and hence finite right Haar
measure by unimodularity.

Exercise. Prove that the above isomorphism transports the left action of G on itself to
the action of G on G/Γ × Γ given by the formula g(x, γ) = (gx, c(g, x)γ), for all g ∈ G,
x ∈ G/Γ, γ ∈ Γ, where c(g, x) is the element such that gh ∈ Fc(g, x), where h ∈ F is the
representative of x ∈ F . Prove that the measure ν × c is invariant under this action. �

3. Some extra examples

A sufficient condition to be a lattice is to be co-compact.

Definition 1.19. A closed subgroup H in a lcsc group G is said to be co-compact if the
quotient G/H is compact for the quotient topology.

Lemma 1.20. If Γ is a co-compact discrete subgroup of G, then it is a lattice.

Proof. As we already mentioned, the quotient map p : G→ G/Γ is open. Let U be
a non-empty open set in G with compact closure. Then we may cover G by left translates
of U . Then the family p(gU), g ∈ G is an open cover of G/Γ. So if Γ is co-compact in G,
we may find a finite set F ⊂ Γ such that G/Γ =

⋃
g∈F p(gU). The subset Ω :=

⋃
g∈F gU

has compact closure (so it must have finite measure) and satisfies ΩΓ = G. We conclude
that Γ is a lattice in G. �

In the exercise sheets it is explained how to prove that SLn(Z) is a lattice in SLn(R).

Example 1.21. Γ = SLn(Z) is not co-compact in G = SLn(R). Here is why.

• The unipotent element γ = id +E1,2 ∈ Γ and the sequence of diagonal matrices
gn = diag(1/n, n, 1, . . . , 1) ∈ G satisfy limn gnγg

−1
n = id (also denoted by e).

• Assume by contradiction that G/Γ is compact, and thus, that some subsequence
gnk

Γ converges to an element hΓ ∈ G/Γ. Then we may write gnk
= hkγk with

hk ∈ G, γk ∈ Γ and limk hk = h ∈ G.
• Then γkγγ

−1
k = h−1

k (gnk
γg−1

nk
)hk converges to h−1eh = e. But this is a sequence

of elements in Γ. Since Γ is discrete in G, this forces γkγγ
−1
k = e for k large

enough, and hence γ = e. This is absurd.

Nevertheless, any simple Lie group, such as SLn(R), has plenty of co-compact and non
co-compact lattices. The main construction is of arithmetic nature. More precisely, Borel
and Harish-Chandra proved that if G is an algebraic group defined over Q, that admits
no Q-character, then its set of integer points G(Z) is a lattice in its set of real points
(which is a Lie group). We will not give details, but some of the definitions will be given
in the chapter on superrigidity.
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Moreover, a criterion of Godement says exactly when G(Z) is co-compact in G(R): it is
exactly when G(Z) does not have unipotent element. One direction is easy and follows
essentially the argument that we used to show that SLn(Z) is not co-compact.

Example 1.22. We admit the following examples.

(1) Denote by q : Rn → R a non-degenerate quadratic form with rational entries.
Then SO(q,Z) is a lattice in SO(q,R).

(2) Z[
√

2] embeds into R in two ways. This gives two embeddings of SLn(Z[
√

2]) in
SLn(R). Then the diagonal embedding SLn(Z[

√
2]) ⊂ SLn(R) × SLn(R) gives a

lattice. This case follows from restriction of scalars.
(3) The theorem of Borel and Harish Chandra also generalizes to the more general

framework of S-adic algebraic integers. This allows to say that the diagonal
embedding of SLn(Z[1/p]) into SLn(R)× SLn(Qp) is a lattice.

Note that if Γ1 < G1 and Γ2 < G2 are lattices, then Γ1 × Γ2 < G1 ×G2 is also a lattice.
This case is called reducible.

Definition 1.23. A lattice Γ in a product of groups
∏n

i=1Gi is said to be irreducible
if its projection on a sub-product

∏
i∈J Gi has dense image as soon as J ( {1, n} is a

proper subset.

For example, the examples (2) and (3) given above are irreducible.



CHAPTER 2

Some facts on Lie groups

1. Basic definitions and examples

1.1. Lie groups.

Definition 2.1. A Lie group is a smooth manifold G over R which admits a group
structure such that the corresponding structure map m : (x, y) ∈ G × G 7→ xy−1 ∈ G
is smooth. A morphism between two Lie groups will be by definition a smooth group
homomorphism.

We will only focus on real Lie groups. But many results from these notes also hold for
analytic Lie groups over Qp.

Among the first obvious examples we can think of, the groups Rn and its quotient Tn =
Rn/Zn are Lie groups. More interestingly, the multiplicative group GLn(R) is an open
set inside Mn(k). As such, it may be endowed with the corresponding smooth structure.
It is of dimension n2 as a manifold. The other examples we will describe are actually
realized as closed subgroups of GLn(R).

Example 2.2. It is a theorem of Cartan and von Neumann that a closed subgroup H
of a Lie group G is a Lie group (and naturally, the manifold structure on H is so that
the inclusion H ⊂ G is a smooth embedding). So all the following classical examples are
clearly Lie groups (but this can also be checked using the submersion theorem).

• The Heisenberg group is the subgroup of GL3(R) consisting of upper triangular
matrices with 1’s on the diagonal. It is a nilpotent Lie group. The larger group
of all upper triangular matrices is also a Lie group, and it is solvable.
• The special linear group SLn(R), consisting of matrices with determinant 1.
• The orthogonal group O(p, q), associated to a non-degenerate quadratic form

of signature (p, q). We will denote by SO(p, q) the intersection of O(p, q) with
SLn(R), and we use the notation O(n) = O(n, 0) and SO(n) = SO(n, 0).
• The isometry group SO(n,R) n Rn is a Lie group (endowed with the product

structure as a manifold). It is the Lie group of orientation preserving isometries
of Rn. It can be realized as a subgroup of SLn+1(R):

SO(n,R) nRn '
{(

A u
0 1

) ∣∣∣∣A ∈ SO(n,R), u ∈ Rn

}
.

More generally we can define unitary and symplectic analogues to orthogonal groups.

1.2. The Lie algebra of a Lie group. The advantage with Lie groups is that they
come with a so-called Lie algebra, giving all the tools from linear algebra to study them.

Definition 2.3. A Lie algebra is a finite dimensional vector space V , endowed with a
bilinear map [·, ·] : V ×V → V (the so-called Lie bracket) which satisfies the two axioms:

• [X, Y ] = −[Y,X] for all X, Y ∈ V (anti-symmetry);

9
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• [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ V (Jacobi identity).

In order to define the Lie algebra of a Lie group G we introduce some terminology.
Recall that a vector field on the manifold G is a derivation of the algebra C∞(G), that
is, a linear map X : C∞(G) → C∞(G) such that X(f1f2) = f1X(f2) + f2X(f1), for all
f1, f2 ∈ C∞(G). Besides, for any g ∈ G, the translation map Lg : h ∈ G 7→ gh ∈ G
induces a map τg : f 7→ f ◦ Lg on C∞(G). A vector field X on G is called left-invariant
if it commutes with τg for all g ∈ G, i.e. X(f ◦ Lg) = (X(f)) ◦ Lg, for all f ∈ C∞(G).
Note that this formula is equivalent to

(X(f))(g) = (X(f ◦ Lg))(e) for all g ∈ G.
We write Xg(f) instead of X(f)(g). We denote by L(G) the vector space of all left-
invariant derivations of C∞(G). Then the map X ∈ L(G) 7→ Xe ∈ Te(G) is a linear
isomorphism from L(G) into the tangent space to G at e. In particular L(G) is finite
dimensional.

Exercise 2.4. Given two left invariant vector fields X, Y on C∞(G), we may define their
composition XY : C∞(G) → C∞(G). While this map still commutes with τg, g ∈ G, it
is no longer a derivation in general.

• However, check that [X, Y ] := XY − Y X is again a left invariant derivation.
• Check that (L(G), [·, ·]) is a Lie algebra.

Definition 2.5. The Lie algebra of left invariant derivations on C∞(G) with the above
bracket is called the Lie algebra of G. It is denoted by g.

Example 2.6. The Lie algebra of G = GLn(k) is Mn(k), endowed with the Lie bracket

[X, Y ] = XY − Y X.
Let us indicate how to prove this fact. First observe that since GLn(k) is open in-
side Mn(k), the tangent space at every point is naturally identified with Mn(k). Now
given a vector X ∈ Mn(k), we view it as a left-invariant vector field by the formula
g ∈ G 7→ gX ∈ Mn(k) ' TgG. Its effect on C∞(G) is given by X(f)(g) = (df)g(gX)
for all f ∈ C∞(G), g ∈ G. Differentiating further, we see that for all X, Y ∈ Mn(k),
Y (X(f))(g) = (d2f)g(gX, gY )+(df)g(gY X). Since the second derivative d2(f)g is a sym-
metric bilinear form, we get (Y (X(f))(g)−X(Y )(f))(g) = (df)g(gXY )− (df)g(gY X) =
(XY − Y X)(f)(g), as desired.

Now recall that for any sub-manifold N ⊂ M defined by a submersion φ : M → M ′

as N = φ−1({x}), the tangent space of N at a point is just the kernel of the derivative
of φ at that point. In particular we may compute the Lie algebras of all the standard
examples mentioned above.

Example 2.7. We have the following computations. We only describe the underlying
vector space, because the Lie bracket is simply the restriction of the Lie bracket on Mn(k).

• The Lie algebra of the Heisenberg group consists of all upper triangular matrices,
with 0’s one the diagonal.
• Since the derivative of the determinant map is the trace, the Lie algebra of SLn(k)

is the vector space of trace 0 matrices in Mn(k);
• The Lie algebra ofO(n) is the subspace of matricesX such thatXT+X = 0 (anti-

symmetric matrices). More generally the Lie algebra of O(p, q) is the subspace
of matrices such that Ip,qX

T Ip,q + X = 0, where Ip,q is the diagonal matrix
Ip,q = diag(1, . . . , 1,−1, . . . ,−1), where 1 appears p times and −1 appears q
times.
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1.3. Functoriality. The following lemma asserts that taking the Lie algebra of a
Lie group is a functor.

Lemma 2.8. Consider two Lie groups G and H, with respective Lie algebras g and h. If
φ : G → H is a differentiable homomorphism then its derivative dφ : g → h is a Lie
algebra homomorphism.

Proof. Here we need to define properly the derivative dφ. Note that φ defines by
pre-composition an algebra homomorphism φ∗ : f ∈ C∞(H) 7→ f ◦ φ ∈ C∞(G). Then
if X ∈ g is a left invariant derivation, X(f ◦ φ) is again in C∞(G) and we would like to
check that it is of the form X ′(f) ◦ φ, and ensure that the map X ′ : C∞(H) → C∞(H)
makes the following diagram commute.

C∞(H) C∞(G)

C∞(H) C∞(G)

φ∗

X′ X

φ∗

For every f ∈ C∞(H) and g ∈ G, we have X(f ◦ φ)(g) = X(f ◦ φ ◦ Lg)(e). Moreover,
since φ is a group homomorphism, we have φ ◦ Lg = Lφ(g) ◦ φ. So,

(1.1) X(f ◦ φ)(g) = X(f ◦ Lφ(g) ◦ φ)(e) = X ′(f)(φ(g)),

where X ′ is the derivation on H defined by the formula X ′(f) : h ∈ H 7→ X(f ◦Lh◦φ)(e).
It is checked to be a left invariant derivation. Then we see that dφ : X 7→ X ′ is a linear
map between the Lie algebras g and h making the above diagram commute.

We now check that this is in fact a Lie algebra homomorphism. Take X, Y ∈ g. Denote
by X ′ := dφ(X) and Y ′ := dφ(Y ). For all f ∈ C∞(H) and g ∈ G, equation (1.1) gives

X ′(Y ′(f))(φ(g)) = X(Y ′(f) ◦ φ)(g) = X(Y (f ◦ φ))(g).

This immediately gives the computation

(X ′Y ′ − Y ′X ′)(f)(φ(g)) = (XY − Y X)(f ◦ φ)(g) = [(dφ)(XY − Y X)](f)(φ(g)).

So the vector fields X ′Y ′−Y ′X ′ and (dφ)(XY −Y X) coincide on φ(G) and in particular
at e. Since they are both left invariant, they must coincide, which proves that dφ is a Lie
algebra homomorphism. �

In the above proof, observe that the definition of dφ that we gave coincides with the
classical differential (dφ)e : TeG → TeH when we identify the Lie algebras g and h with
TeG and TeH as vector spaces. Using the structure theorems for sub-immersions one can
prove the following property.

Proposition 2.9. Consider two Lie groups G and H and a Lie group homomorphism
φ : G→ H. Then

(1) The kernel of φ is a closed Lie subgroup of G. Its Lie algebra is the kernel of dφ;
(2) The image of φ is a (not necessarily closed) Lie subgroup of H; its Lie algebra

is the image of dφ;
(3) If K ⊂ H is a closed subgroup of H with Lie algebra k, then φ−1(K) is a closed

subgroup of G whose Lie algebra is (dφ)−1(k).

Example 2.10. Pick a point in a ∈ R2 which is not a multiple of a point in Q2 e.g.
a = (1,

√
2). Then the image of the homomorphism t ∈ R 7→ ta ∈ T2 = R2/Z2 is a Lie

subgroup which is dense in T2 (hence not closed).
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Item (3) above implies the following fact.

Corollary 2.11. If π : G→ GL(V ) is a smooth representation of a connected Lie group
G on a finite dimensional vector space V , then a subspace W ⊂ V is globally invariant
under π(G) if and only if it is invariant under (dπ)(g).

Proof. The computation of Example 2.6 gives that H = GL(V ) is a Lie group with
Lie algebra h = End(V ). The subgroup K := {g ∈ GL(V ) | g(W ) = W} is a closed
subgroup with Lie algebra k = {X ∈ End(V ) | X(W ) ⊂ W}.
If W is π(G) invariant, then π−1(K) = G and Proposition 2.9.(3) implies that (dπ)−1(k) =
g, which means exactly that W is invariant under dπ(g). Conversely, if W is invariant
under dπ(g), then Proposition 2.9.(3) implies that π−1(K) has Lie algebra g. So the
subgroup π1(K) of G has the same dimension as G. This implies that it is open in G,
hence it is also closed in G, and by connectedness, it is equal to G. This means that W
is G invariant. �

1.4. How much the Lie algebra remembers. We want to know to what extend
groups with the same Lie algebra are the same. Obviously, a Lie group and its identity
connected component have the same Lie algebra, because the latter is open inside the
former and the Lie algebra is a local data. But even in the connected setting, there exist
different Lie groups with the same Lie algebra. For instance this is the case of R and
R/Z. In the same spirit SL2(R) and PSL2(R) have the same Lie algebra.

Lemma 2.12. The universal cover G̃ of a connected Lie group G is naturally endowed with

a Lie group structure such that the covering map G̃→ G is a Lie group homomorphism.

Its kernel is contained in the center of G̃.

Proof. Denote by π : G̃→ G the covering map. Fix a lift e of the identity element

eG. We define the product on G̃ as follows. For g, h ∈ G̃, choose paths t 7→ gt, ht ∈ G̃
between e and g, h: g0 = h0 = e, g1 = g, h1 = h. The product path t 7→ π(gt)π(ht) in

G is a path between eG and π(g)π(h). Lift it to a path γ inside G̃ starting at e. We set
gh := γ(1). One checks that this definition is independent of the choices of paths that
we made.

It is then easy to verify that this product law is associative, that e is a neutral element,
and that the inverse g−1 of g is the end point of a lift starting at e of the path t 7→ π(gt)

−1.
Moreover the covering map π is clearly a group homomorphism. Since it is also a local

homeomorphism, we may define the analytic structure of G̃ by declaring that π is locally
analytic. The fact that G is a Lie group implies that the structure map (g, h) 7→ gh−1 is
analytic.

Finally, take g, h ∈ G̃, with π(g) = e. Take a path t 7→ gt from e to g such that gt = g
for all t ≥ 1/2 and a path t 7→ ht from e to h such that ht = e for all e ≤ 1/2. We have:

• π(gt)π(ht) = π(gt) = π(ht)π(gt) if t ≤ 1/2;
• π(gt)π(ht) = π(g)π(ht) = π(ht) = π(ht)π(gt) if t ≥ 1/2.

So gh = hg, as desired. �

A connected Lie group is always locally isomorphic to its universal cover in the following
sense.
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Definition 2.13. Two Lie groups G and H are said to be locally isomorphic if there
exist open neighborhoods U ⊂ G and V ⊂ H of the identity elements eG and eH and an
analytic diffeomorphism ϕ from U onto V such that ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ U
such that gh ∈ U .

Theorem 2.14. Consider two Lie groups G and H with Lie algebras g and h. Denote by

G̃ and H̃ the universal covers of the identity components of G and H respectively. The
following are equivalent.

(i) G and H are locally isomorphic;

(ii) G̃ and H̃ are isomorphic;
(iii) g and h are isomorphic.

Proof. To prove that (i) ⇔ (ii) first observe that being locally isomorphic is an

equivalence relation and that G (resp. H) is locally isomorphic with G̃ (resp. H̃). Then
standard topological considerations show that two simply connected groups are locally
isomorphic if and only if they are isomorphic.

The implication (ii) ⇒ (iii) follows from Lemma 2.8. The hard part is the converse,
which we admit. �

In particular if two simply connected Lie groups have the same Lie algebra, they must
be isomorphic. There is also another situation where we can avoid the covering noise.

Corollary 2.15. If G,H are connected groups with trivial center and isomorphic Lie
algebras, then they are isomorphic.

Proof. Theorem 2.14 implies that G and H have isomorphic universal cover : G̃ '
H̃. But recall that the covering map p : G̃→ G is a group homomorphism whose kernel

is contained in the center of G̃. Since G has trivial center, we conclude that the kernel of

p is exactly the center of G̃ (which thus must be discrete in G̃). Therefore G ' G̃/Z(G̃).

Likewise H ' H̃/Z(H̃), which implies that G ' H. �

1.5. The adjoint representation. There are in fact two adjoint representations.

Lie group setting. Given a Lie group G, we may define for each g ∈ G a smooth au-
tomorphism I(g) : h ∈ G 7→ ghg−1 ∈ G. Such group automorphisms are called inner
automorphisms. The differential of I(g) at e is then an invertible endomorphism of the
Lie algebra g of G, denoted by Ad(g) ∈ L(g); it is even a Lie algebra automorphism.
The mapping Ad : G → GL(g) is then a linear representation of G, called the adjoint
representation.

Lie algebra setting. A derivation of a Lie algebra g is a linear map D : g → g such that
D([X, Y ]) = [DX, Y ] + [X,DY ] for all X, Y ∈ g. One checks that if D and D′ are two
derivations, then so is DD′ − D′D. This operation turns the vector space Der(g) of all
derivations of g into a Lie algebra.

It follows from the Jacobi identity that for any X ∈ g, the endomorphism ad(X) : g→ g
is actually a derivation, called an inner derivation. The map ad : g→ Der(g) is actually
a Lie algebra homomorphism, called the adjoint representation. The term representation
of a Lie algebra refers to a Lie algebra homomorphism from a given Lie algebra into the
Lie algebra L(V ) of all endomorphisms of a finite dimensional vector space V , endowed
with the Lie bracket of [X, Y ] = XY − Y X. Since ad is a representation, its image is a
Lie subalgebra of Der(g).
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Lemma 2.16. Take a Lie group G with Lie algebra g. The group Aut(g) of all auto-
morphisms of g is a Lie group. Its Lie algebra is Der(g). The derivative of the adjoint
representation Ad : G→ Aut(g) of G is the adjoint representation ad : g→ Der(g) of g.

We admit this fact. It is based on properties of the exponential mapping.

Lemma 2.17. The kernel of the adjoint representation of a connected Lie group is its
center.

Proof. Observe that the differential of the map p : (g, h) 7→ gh−1 at the point (e, e)
is given by dp(e,e,)(X, Y ) = X − Y , for all X, Y ∈ g. By the chain rule, this implies that
for a fixed g ∈ G, the derivative of the map f : h 7→ ghg−1h−1 = p(I(g)(h), h) at e is
given by X 7→ Ad(g)(X)−X.

If g ∈ Ker(Ad), then Ad(g)(X) = X, for all X ∈ g. The above computation shows that
the map f has zero derivative at e. Let us check that it has 0 derivative at any point
h0 ∈ G. We will use translation maps. Denote by L0 : x ∈ G 7→ h0x ∈ G the left
multiplication map by h0, and by dL0 : Te(G) → Th0(G) its derivative at e, which is a
vector space isomorphism. The map f ◦ L0 : G→ G is given by

f ◦ L0(x) = f(h0x) = g(h0x)g−1(x−1h−1
0 ) = (gh0g

−1)f(x)h−1
0 .

The map ψ : x ∈ G 7→ (gh0g
−1)xh−1

0 is a diffeomorphism, so its derivative at any point is
invertible. The above relation reads as f ◦L0 = ψ ◦ f . Derivating this equality at e gives

(df)h0 ◦ dL0 = (dψ)e ◦ (df)e = 0.

So (df)h0 vanishes on the range of dL0, i.e. on all the tangent space Th0(G). We conclude
that the derivative of f at any point is zero, which implies by connectedness of G that f
is constant, equal to f(e) = e. So g lies in the center of G. This argument can clearly be
reversed to show the converse inclusion. �

Corollary 2.18. The Lie algebra of the center of a connected Lie group G is the center
of its Lie algebra g, that is, the kernel of ad.

Proof. This follows from combining the above two lemmas with Proposition 2.9. �

2. Semi-simple Lie groups

2.1. Solvable Lie groups. The definition of a nilpotent (resp. solvable) Lie group
is as expected: it is a Lie group which is nilpotent (resp. solvable) as an abstract group.

Example 2.19. The key examples are the following ones:

• The group Un of upper triangular matrices of size n, with 1’s on the diagonal is
nilpotent.
• The group Pn of all upper triangular matrices of size n is solvable.

Although we won’t need it, let us mention the famous structure theorem of Lie. For a
proof we refer to the book of Serre [Ser06].

Theorem 2.20 (Lie). If G is a connected solvable Lie group and if π : G→ GL(n,R) is
a continuous representation of G on Rn, then π(G) is conjugate to a subgroup of Sn.

We will be interested in the solvable radical of a connected Lie group.
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Lemma 2.21. If G is a connected Lie group, then it admits a greatest solvable normal
connected Lie subgroup. It is a closed subgroup that we call the solvable radical of G, and
denote by R(G).

Proof. Denote by S the class of all normal connected and solvable subgroups of G.
There are two observations about this class of groups :

• If H,H ′ ∈ S then the group HH ′ generated by H and H ′ is again connected and
normal in G. Moreover it is solvable, because there is a short exact sequence

1→ H → HH ′ → H ′/H ∩H ′ → 1,

where H and H ′/H ∩H ′ are both solvable.
• If H ∈ S, then its closure is again in S.

Let us take a closed subgroup H ∈ S of maximal dimension, and prove that H ′ ∈ S
is contained in H. By the above observations, we may assume that H ′ is closed. Then
HH ′ ∈ S and it is also a closed group. By maximality, it must have the same dimension
as H. Thus H must be open in HH ′ (and hence closed) and by connectedness, we must
have equality H = HH ′. This forces H ′ ⊂ H, as wanted. �

Semi-simple Lie groups.

Definition 2.22. A connected Lie group is called semi-simple if its solvable radical is
trivial.

Exercise 2.23. Prove that a connected Lie group is semi-simple if and only if it has no
non-trivial connected abelian normal subgroup.

There are many beautiful theorems about the structure of semi-simple Lie groups, essen-
tially due to Cartan. We will not present them but any book on Lie groups contains this
material (see e.g. [Hal15]). The following result is also based on a trick of Weyl, the
so-called unitary trick.

Theorem 2.24. Let G be a connected semi-simple Lie group, and let π : G → GL(V )
be a continuous representation of G on a finite dimensional vector space V . Then any
G-invariant subspace of V admits a complement which is also G-invariant. In particular
π is the direct sum of irreducible representations.

Using the above theorem we may decompose semi-simple groups in terms of simple groups.

Definition 2.25. A connected Lie group G is said to be simple if it is non-abelian and
has no non-trivial normal connected Lie subgroup.

Corollary 2.26. Any connected semi-simple Lie group with trivial center is the product
of finitely many simple groups. Such a product decomposition is unique (up to permutation
of the factors).

Sketch of proof. We consider the adjoint representation Ad ofG on its Lie algebra
g. By Theorem 2.24, this representation can be decomposed as the direct sum of finitely
many irreducible G-invariant subspaces g = g1⊕· · ·⊕gn. Then each gi is invariant under
the derivative representation ad : g→ End(g). This means that each gi is an ideal of g.
Note moreover that [gi, gj] ⊂ gi ∩ gj = {0} for all i 6= j. This means that the ideals gi
commute to each other.
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For each i, denote by Gi < G connected component of the subgroup of elements that act
trivially on every gj, for j 6= i. Then using Lemma 2.9, we find that the Lie algebra of
Gi is the subalgebra

{X ∈ g | ad(X)(Y ) = 0, for all Y ∈ gj, j 6= i} = {X ∈ g | ad(X)g ⊂ gi} = gi.

Moreover, one easily checks using Lemma 2.17 that Gi has trivial center. Thus the
product G1×· · ·×Gn is a connected center-free group with Lie algebra g1⊕· · ·⊕gn = g,
it is isomorphic with G. Note finally that each Gi is a simple Lie group because its Lie
algebra has no non-trivial proper ideal.

To prove the uniqueness of such a decomposition, one has to prove the uniqueness of the
decomposition of g as a direct sum of simple ideals. This reduces to proving that every
simple ideal of g is one of the gi’s. But if a is a simple ideal in g, then [a, gi] ⊂ a∩ gi. So
there must exist some i such that a ∩ gi 6= {0}, otherwise [a, g] = 0, which would imply
that a is an abelian ideal, and would contradict the semi-simplicity of g. But a∩ gi is an
ideal of a and gi so if it is non-zero, then by simplicity we must have a = gi. �

Example 2.27. Let us get back to our first examples.

• A solvable or nilpotent Lie group is never semi-simple. In particular the Heisen-
berg group is not semi-simple.
• The group SLn(R) is simple, but it has non-trivial center when n is even. Its

quotient PSLn(R) is center-free, (connected) and simple.
• The orthogonal group O(p, q) is in general not connected, but its connected

component is simple.
• The isometry group of Rn, SO(n) oRn is of course not semi-simple, since Rn is

a connected normal abelian group.

Another corollary we will use is that every derivation of the Lie algebra g of a semi-simple
Lie group is inner.

Corollary 2.28. Let G is a semi-simple Lie group, with Lie algebra g. Then every
derivation of g is inner, i.e. Der(g) = ad(g).

Proof. The adjoint representation Ad : G → GL(g) gives rise to another represen-
tation π : G→ GL(End(g)), given by π(g)T = Ad(g)T Ad(g−1). Note that the subspace
Der(g) is invariant under π(G), and so is ad(g). By Theorem 2.24, this implies that we
may find a supplementary subspace a to ad(g) inside Der(g) which is π(G)-invariant, i.e.
Der(g) = ad(g)⊕ a.

Note that the derivative dπ : g → End(End(g)) of π is given by dπ(X)T = ad(X)T −
T ad(X) = [ad(X), T ], for all X ∈ g, T ∈ End(g). Since a is π(G)-invariant, it must be
invariant under dπ and therefore [ad(X), D] ∈ a for every derivation D ∈ a. Observe
moreover that ad(g) is an ideal in Der(g). Indeed, if D is a derivation on g and X, Y ∈ g,
then we have

[ad(X), D](Y )] = ad(X)DY −D ad(X)Y

= [X,DY ]−D([X, Y ])

= −[DX, Y ]

= − ad(DX)(Y ).

Thus for all X ∈ g and D ∈ a, [ad(X), D] ∈ ad(g) ∩ a = 0.

Let us now conclude that a = 0. Let us take D ∈ a and X ∈ g and show that DX = 0.
Since g is semi-simple, it has trivial center, so the representation ad is faithful. We
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only need to prove that ad(DX) = 0. But for Y in g, the above computation gives
ad(DX)(Y ) = −[ad(X), D](Y ) = 0. This finishes the proof. �

3. A simplified setting

The main results about lattices in Lie groups that we want to prove involve knowing the
structure of semi-simple Lie groups (roots systems, real forms, parabolic groups,...). In
order to avoid going through this, we will restrain ourself to the setting where G = SLn(R)
(or even PSLn(R) when we need to assume trivial center) and Γ is an arbitrary lattice in
G. The results are already interesting in this case, and the proofs that we will present
in these notes are identical for more general Lie groups, for the reader already familiar
with semi-simple Lie groups.

We will use the following notation:

• G = SLn(R).
• A < G is the subgroup of diagonal matrices. It is a so-called maximal torus.
• P < G is the subgroup of all upper triangular matrices. It is a minimal parabolic

subgroup. In our case P is solvable. In general, P admits a co-compact solvable
normal subgroup.
• K = SO(n) < G. It is a maximal compact subgroup.
• N < P the nilpotent subgroup of upper triangular matrices with 1’s on the

diagonal.

In the trivial center case we will use the same notations to denote the image of any of
these groups in PSLn(R).

We will need two decompositions of G.

(1) The Iwasawa decomposition tells us that any element g ∈ G can be written as
the product g = kan of elements k ∈ K, a ∈ A and n ∈ N . In our special
case P = AN , and the decomposition is just saying that the action of K on the
homogeneous space G/P is transitive.

(2) The Cartan decomposition, or KAK-decomposition tells us that every element
of G can be written as a product kak′, with k, k′ ∈ K, a ∈ A.

(3) The LU-decomposition1 tells us that N tP is a dense open subset of G. We will
give more details when needed. It is a special case of the Bruhat decomposition.

1standing for Lower-Upper.



CHAPTER 3

Ergodic theory and unitary representations

In this chapter, we want to study measurable dynamical systems, i.e. group actions on
measure spaces. We will mostly focus on measure preserving actions and consider the
most elementary notions of ergodicity and mixing. We will present the connection with
the underlying unitary representation.

1. Mesurable group actions

Definition 3.1. A measurable group action is the data of an action σ of a locally compact
group G on a measure space (X,B) such that the action map (g, x) ∈ G×X 7→ g(x) ∈ X
is measurable. Given a measure µ on (X,B), we say that the action is

• non-singular if (σg)∗µ is equivalent to µ for all g ∈ G. This means that for all
g ∈ G, and all measurable set A ⊂ X, µ(A) = 0 if and only if µ(g−1A) = 0. We
also say that µ is quasi-invariant.
• measure preserving if g∗µ = µ for all g ∈ G. In this case, µ is called invariant.

Measurable group actions cover classical measurable dynamical systems (given by a single
invertible transformation) and flows (given by actions of G = R).

Example 3.2. In the following examples, the action we consider is not only measurable
(with respect to the Borel σ-algebra), it is actually continuous.

(1) If α ∈ [0, 1[, we denote by Rα : x ∈ R/Z 7→ x + α ∈ R/Z. The group generated
by this rotation is a copy of Z, which acts on the circle. This action preserves
the Lebesgue measure on the circle.

(2) In the same spirit SO(3) acts on the 2-sphere S2 (and this defines by restriction
an action of any subgroup of SO(3)). Again, this action preserves the Lebesgue
measure on the sphere.

(3) The projective action of PSLn(R) on the projective space Pn−1 is also a mea-
surable group action. If n ≥ 2 this action does not admit an invariant Borel
measure.

(4) Any locally compact group G acts on itself by left translation. This action
preserves the Haar measure.

In fact, the above examples are special cases of actions on homogeneous spaces.

Example 3.3. Given a lcsc group G and a closed subgroup H, we may consider the
natural action Gy G/H. As is shown in the exercise sheets, there always exists a quasi-
invariant Radon measure on G/H, and any two quasi-invariant measures have the same
null sets (i.e. they are equivalent). However, there needs not exist an invariant Radon
measure.

From now on, we will only consider non-singular actions. So a quasi-invariant measure
µ will be given and every notion that we will consider will be “up to null sets”. For

18
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example, a subset A ⊂ X we be called G-invariant if µ(A∆gA) = 0 for all g ∈ G. Here
∆ denotes the symmetric difference. In the case where G is countable, this condition is
obviously equivalent to the fact that there exists a truly invariant set B ⊂ X (i.e. such
that gB = B for all g ∈ G), such that µ(B∆A) = 0. For example, take B =

⋂
g gA. But

this fact is actually true for any lcsc group G.

Definition 3.4. We say that an action G y (X,µ) is ergodic if any G-invariant subset
of X is either null or co-null:

(µ(A∆gA) = 0, for all g ∈ G)⇒ (µ(A) = 0 or µ(Ac) = 0) .

It should be noted that a transitive action is always ergodic. In other words for any
lcsc group G and any closed subgroup H, the action G y G/H is ergodic with respect
to any quasi-invariant measure on G/H. What is less clear is whether the action of a
subgroup G0 of G on G/H is again ergodic. This kind of question will be crucial for us. In
order to answer to such questions, we need to consider the natural unitary representation
associated with a measurable group action.

2. Unitary representations associated with actions

If H is a (complex) Hilbert space, we denote by U(H) the group of its unitary operators,
i.e. the linear operators u : H → H that preserve the inner product and that are
surjective. Equivalently u is a unitary operator if it satisfies u∗u = uu∗ = idH.

Definition 3.5. A unitary representation of a lcsc group G is a group homomorphism
π : G → U(H), where H is a Hilbert space, with the continuity requirement that for all
vector ξ ∈ H, the map g ∈ G 7→ π(g)ξ ∈ H is continuous.

Note that if π : G→ U(H) is a unitary representation, then π∗g = πg−1 , for all g ∈ G. In
other words

(2.1) 〈πg(ξ), η〉 = 〈ξ, πg−1(η)〉, for all ξ, η ∈ H.

The properties that we will study will be relevant only when H is infinite dimensional.

Definition 3.6. Consider a measure preserving action of a lcsc group G on a space
(X,µ). We define the Koopman representation π as the unitary representation of G on
L2(X,µ) defined by the formula

πg(f) : x 7→ f(g−1x), for all g ∈ G, f ∈ L2(X,µ).

This definition is relevant for actions on so-called standard measure spaces, for which the
following lemma holds true. But we restrain our setting to continuous actions, which
suffices for our purposes.

Lemma 3.7. If X is an lcsc space, the action G y X is continuous, and the measure µ
is a Radon measure on X, then the Koopman representation π associated with a measure
preserving action Gy (X,µ) is indeed a unitary representation.

Proof. The fact that πg is a unitary operator comes from the fact that µ is G-
invariant. It is also easy to check that π : G → U(L2(X,µ)) is a group homomorphism.
The only non-trivial fact is that π is continuous. Under the assumptions of the lemma,
Cc(X) is dense in L2(X,µ). Take f ∈ L2(X,µ) and take a sequence (gn)n in G which
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converges to the identity element e ∈ G. Take ε > 0. By density we may find a function
f0 ∈ Cc(X) such that ‖f − f0‖2 < ε. Then for all n ≥ 1, we have

‖πgn(f)− f‖2 ≤ ‖πgn(f)− πgn(f0)‖2 + ‖πgn(f0)− f0‖2 + ‖f0 − f‖2

≤ 2ε+

(∫
X

|f0(g−1
n x)− f0(x)|2 dµ(x)

)1/2

.

Since f0 is continuous, we see that if n is large enough, then the later term is less than ε
(for instance use the fact that f is uniformly continuous, or use the Lebesgue convergence
theorem. In both cases the continuity of the action is crucial). So if n is large enough
we get that ‖πgn(f) − f‖2 < 3ε. As ε can be chosen arbitrarily small, we deduce that
limn ‖πgn(f)− f‖2 = 0. �

In fact one could also define the Koopman representation associated with any nonsingular
action, but the formula is more complicated as it involves the Radon-Nikodym derivatives
between µ and its translates g∗µ.

Example 3.8. The Koopman representation associated with the left translation action
G y G is called the left regular representation and is denoted by λG : G → U(L2(G)).
Note that we could also define similarly the right regular representation ρG. One checks
that these two representations commute to each other: (λG)g(ρG)h = (ρG)h(λG)g for all
g, h ∈ G. Here we assume that G is unimodular to define these two representations
simultaneously.

Example 3.9. If G is a lcsc group and Γ < G is a lattice, then we saw in Corollary
1.17 that G/Γ carries a finite G-invariant measure. In this case, we get automatically the
corresponding Koopman representation G→ U(L2(G/Γ)).

The Koopman representation can be used to detect ergodicity for measure preserving
actions G y (X,µ), for which the invariant measure µ is finite. By rescaling we may
assume that µ is a probability measure, and we say in this case that the action is pmp
(standing for probability measure preserving).

Lemma 3.10. Take a pmp action G y (X,µ). Then the action is ergodic if and only
if the only invariant functions f ∈ L2(X,µ) under the Koopman representation are the
constant functions.

Proof. If A ⊂ X is a G-invariant subset of X, then the indicator function 1A is
invariant under the Koopman representation: πg(1A) = 1A for all g ∈ G. Therefore if
the action is not ergodic, there exists a non-constant function which is invariant under
the Koopman representation.

Conversely assume that f ∈ L2(X,µ) is G-invariant and non-contant. Then we may find
a ∈ R such that the level set {f > a} is neither null, nor co-null. But this set is obviously
G-invariant. �

As a direct application, one can describe exactly which rotations are ergodic.

Example 3.11. The rotation Rα : x 7→ x+ α on the circle R/Z is ergodic (viewed as an
action of Z) if and only if α is irrational.
Indeed, if α is rational, then the transformation is periodic, and it is easy to find invariant
sets that are neither null nor co-null.
Conversely, let us assume that α is irrational, and let us prove that the corresponding
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action is ergodic. By the previous lemma, it suffices to prove that the Koopman repre-
sentation on L2(R/Z) has no invariant function other than the constant ones. But we
may use the Fourier transform F to identify L2(R/Z) with `2(Z) as follows:

F : f ∈ L2(R/Z) 7→ (cn(f))n ∈ `2(Z),

where cn(f) =
∫ 1

0
f(t) exp(−2iπnt)dt. Now observe that with this identification, the

rotation Rα is identified with the transformation

Tα : (cn)n ∈ `2(Z) 7→ (exp(−2iπnα)cn)n ∈ `2(Z).

More precisely, we have the formula F(Rα(f)) = Tα(F(f)), for all f ∈ L2(R/Z). So we
are left to check that a function which is invariant under Tα is necessarily the Fourier
transform of a constant function, i.e. is a multiple of the Dirac sequence to 0, δ0 ∈ `2(Z).
Take then such an invariant vector (cn) ∈ `2(Z), then for each n 6= 0 we must have
cn = exp(−2iπnα)cn, and if α is irrational, this forces cn = 0, as desired.

Example 3.12. Let us give another proof that an irrational rotation is ergodic, not based
on the Fourier transform. If α is irrational, then the group it generates has dense image
in R/Z. So if f ∈ L2(R/Z) is Rα-invariant, it must be invariant under the whole of R/Z,
by continuity of the Koopman representation associated with the action R/Z y R/Z.
This action being transitive, it is ergodic. So f must be constant.

The above lemma rephrases by saying that there is no G-invariant function in the space
L2

0(X,µ) of functions whose integral vanishes (L2
0(X,µ) is the orthogonal complement of

the constant function in L2(X,µ)).

3. Ergodic theorems

It is hard to imagine a chapter on ergodic theory not discussing ergodic theorems. So
even if we won’t use this for our purposes, we include von Neumann’s and Birkhoff’s
ergodic theorems (although we won’t prove the latter).

Ergodic theorems are about pmp actions of Z, that is, about a single transformation
T : X → X that preserves a probability measure µ and about the average behavior of its
iterates. Actually we don’t even require T to be invertible, so we are in fact considering
pmp actions of the semi-group N. In spirit, ergodic theorems express the fact that the
orbits x, Tx, T 2x, T 3x, . . . become more and more distributed on X according to the
mesure µ. That is, when we average a function along such an orbit, we approximate the
µ-integral of that function.

We will only prove the weaker result, due to von Neumann, which proves convergence in
the L2-norm, but does not specify the actual convergence at a given point.

Theorem 3.13 (von Neumann). Let T : (X,µ)→ (X,µ) by an ergodic pmp transforma-
tion of the probability space (X,µ). Then for every function f ∈ L2(X,µ), we have the
following convergence, for the L2-norm:

lim
n

1

n

n∑
k=1

f ◦ T k =

∫
X

f dµ.

This result is based on Hilbert space considerations. As we saw before, an invertible
pmp transformation T of a space (X,µ) gives rise to a unitary u ∈ U(L2(X,µ)) given by
u(f) = f ◦T , for all f ∈ L2(X,µ). When T is not invertible then the same formula makes
sense, but u : L2(X,µ)→ L2(X,µ) defined this way is not invertible anymore. Still, it is
an isometry, in the sense that ‖u(f)‖ = ‖f‖, which rewrites as u∗u = id.
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Let us also emphasize that in the case of a non-invertible pmp transformation T , ergodic-
ity means that any set A ⊂ X such that µ(A∆T−1(A)) = 0 must be null or co-null. The
same proof as in Lemma 3.10 shows that T is ergodic if and only if the corresponding
isometry u has no non-zero invariant vector in L2

0(X,µ).

So von Neumann theorem will follow from the following lemma.

Lemma 3.14. Let H be a Hilbert space and u : H → H be an isometry having no non-zero
invariant vector, i.e. ker(u− id) = {0}. Then the following facts are true:

a) The adjoint u∗ of u has no invariant vector;
b) The image of u− id is dense in H;
c) For every ξ ∈ H, we have limn

1
n

∑n
k=1 u

k(ξ) = 0 in H.

Proof. a) If ξ ∈ H satisfies u∗ξ = ξ, then we find ‖ξ‖2 = 〈u∗ξ, ξ〉 = 〈ξ, uξ〉. Now
the following classical computation shows that this implies that uξ = ξ:

(3.1) ‖uξ − ξ‖2 = 2‖ξ‖2 − 2<(〈uξ, ξ〉) = 0.

b) It is a classical fact about operators on Hilbert spaces that Img(u− id) = ker(u∗−id)⊥.
c) If ξ is in Img(u− id) then the sum will be telescopic, so the division by n will ensure
convergence to 0. Now take an arbitrary vector ξ ∈ H, and ε > 0. Then we may find
ξ0 ∈ Img(u− id) such that ‖ξ − ξ0‖ < ε. For all n, we have

‖ 1

n

n∑
k=1

uk(ξ)‖ ≤ ‖ 1

n

n∑
k=1

uk(ξ − ξ0)‖+ ‖ 1

n

n∑
k=1

uk(ξ0)‖ ≤ ε+ ‖ 1

n

n∑
k=1

uk(ξ0)‖.

So if n is large enough, this can be made less than 2ε, proving that the limit is 0. �

Proof of von Neumann’s theorem. Take a function f ∈ L2(X,µ), and denote
by f0 = f −

∫
X
fdµ. For all n ≥ 1, we have

‖ 1

n

n∑
k=1

f ◦ T k −
∫
X

f dµ‖ = ‖ 1

n

n∑
k=1

f0 ◦ T k‖ = ‖ 1

n

n∑
k=1

uk(f0)‖.

Note that f0 belongs to L2
0(X,µ), and since T is assumed to be ergodic, u has no non-

zero invariant vector in L2
0(X,µ). So the previous lemma shows that the above quantity

converges to 0. �

Birkhoff’s ergodic theorem actually shows that many orbits tend to become µ-distributed.

Theorem 3.15 (Birkhoff). Let T : (X,µ) → (X,µ) by an ergodic pmp transformation
of the probability space (X,µ). Then for every function f ∈ L1(X,µ), for µ-almost every
x ∈ X, we have

lim
n

1

n

n∑
k=1

f(T kx) =

∫
X

f dµ.

Remark 3.16. In cases where L1(X,µ) is a separable space (for example, if X is a lcsc
space and µ is a Borel probability measure on X), we can exchange the quantifiers, and
get: for µ-almost every x ∈ X, for every f ∈ L1(X,µ), the convergence holds. This thus
ensures that “almost every orbit becomes µ-distributed”.
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4. Mixing phenomena

The notion of a mixing group action is the most meaningful for probability measure
preserving actions Gy (X,µ).

Definition 3.17. A pmp action G y (X,µ) is said to be mixing if for every pair of
measurable subsets A,B ⊂ X, and ε > 0, there exists a compact set K ⊂ G such that
gA and B are ε-independent for all g ∈ G \K, in the sense that

−ε < µ(gA ∩B)− µ(A)µ(B) < ε.

In other words, the function g 7→ µ(gA∩B)−µ(A)µ(B) belongs to the algebra C0(G) of
functions that converge to 0 at infinity. By definition, f ∈ C0(G) if it is continuous and if
for every ε > 0, there exists a compact set K ⊂ G such that |f(g)| < ε for all g ∈ G/K.

Exercise 3.18. Check that if a pmp action G y (X,µ) is mixing, then every non-
compact subgroup of G acts ergodically on (X,µ).

As for ergodicity, the mixing property can be read on the Koopman representation.

Definition 3.19. A unitary representation G → U(H) is called mixing and for every
ξ, η ∈ H, the corresponding coefficient function g 7→ 〈πg(ξ), η〉 is in C0(G).

Lemma 3.20. A pmp action Gy (x, µ) is mixing if and only if the corresponding repre-
sentation on L2

0(X,µ) is mixing.

Proof. For a set A ⊂ X, we may define a function fA ∈ L2
0(X,µ) by the formula

1A − µ(A)1X . Then given two subsets A,B ⊂ X, and g ∈ G, we have

〈πg(fA), fB〉 =

∫
X

(1gA − µ(A)1X)(1B − µ(B)1X) dµ(x)

= µ(gA ∩B)− µ(A)µ(B).

So if the representation of G on L2
0(X,µ) is mixing, then the action is mixing. To prove

the converse, observe that fA is the orthogonal projection of 1A on L2
0(X,µ). Since the

linear span of simple functions 1A is dense in L2(X,µ), we see that the linear span E
of the functions fA is dense in L2

0(X,µ). If the action is mixing then we know that the
coefficient function c : g 7→ 〈πg(ξ), η〉 is in C0(G) if ξ and η are of the form 1A, and
by linearity this remains true if they are of the linear combinations of such functions.
Assume now that ξ, η ∈ L2

0(X,µ) are arbitrary functions. Then we may find sequences
ξn, ηn ∈ E such that ‖ξn − ξ‖2 and ‖ηn − η‖2 converge to 0. Then we find from Cauchy-
Schwarz inequality that the coefficient functions cn : g 7→ 〈πg(ξn), ηn〉 converge uniformly
to c. Since each cn lies in C0(G), this must also be the case of c (exercise). �

Exercise 3.21. Prove that a rotation on the circle is never mixing.

We are now going to discuss the following very useful theorem.

Theorem 3.22 (Howe-Moore). If G is a connected semi-simple Lie group with finite cen-
ter, then any unitary representation of G with no (non-zero) invariant vector is mixing.

In other words, the presence of invariant vectors is the only obstruction to be mixing. In
order to avoid going through the structure of (semi-)simple Lie groups, we will only prove
this result for G = SLn(R). Before getting into the proof, let us provide some examples.
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Example 3.23. Let G be as in the theorem and let Γ be a lattice in G. Then the action
G y G/Γ is mixing. In particular, for every non-compact closed subgroup H < G,
H acts ergodically on G/Γ. Note that this later fact is equivalent to saying that every
subset X ⊂ G which is left H-invariant and right Γ-invariant is either null or co-null.
Equivalently, Γ acts ergodically on G/H. So we also deduce ergodicity results for actions
that need not admit an invariant measure.

Exercise 3.24. Apply the above example to prove that any lattice of SLn(R) acts er-
godically on the projective space, or on Rn;

Let us now discuss the proof of Howe-Moore theorem. Our main ingredient is the so-called
Mautner phenomenon described in the following lemma.

Lemma 3.25 (Mautner 1). Let π : G→ U(H) be a unitary representation of a lcsc group,
and take a sequence (gn)n ∈ G which fixes a vector ξ ∈ H, i.e. πgn(ξ) = ξ for all n. Take
an element u ∈ G such that limn g

−1
n ugn = e. Then πu(ξ) = ξ.

We directly prove the following refinement which involves the weak topology onH. Recall
that by self duality of Hilbert spaces, a sequence ξn ∈ H converges weakly to a vector
η ∈ H if and only if for every vector ξ′, we have limn〈ξn, ξ′〉 = 〈η, ξ′〉.

Lemma 3.26 (Mautner 2). Let π : G→ U(H) be a unitary representation of a lcsc group,
and take a sequence (gn)n ∈ G and u ∈ G such that limn g

−1
n ugn = e. Take a vector

ξ ∈ H such that πgn(ξ) converges weakly to a vector ξ∞ ∈ H. Then πu(ξ∞) = ξ∞.

Proof. We first compute

lim
n
‖πuπgn(ξ)− πgn(ξ)‖ = lim

n
‖πg−1

n ugn
(ξ)− ξ‖ = 0.

So the two sequences πuπgn(ξ) and πgn(ξ) must have the same weak limits. Since these
weak limits are πu(ξ∞) and ξ∞ respectively, we are done. �

4.1. The case of SL2(R). In this paragraph, we denote by G = SL2(R). For a ∈ R∗,
x ∈ R, we define

sa :=

(
a 0
0 a−1

)
and ux :=

(
1 x
0 1

)
.

We denote by A < G the subgroup consisting of all diagonal matrices sa, a ∈ R∗ and by
N < G the upper unipotent subgroup, consisting of all ux, x ∈ R. We also denote by
N op the lower unipotent subgroup, whose elements are the transpose of ux.

Observe that A normalizes N , with the action given by sauxs
−1
a = ua2x. In particular, if

(an) is a sequence of real numbers that goes to infinity as n → ∞, then for any x ∈ R,
we have limn s

−1
an uxsan = e. This is precisely the situation where we can apply Mautner

phenomenon.

Lemma 3.27. If π : G→ U(H) is a unitary representation, then

a) any vector in H which is invariant under A, N and N op is G-invariant;
b) any A-invariant vector in H is invariant under N and N op;
c) any N-invariant vector in H is A-invariant, hence G-invariant.

Proof. Since A, N and N op generate G, item a) is trivial.
b) is a consequence of Mautner lemma 1. We leave it as an exercise.
c) Assume that ξ ∈ H is a vector invariant under π(N). Consider the function

f : g ∈ G 7→ 〈πg(ξ), ξ〉.
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This function is continuous. It is obviously right N -invariant, and equation (2.1) tells us
that it is also left N -invariant. The right invariance allows us to view f as a continuous
function on G/N . And observe that there is a G-equivariant homeomorphism G/N →
R2 \ {(0, 0)}. More precisely, consider the natural action of G on R2, denote by e1 =
(1, 0) ∈ R2 and consider the orbit map

g ∈ G 7→ g(e1) ∈ R2.

Then the range of this map is R2 \ {(0, 0)} and the stabilizer of e1 is N . So this map
induces a G-equivariant homeomorphism G/N → R2 \{(0, 0)}, which we may use to view
f as a continuous function on R2 \ {(0, 0)}. Now the left N -invariance of f implies that

f(a, b) = f(ux(a, b)) = f(a+ bx, b), for all x ∈ R, (a, b) ∈ R2.

So f is constant along any horizontal line Lb := {(a, b) , a ∈ R}, with b 6= 0. But since f
is continuous, this implies that f is also constant along the horizontal axis L0 \ {(0, 0)}.
This means that f(1, 0) = f(a, 0) = f(sa(1, 0)) for all a ∈ R∗. Therefore, going back to
the description of f as a right-N -invariant function on G, we conclude that f(sa) = f(e),
for all a ∈ R∗. In other words 〈πsa(ξ), ξ〉 = ‖ξ‖2, for all a ∈ A. This means that ξ is A
invariant. �

Proposition 3.28. If π : G → U(H) is a unitary representation without (non-zero)
invariant vectors then its restriction to A is mixing.

Proof. We prove the contraposite. Assume that the representation of A is not
mixing.

Claim 1. There exist two vectors ξ, η ∈ H and a sequence of real numbers (an)n that
goes to infinity as n → ∞, and such that 〈πsan (ξ), η〉 converges to a non-zero scalar
number.

Since the representation of A is not mixing, then there exists two vectors ξ, η ∈ H such
that the corresponding coefficient function g ∈ A 7→ 〈πg(ξ), η〉 is not in C0(A). This
means that we can find a sequence (gn)n of elements in A that goes to infinity in A and
such that 〈πgn(ξ), η〉 converges to a non-zero complex number c ∈ C.

For each n, we may write gn = san for some an ∈ R. Saying that the sequence (gn)n goes
to infinity in A implies that, up to taking a subsequence, (an)n goes to 0 or to ∞. In the
latter case we are done. In the case where (an)n converges to 0, then the sequence (a−1

n )n
goes to infinity and satisfies

lim
n
〈πs

a−1
n

(η), ξ〉 = lim
n
〈η, πgn(ξ)〉 = c̄ 6= 0.

So the sequence (a−1
n )n satisfies the claim, by interchanging the vectors ξ and η.

Claim 2. With the notation of Claim 1, we may assume that the sequence ξn := πsan (ξ)
converges weakly to a non-zero vector ξ∞, which is G-invariant.

This simply follows from the fact that the sequence (ξn)n is bounded in H, contained in
the closed ball B with center 0 and radius ‖ξ‖, and that this ball is compact for the weak
topology (Banach-Alaoglu theorem). So we may find a subsequence of ξn that converges
weakly to some vector ξ∞

1. Now by Claim 1, we must have

〈ξ∞, η〉 = lim
n
〈πsan (ξ), η〉 6= 0.

1Here we are implicitly using the fact that B is sequentially compact, which holds only when H is a
separable Hilbert space. But in order to prove Howe-Moore theorem, we can always reduce to the case
where H is separable (why?).
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So ξ∞ is non-zero. Mautner lemma 2 tells us that ξ∞ is N -invariant. So Lemma 3.27.c
implies that it is G-invariant. �

Caution. The above lemma is not saying that every representation of A without invariant
vectors is mixing!

Now Howe-Moore theorem follows from the KAK-decomposition, which we more gener-
ally state for representations of SLn(R), n ≥ 2.

Lemma 3.29. Let now G = SLn(R), and denote by A the subgroup of diagonal matrices
in G. Consider a unitary representation π : G→ U(H), whose restriction to A is mixing.
Then π is mixing.

Proof. Denote by K = SO(n) < G the compact subgroup of orthogonal matrices.
Then we have the KAK decomposition. In other words every element g ∈ G can be
written as a product g = kak′, with k, k′ ∈ K, a ∈ A.

Take ξ, η ∈ H and ε > 0. The sets π(K)(ξ) and π(K)(η) are compact subsets of H. So
we may find finitely many vectors ξ1, . . . , ξn ∈ π(K)(ξ) and η1, . . . , ηm ∈ π(K)(η), such
that

• for any vector ξ′ ∈ π(K)(ξ), there exists i such that ‖ξi − ξ′‖ < ε.
• for any vector η′ ∈ π(K)(η), there exists j such that ‖ηj − η′‖ < ε.

Since the representation of A on H is mixing, we may find a compact set C ⊂ A such
that

|〈πa(ξi), ηj〉| < ε for all a ∈ A \ C, i ≤ n, j ≤ m.

Now denote by C ′ ⊂ G the compact set KCK. Then for any g ∈ G \ C ′, we may write
g = kak′, with a ∈ A \C, and we may find i ≤ n, j ≤ m such that ‖πk′(ξ)− ξi‖ < ε and
‖πk−1(η)− ηj‖ < ε. And we get

|〈πg(ξ), η〉 = |〈πaπk′(ξ), πk−1(η)〉|
< |〈πa(ξi), πk−1(η)〉|+ ‖πaπk′(ξ)− πa(ξi)‖‖η‖
< |〈πa(ξi), ηj〉|+ ‖ξ‖‖πk−1(η)− ηj‖+ ε‖η‖
< ε(1 + ‖ξ‖+ ‖η‖).

This proves that the coefficient function g ∈ G 7→ 〈πg(ξ), η〉 is in C0(G) �

4.2. The case of SLd(R), d ≥ 3. in order to prove Howe Moore theorem for general
semi-simple Lie groups one needs to use roots systems and sl2-triples. We illustrate the
proof for G = SLd(R), d ≥ 3. Thanks to Lemma 3.29, it suffices to prove the following
proposition.

Proposition 3.30. Consider a unitary representation π : G → U(H) with no non-zero
invariant vector. Then the restriction of π to the diagonal subgroup A is mixing.

Proof. The proof reuses all the tools we used for SL2(R), and thus makes a good
exercise.

• Prove that if a sequence an = diag(an,1, . . . , an,d) goes to infinity in A then, taking
a subsequence if necessary, we may find indices i, j such that limn an,i = +∞
and limn an,j = 0. Deduce that a−1

n ui,j(x)an converges to e, where ui,j(x) ∈ G is
the element with 1’s one the diagonal, x in position (i, j) and 0 elsewhere.
• Prove that if A is not mixing then there exist 1 ≤ i 6= j ≤ d and a non-zero

vector ξ ∈ H which is invariant under ui,j(x), for all x ∈ R.
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• Show that ξ is invariant under the subgroup Ai,j < A consisting of diagonal
matrices with 1’s on the diagonal entries other than the ith and jth.
• Prove then that ξ is invariant under all uk,l(x), x ∈ R whenever {k, l}∩{i, j} 6= ∅.
• Conclude that ξ is G-invariant. �

5. Stationary dynamical systems

5.1. Definitions and examples.

Definition 3.31. Consider a measurable group action G y X on a measure space and
take probability measures µ ∈ Prob(G) and ν ∈ Prob(X) (we don’t require that ν is
quasi-invariant under G). Then we define the convolution measure µ ∗ ν ∈ Prob(X) to
be the push-forward measure of the product measure µ ⊗ ν ∈ Prob(G × X) under the
action map (g, x) ∈ G×X 7→ gx ∈ X.

Example 3.32. If we consider G acting on itself by left multiplication, we thus obtain
a product law on Prob(G), which is associative, and whose neutral element is δe. In
particular we may define the convolution powers µ∗n, n ≥ 1, of a measure µ ∈ Prob(G).
Then µ∗n describes the distribution of an element g1 · · · gn obtained as the product of n
independent random elements g1, . . . , gn, each of them having law µ.

If G acts on a measurable space X, and if ν ∈ Prob(X) then the measures µ∗n ∗ ν, n ≥ 1,
describe the random walk on X whose starting point is a random point with law ν, and
where each step of the walk is obtained by applying a random element of G with law µ.
Each new convolution by µ corresponds to an extra step in the walk.

Definition 3.33. Consider a measurable group action Gy X and take a Borel probabil-
ity measure µ ∈ Prob(G). We say that a probability measure ν ∈ Prob(X) is µ-stationary
if µ ∗ ν = ν.

Roughly speaking, a µ-stationary is a measure which is “invariant under the µ-random
walk”: if the starting point is distributed according to a µ-stationary measure ν, then
the position of the random walk at any time n ≥ 1 is also distributed according to the
measure ν.

Of course any G-invariant measure is µ-stationary, for any µ ∈ Prob(G), but the gap
between invariance and stationarity is huge: the following lemma says that stationary
measures (on compact spaces) always exist, while this is far from true for invariant mea-
sures.

Lemma 3.34. Consider a continuous action of a topological group G on a compact space
X. Then for any Borel measure µ ∈ Prob(G), there always exists a µ-stationary Borel
measure ν ∈ Prob(X).

Proof. This is a fixed point argument. If X is compact, then Prob(X) is a compact
convex subset of the dual of C(X). Consider the convolution map T : ν ∈ Prob(X) 7→
µ ∗ ν ∈ Prob(X). This map is affine and continuous on Prob(X) and we want to prove
that it admits a fixed point. Take an arbitrary initial measure ν0 ∈ Prob(X), and consider
for all n ≥ 1 the measure

νn :=
1

n

n∑
k=1

T k(ν0) ∈ Prob(X).

Observe that T (νn) − νn = (µ∗n+1 ∗ ν0 − ν0)/n converges *-weakly to 0. So any weak-*
cluster point of the sequence νn is fixed under T . Since Prob(X) is compact, such cluster
points do exist. �
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In the light of a subsequent chapter on amenability, the above proof shows in fact that
the semi-group N is amenable. The compactness of X is crucial, for example if G is any
non-compact group and µ ∈ Prob(G) is any probability measure equivalent to the Haar
measure, there is no µ-stationary measure on G for the left translation action Gy G.

Definition 3.35. A (G, µ)-space will be the data (X, ν) of a lcsc space X on which G
acts continuously together with a µ-stationary Borel measure ν ∈ Prob(X).

Example 3.36. Here are two classes of examples:

• Any continuous finite dimensional representation π : G→ GL(V ) of G induces a
projective action G y P(V ) which is continuous. By Lemma 3.34, we may find
a µ-stationary measure on P(V ) for any Borel probability measure µ on G. This
is a typical example of a (G, µ)-space that we will use in the next chapter.
• For any co-compact subgroup Q < G, the action of G on G/Q is continuous, so

as in the previous example, such a space G/Q can be turned into a (G, µ)-space
for any choice of µ ∈ Prob(G). The typical example will be that where Q = P is
a minimal parabolic subgroup, or where Q contains such a group P , see Chapter
2, Section 3 for the definitions of P in our special setting).

5.2. Conditional measures. As we explained, µ-stationary measures may be in-
terpreted as invariant measures under the µ-random walk. This probabilistic point of
view will be useful to study µ-stationary measures.

We take a measure µ ∈ Prob(G) and we consider the infinite product space (Ω, P ) =∏
n≥1(G, µ). As a set this is nothing but GN∗ , endowed with the σ-algebra generated by

the finite cylinders C := A1 × · · · × An × G × G × · · · , where each Ai is a Borel subset
of G. The measure of such a cylinder is given by P (C) = µ(A1)µ(A2) · · ·µ(An). By
Caratheodory extension theorem, such a measure P exists, and it is unique.

The letter ω will stand for an element of Ω, and gn(ω) will denote its nth coordinate, for
n ≥ 1.

Lemma 3.37. Consider a (G, µ)-space (X, ν). Then for P -almost every ω ∈ Ω, the
sequence of probability measures g1(ω)∗ · · · gn(ω)∗ν is weak-* convergent. We denote by
νω ∈ Prob(X) its limit, and we call it the conditional measure at ω. We have

ν =

∫
Ω

νω dP (ω).

Proof. Let us fix f ∈ C0(X), and consider the sequence of functions

fn(ω) :=

∫
X

f(g1(ω) · · · gn(ω)x) dν(x).

Then fn are bounded functions on Ω, with ‖fn‖∞ ≤ ‖f‖∞. To prove that this sequence
is almost surely convergent, we will use the martingale convergence theorem.

Denote by B the product σ-algebra on Ω, on which P is naturally defined. For all
n ∈ N, denote by Bn ⊂ B the σ-subalgebra generated by the cylinders of the form
C := A1× · · ·×An×G×G× · · · (with the same n). So the Bn-measurable functions are
the ones that only depend on the coordinates g1, . . . , gn. It is then clear that Bn ⊂ Bn+1,
for all n ∈ N. We denote by En : L∞(Ω,B)→ L∞(Ω,Bn) the conditional expectation.
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For all ω ∈ Ω, we have

En(fn+1)(ω) =

∫
G

∫
X

f(g1(ω) · · · gn(ω)gx) dν(x) dµ(g)

=

∫
X

f(g1(ω) · · · gn(ω)x) d(µ ∗ ν)(x) = fn(ω).

So (fn) is a uniformly bounded martingale with respect to the filtration (Bn)n. By the
martingale convergence theorem, it is almost surely convergent. So we find that for every
fixed function f ∈ C0(X), for almost every ω ∈ Ω, fn(ω) converges to a limit, denoted
by νω(f). Since X is a lcsc space, the function algebra C0(X) is separable: it admits a
dense sequence (fk)k≥1 (with respect to the uniform norm).

Since the countable intersection of conull sets is conull, we may find a conull set Ω0 ⊂ Ω
such that for all ω ∈ Ω0, for all k ≥ 1, we have

lim
n

∫
X

fk(g1(ω) · · · gn(ω)x) dν(x) = νω(fk).

By density of the set {fk , k ≥ 1}, one checks that for every ω ∈ Ω0, for every f ∈ C0(X),
the sequence fn(ω) =

∫
X
f(g1(ω) · · · gn(ω)x)dν(x) is a Cauchy sequence so it is convergent

to a limit denoted by νω(f).

Then by uniqueness of the limit νω(f) associated to each function f ∈ C0(X), we see that
the map f ∈ C0(X) 7→ νω(f) ∈ R is a positive, unital, linear functional, so it corresponds
to a probability measure νω, by Riesz representation theorem. By definition, νω is the
weak-* limit of the sequence g1(ω)∗ · · · gn(ω)∗ν.

Moreover, for every f ∈ C(X), the Lebesgue convergence theorem implies that∫
Ω

νω(f) dP (ω) = lim
n

∫
Ω

∫
X

f(g1(ω) · · · gn(ω)x) dν(x) dP (ω)

= lim
n

∫
X

f(x) d(µ∗n ∗ ν)(x) = ν(f). �

Lemma 3.38. For every k ≥ 1, for µ∗k-almost every g ∈ G, and for P -almost every
ω ∈ Ω, the sequence of measures g1(ω)∗ · · · gn(ω)∗g∗ν weak-* converges to νω.

Proof. Fix k ≥ 1, f ∈ C0(X), and define a function Φ : G→ R by the formula

Φ(f)(g) =

∫
X

f(gx) dν(x), for all g ∈ G.

This function is right-µ-harmonic, in the sense that Φ(g) =
∫
G

Φ(gh)dµ(h), for all g ∈ G.
This is because ν is µ-harmonic. As in the previous proof, we denote by fn the function
on Ω given by

fn(ω) := Φ(g1(ω) · · · gn(ω)), ω ∈ Ω.

and we also introduce f gn : ω ∈ Ω 7→ Φ(g1(ω) · · · gn(ω)g). We compute

In :=

∫
Ω

∫
G

|fn(ω)− f gn(ω)|2 dP (ω) dµ∗k(g)

=

∫
G

∫
G

|Φ(h)− Φ(hg)|2 dµ∗n(h) dµ∗k(g)

=

∫
Ω

|fn+k(ω)− fn(ω)|2 dω

= ‖fn+k − fn‖2
2 = ‖fn+k‖2

2 − ‖fn‖2
2
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We implicitly used the fact that fn is a martingale, to get the last equality, through the
equality 〈fn+k, fn〉 = ‖fn‖2

2.

This computation shows that In is a summable sequence:∑
n∈N

In =
k−1∑
i=0

∑
n∈N

Ink+i =
k∑
i=0

∑
n∈N

‖f(n+1)k+i‖2
2 − ‖fnk+i‖2

2 ≤ 2k‖f‖2
∞.

By Fubini-Tonelli’s theorem, we find that∫
Ω

∫
G

(
∑
n

|fn(ω)− f gn(ω)|2) dP (ω) dµ∗k(g) <∞.

This shows that for P -almost every ω ∈ Ω and for µ∗k-almost every g ∈ G, the sum∑
n |fn(ω)−f gn(ω)|2 is finite. In particular, for such ω and g, f gn(ω) converges to the same

limit as fn(ω), which is νω(f).

In order to conclude, we need to show that the convergence holds almost surely, inde-
pendently on f , i.e. the conull sets of ω’s and g’s on which convergence holds must
be independent on f ∈ C0(X). But this is ok thanks to the separability of C0(X), by
proceeding as in the proof of the previous lemma. �



CHAPTER 4

Projective dynamics

In this chapter we present some special features of dynamics on projective spaces. We
will be given a representation of a group G on a finite dimensional vector space V and we
will study invariant and stationary measures on the projective space P(V ). The invariant
setting will be used to prove the so-called Borel density theorem, asserting that lattices
in semi-simple Lie groups are Zariski dense. The stationary setting will be used later, in
our proof of Margulis superrigidity result.

For simplicity, we will restrain ourselves to vector spaces over K = R or C, but everything
in this chapter applies in fact to any local field (meaning: any valued field whose valuation
gives a locally compact topology). For instance it could be applied to K = Qp for any
prime p.

1. A general lemma

In this chapter we will study the support of certain invariant or stationary measures on
projective spaces.

Definition 4.1. The support of a Borel measure µ on a second countable topological
space X, denoted by supp(µ), is the complementary of the largest open subset U ⊂ X
such that µ(U) = 0. Such an open set exists by second countability: just take for U
the union of all open sets with measure 0, and observe that this U can be realized as a
countable union, and thus has measure 0.

In particular, when we say that a probability measure µ on a lcsc space X is supported on
a closed subset F ⊂ X, we simply mean that supp(µ) ⊂ F or equivalently, that µ(F ) = 1.

Let V be a finite dimensional vector space. For any g ∈ End(V ) and x ∈ P(V ), simply
denote by g(x) ∈ P(V ) the image of x by the projective transformation ḡ ∈ PGL(V ).

All our results about projective dynamics are based on generalizations of the following
observation: if an, bn, n ∈ N are real numbers such that limn |an/bn| = ∞, then the
sequence of matrices gn = diag(an, bn) acts on the projective line P1 = P(R2) by “pushing
almost every point towards the point Re1 ∈ P(R2)”. More precisely, for every x ∈ P1,
with x 6= Re2, we have limn gn(x) = Re1. In particular, every probability measure on P1

which is invariant under the elements gn is supported on Re1 ∪ Re2.

This situation somewhat specific to diagonal matrices. A more general situation would
be that of a sequence gn = kn diag(an, bn), with kn a sequence of rotations: kn ∈ SO(2).
Then this sequence kn must admit a convergent subsequence so in the end, the projective
action of gn is also easy to describe. This example should be the one to have in mind in
the following lemma.

Lemma 4.2. Consider a finite dimensional vector space V and a sequence of transfor-
mations gn ∈ GL(V ) for which there exists a sequence of scalar numbers (λn)n such that

31
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λngn converges to a non-zero endomorphism A ∈ End(V ). Take a Borel probability mea-
sure ν ∈ Prob(P(V )), and assume that the sequence of measures (gn)∗ν ∈ Prob(P(V ))
converges to a measure ν∞ ∈ Prob(P(V )). Then the following two facts hold true:

• ν∞ is supported on a union P(V1) ∪ P(V2), where V1 = Img(A) and dim(V2) =
dim(Ker(A)) (but V2 needs not be equal to Ker(A)).
• If ν(P(Ker(A))) = 0, then ν∞ is supported on P(Img(A)), and in fact ν∞ = A∗ν,

in the sense that ν∞(Y ) = ν(A−1(Y )), for every Borel subset Y ⊂ P(V ).

Proof. Denote by X := P(V ) and set k := dim(Ker(A)). For v ∈ V , we denote
by v̄ ∈ X the corresponding line. If v ∈ V \ Ker(A), then λngn(v) converges to A(v),
and hence limn gn(v̄) ∈ P(Img(A)). Moreover, by Exercise 4.3 below, up to taking a
subsequence of (gn)n, there exists a k-dimensional subspace P(V2) ⊂ X such that any
limit point of the sequence (gn(v̄))n belongs to P(V2), for all v ∈ Ker(A).

In this case, if we take a continuous function f ∈ C(X) such that 0 ≤ f ≤ 1 and f = 1
on P(Img(A))∪P(V2), we see that limn f(gn(x)) = 1 for all x ∈ X. For any neighborhood
U of P(Img(A)) ∪ P(V2), we may find such a function f which is supported on U . Then,
applying Lebesgue convergence theorem, we get

ν∞(U) ≥
∫
X

f dν∞ = lim
n

∫
X

f(gn(x)) dν(x) =

∫
X

lim
n
f(gn(x)) dν(x) = 1.

So ν∞(U) = 1. Since we may find a countable family of such open sets U whose intersec-
tion is P(Img(A)) ∪ P(V2), this gives the first assertion of the lemma:

ν∞(P(Img(A)) ∪ P(V2)) = 1.

In the special case where ν(P(Ker(A))) = 0, then the transformation A : v̄ ∈ X 7→ Av ∈
X is well defined ν-almost everywhere on X. And for ν-almost every x ∈ X, we have
limn gn(x) = A(x). As before we may apply Lebesgue convergence theorem to deduce
that for every continuous function f ∈ C(X), we have∫

P(V )

f dν∞ = lim
n

∫
P(V )

f(gn(x)) dν(x) =

∫
P(V )

f(Ax) dν(x).

This means that ν∞ = A∗ν, which is exactly the formula given in the second item. In
particular, ν∞ is supported on Img(A). �

Exercise 4.3. Consider a vector space V , an integer k ≤ dim(V ) and a sequence (Vn)n≥1

of k-dimensional subspaces of V . Prove that, up to replacing (Vn)n by a subsequence,
there exists a k-dimensional subspace V∞ of V such that any limit point of a sequence
(vn)n≥1 in P(V ) such that vn ∈ Vn for each n belongs to P(V∞).

2. Invariant measures and the Borel density theorem

The next lemma is due to Furstenberg, and follows easily from Lemma 4.2.

Lemma 4.4 (Furstenberg). Let G ⊂ GL(V ) be a subgroup such that the projective action
G y P(V ) admits an invariant probability measure ν. Then either the image of G in
PGL(V ) has compact closure, or there exists two proper subspaces V1, V2 ⊂ V such that
dim(V ) = dim(V1) + dim(V2) and ν is supported on P(V1) ∪ P(V2).

Proof. Assume that the image of G in PGL(V ) does not have compact closure. Then
the following claim and Lemma 4.2 show that ν is supported on a union P(V1) ∪ P(V2)
with V1, V2 ⊂ V two proper subspaces satisfying dim(V ) = dim(V1) + dim(V2).
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Claim. There exists a sequence (gn)n in G and a sequence of scalar numbers (λn)n such
that λngn converges to a non-zero, non-invertible endomorphism A ∈ End(V ).

Denote by ‖·‖ an arbitrary nom on the vector space End(V ). If there is no such sequence
(gn), then the closure C of the set {g/‖g‖ , g ∈ G} inside End(V ) is contained in GL(V ).
Moreover, C is a bounded closed subset of End(V ) so it is compact. Therefore, the image
of C in PGL(V ) is a compact subset which contains the image of G. Thus the image of
G in PGL(V ) has compact closure. �

Proposition 4.5. Let G be a connected semi-simple Lie group with trivial center and
no compact factor. Then for any continuous representation π : G → GL(V ) of G on a
finite dimensional vector space V , any G-invariant Borel probability measure on P(V ) is
supported on the set of G-fixed points.

Proof. Write G as a direct product of simple factors, G = G1 × · · · × Gn. Then
every quotient of G by a continuous map is a product of some of these factors. Denote
by ν ∈ Prob(P(V )) a G-invariant Borel probability measure.

Claim Let W ⊂ V be a subspace such that ν(P(W )) > 0 and which is minimal for this
property. Then W is globally G-invariant and G acts trivially on W .

Denote by α := ν(P(W )). For every g ∈ G, we have ν(P(π(g)W )) = α. Moreover since
W is minimal, so is π(g)W . If g, h are such that π(g)W 6= π(h)W , then by minimality,
ν(P(π(g)W ) ∩ P(π(h)W )) = 0. Let us now see G as acting on the set of all subspaces of
V and denote by O := {π(g)W , g ∈ G} the orbit of W under G. From the hayes rule,
we have

ν(
⋃
E∈O

P(E)) =
∑
E∈O

α = α|O|.

Since ν is a finite measure, we deduce that O must be finite, and the stabilizer of W
in G is a finite index closed subgroup H. As such, it must also be open and since G is
connected, we conclude that H = G: W is indeed G-invariant.

By assumption, the action G y P(W ) has an invariant finite measure (namely the
restriction of ν to P(W )). So we may apply Lemma 4.4 to the representationG→ GL(W ).
By minimality of W , we deduce that the image of G in PGL(W ) is compact. But since
every compact quotient of G is trivial, we deduce that the morphism G → PGL(W )
is trivial. Thus G acts on W by dilations. This means that there exists a continuous
morphism φ : G→ R such that an element g of G acts on W by multiplication by φ(g).
But since any abelian quotient of G is trivial, we deduce that φ is trivial, i.e. G acts
trivially on W . This prove the claim.

To conclude, denote by V0 ⊂ V the largest subspace of V on which G acts trivially.
Denote by ν0 the restriction of ν to P(V0). In order to prove the lemma, it suffices to
show that ν0 = ν. If not, then ν − ν0 is a non-zero G-invariant finite Borel measure on
P(V ). We may renormalize it to assume that it is a probability measure ν1. It satisfies
ν1(P(V0)) = 0. Then denote by W ⊂ V a minimal subset of V such that ν1(P(W )) > 0.
Then the claim applied to ν1 implies that W is globally G-invariant and W ⊂ V0. This
contradicts the fact the ν1(P(V0)) = 0. �

The following corollary is the so-called Borel density lemma, which asserts that lattices
in semi-simple Lie groups are Zariski dense.

Corollary 4.6. Let Γ be a lattice in a connected semi-simple Lie group G with trivial
center and no compact factor. Let π : G → GL(V ) be a continuous representation of
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G on a finite dimensional vector space V . Then any subspace of V which is globally
Γ-invariant is globally G-invariant.

Proof. Let W ⊂ V be a Γ-invariant subspace and denote by k := dim(W ).

Step 1. We use an exterior product trick to reduce to the case where k = 1.

We define a linear representation π̃ on the exterior product Λk(V ) by the formula

π̃(g)(v1 ∧ · · · ∧ vk) = (π(g)v1) ∧ · · · ∧ (π(g)vk).

This is well defined by the universal property of exterior products, and it is still con-
tinuous. Moreover, the subspace Λk(W ) ⊂ Λk(V ) is a one dimensional subspace which
is invariant under π̃(Γ). If the corollary holds for one dimensional subspaces, then we
deduce that Λk(W ) ⊂ Λk(V ) is π̃(G)-invariant. This implies that W is π(G)-invariant
(exercise).

Step 2. We prove the corollary in the case where k = 1.

In this case W defines a point x ∈ P(V ), which is Γ-invariant. Then the orbit map
g ∈ G 7→ π(g)(x) ∈ P(V ) factors to a G-equivariant continuous map θ : G/Γ → P(V ).
Since Γ is a lattice in G, G/Γ admits a G-invariant Borel probability measure ν0, whose
push-forward ν := θ∗ν0 is a G-invariant probability measure on P(V ), supported on the
orbit of x. Proposition 4.5 then implies that this orbit consists of G-invariant points, i.e.
x is G-invariant. This proves that W is G-invariant. �

3. Stationary measures on projective spaces

Proposition 4.5 tells us that invariant probability measures on projective spaces can only
occur for obvious reasons: they are supported on the set of fixed points; in particular there
must exist fixed points. In particular for irreducible non-trivial representations of semi-
simple Lie group there is no invariant probability measure at all. But as we observed in
Lemma 3.34, there always exist stationary measures with respect any probability measure
µ on the acting group G. In this section, we give conditions ensuring that such a measure
is unique: an irreducibility condition and a proximality condition.

Consider a continuous representation π : G → GL(V ) of a lcsc group G on a finite
dimensional vector space V .

Definition 4.7. The representation π is called irreducible if the only G-invariant sub-
spaces of V are {0} and V . It is called strongly irreducible if its restriction to any finite
index subgroup of G is irreducible.

Exercise 4.8. Check that π is strongly irreducible if and only if there is no finite family
F of non-trivial proper subspaces of V which is G-invariant (meaning that π(g)W ∈ F
for all W ∈ F).

Definition 4.9. The proximal rank of π is the minimal rank of a matrix A ∈ End(V )
which is the limit of a sequence λnπ(gn), with gn ∈ G and λn scalar numbers. We say
that π is proximal if its proximal rank is 1.

We also need a condition on the choice of the measure µ (for instance the Dirac measure
at the trivial element µ = δe is not expected to generate interesting random walks...).

Definition 4.10. A measure µ ∈ Prob(G) is called generating if the semi-group gener-
ated by its support is dense in G.
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Theorem 4.11. Let µ ∈ Prob(G) be a generating measure. If π is strongly irreducible and
proximal then there is a unique µ-stationary measure ν ∈ Prob(P(V )). Better, there is
a unique µ-stationary measure in Prob(Prob(P(V ))); it is supported on the closed subset
of Dirac measures on P(V ).

The proof of the theorem is based on a series of lemmas. Let µ ∈ Prob(G) be a generating
measure and assume that π is strongly irreducible and proximal. We denote by ν a µ-
stationary measure on P(V ). We will use the notation (Ω, P ) and {νω}ω∈Ω introduced in
Section 5.

Lemma 4.12. The measure ν ∈ Prob(P(V )) does not charge proper subspaces of V :
ν(P(W )) = 0, for every proper subspace W ⊂ V .

Proof. Otherwise, we may consider the minimal dimension k < dim(V ) of a sub-
space W ⊂ V such that ν(P(W )) 6= 0. For ε > 0, denote by

Fε := {W ⊂ V | dim(W ) = k, ν(P(W )) ≥ ε}.
By minimality of k, for any two distinct subspaces W,W ′ ∈ Fε, we have ν(P(W ) ∩
P(W ′)) = 0. So for any finite subset F0 ⊂ Fε, we get

1 ≥ ν(
⋃

W∈F0

P(W )) =
∑
W∈F0

ν(P(W )) ≥ ε|F0|.

This shows that F0 has cardinality at most 1/ε, and thus Fε is finite. So if we define

α := sup({ν(P(W )) | W ⊂ V : dim(W ) = k}),
we find that α is attained, and Fα is finite.

Now, since ν is µ-stationary, we have, for all W ∈ Fα,

α = ν(P(W )) =

∫
G

ν(P(π(g−1)W )) dµ(g).

By maximality of α we have ν(P(π(g−1)W )) ≤ α for all g ∈ G and since µ is a probability
measure, the above equality actually implies that ν(P(π(g−1)W )) = α for µ-almost every
g ∈ G. In particular, π(g−1)W ∈ Fα for almost every g ∈ G and every W ∈ Fα. But
observe that the set of elements g ∈ G such that π(g−1)W ∈ Fα for every W ∈ Fα is a
closed subgroup of G. Since it has measure 1, it must contain the support of µ, and also
the closure of the semi-group generated by supp(µ). since µ is a generating measure, we
conclude that G preserves the finite family Fα, which contradicts our assumption that π
is strongly irreducible. �

Lemma 4.13. For P -almost every ω ∈ Ω, the conditional measure νω is a Dirac measure
νω = δp(ω). The point p(ω) depends almost surely only on ω, not on the choice of the
stationary measure ν.

Proof. By Lemma 3.37, there exists a co-null set Ω0 ⊂ Ω such that π(g1(ω) · · · gn(ω))∗ν
converges weakly to νω for every ω ∈ Ω0. For ω ∈ Ω0, we denote by Vω ⊂ V the smallest
subspace W ⊂ V such that P(W ) contains the support of νω.

Fix ω ∈ Ω0 and choose a norm ‖·‖ on End(V ). Denote by A a limit point of the sequence
(π(g1(ω) · · · gn(ω))/‖π(g1(ω) · · · gn(ω))‖)n. By Lemma 4.12, ν(P(Ker(A))) = 0 and thus
Lemma 4.2 implies that νω = A∗ν is supported on the image of A. Moreover, using
again Lemma 4.12, we see that νω(P(W )) = ν(A−1(W )) = 0, for any proper subspace
W ⊂ Img(A). So Img(A) = Vω.
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In particular, for P -almost every ω ∈ Ω, Vω does not depend on the stationary measure
ν, but only on ω.

Claim. Vω is one dimensional for P -almost every ω ∈ Ω.

This is where we use the fact that π is proximal. By Lemma 3.38, we may replace
Ω0 by a co-null subset if necessary to ensure that for every ω ∈ Ω0, every k ≥ 1, and
µ∗k-almost every g ∈ G, we have νω = limn π(g1(ω) · · · gn(ω)g)∗ν. Fix such ω ∈ Ω0,
k ≥ 1, and g ∈ G. Then we know that Aπ(g) ∈ End(V ) is a limit point of the
sequence (π(g1(ω) · · · gn(ω)g)/‖π(g1(ω) · · · gn(ω))‖)n. Thanks to Lemma 4.2, we have
νω = (Aπ(g))∗ν. By continuity, this equation holds for every g ∈ supp(µ∗k), for every k.
Since µ is generating, this holds for every g ∈ G.

Since π is proximal, we may find a sequence (hk)k∈N in G and a sequence of scalars (λk)
such that λkπ(hk) converges to a rank one endomorphism B ∈ End(V ) as k → ∞. By
irreducibility of π, we may assume that Img(B) * Ker(A), so that AB 6= 0. Recall that
A : P(V ) → P(V ) is in fact only defined on the co-null open subset P(V ) \ P(Ker(A)),
on which it is continuous. Thus, for every v ∈ V \ Ker(AB), we have Bv /∈ Ker(A),
and so π(hk)v /∈ Ker(A) for k large enough. In particular Aπ(hk)v̄ ∈ P(V ) converges
to ABv̄. By Lemma 4.12, we have ν(Ker(AB)) = 0, and thus for ν-almost every x ∈
P(V ), limk Aπ(hk)x = ABx. Lebesgue convergence theorem then implies that (AB)∗ν =
limk(Aπ(hk))∗ν = νω. In particular, νω is supported on Img(AB) ⊂ Img(A) = Vω. By
minimality, we must have Img(AB) = Img(A). Since AB has rank one, so does A. This
proves the claim.

The claim now implies that νω is the Dirac measure at the point p(ω) ∈ P(V ) correspond-
ing to the line Vω = Img(A). Thus it only depends on ω, and not on the choice of the
measure ν. �

Proof of Theorem 4.11. Denote by X := P(V ). The uniqueness of a µ-stationary
measure on X follows from the previous lemma and the fact that a stationary measure ν
can be reconstructed as the integral of its conditional measures. Denote by ν ∈ Prob(X)
this unique µ-stationary measure and let ν̃ ∈ Prob(Prob(X)) be an arbitrary µ-stationary
measure.

We will use the barycenter map Bar : Prob(Prob(X))→ Prob(X), given by

Bar(σ) =

∫
Prob(X)

ζ dσ(ζ).

This formula means that for every f ∈ C(X), we define Bar(σ)(f) to be
∫

Prob(X)
ζ(f) dσ(ζ),

and that this defines a unital, positive linear functional Bar(σ) on C(X), i.e. a proba-
bility measure on X. This barycenter map is well behaved: it is continuous with respect
to weak-* topologies, and it is G-equivariant with respect to the natural G-actions on X
and Prob(X). It is moreover an affine map, if we view Prob(Prob(X)) and Prob(X) as
convex subsets of the dual spaces of C(Prob(X)) and C(X) respectively.

Thanks to these properties, we see that the barycenter of ν̃ must be µ-stationary. So
by uniqueness, we must have Bar(ν̃) = ν. Now for almost every ω ∈ Ω, we have
simultaneous convergence to conditional measures: limn(g1(ω) · · · gn(ω))∗ν̃ = ν̃ω and
limn(g1(ω) · · · gn(ω))∗ν = νω. By continuity and equivariance of the barycenter map,
this gives:

νω = Bar(ν̃ω).

By Lemma 4.13, we know that almost every νω is a Dirac measure, and thus is extremal
in Prob(X). This forces ν̃ω to be the Dirac measure at νω. So ν̃ω does not depend on
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ν̃ for almost every ω, thus ν̃ is unique. Moreover, ν̃ω is supported on the set of Dirac
measures on X, and thus, so is ν̃. �

The following corollary will play a crucial role in our proof of Margulis superrigidity
theorem.

Corollary 4.14. Let G be an lcsc group, with a generating measure µ ∈ Prob(G). Let
π : G → GL(V ) be a strongly irreducible and proximal representation of G. Let (X0, ν0)
be a (G, µ)-space. Then

a) Any G-equivariant measurable map θ : X0 → Prob(P(V )) almost surely ranges into
the set of Dirac measures.

b) There exists at most one such map, up to ν0-almost everywhere equality.

Proof. The push-forward θ∗ν0 is a µ-stationary measure on Prob(P(V )). By The-
orem 4.11, it must be supported on the subset of Dirac measures on P(V ). This easily
implies a). Now given two such G-maps θ1, θ2 : X0 → Prob(P(V )), we can form the
middle map:

θ : x ∈ X0 7→
1

2
(θ1(x) + θ2(x)) ∈ Prob(P(V )).

Then by item a), almost every value θ(x) is a Dirac measure, which implies by extremality
that θ1(x) = θ2(x), almost surely. �

In order to apply the above corollary, it will be convenient to be able to construct proxi-
mal, irreducible representations.

Proposition 4.15. Let G be a connected semi-simple Lie group with trivial center, and
let ∆ ⊂ G be a subgroup with non-compact closure. Then there exists a continuous linear
representation π : G → GL(V ) which is irreducible (hence strongly irreducible), and
whose restriction to ∆ is proximal.

Proof. Since G is semi-simple with trivial center, the adjoint representation π0 of
G on its Lie algebra is a homeomorphism onto its image. In particular π0(∆) has a non-
compact closure inside GL(g). Note moreover that since G is semi-simple it is perfect
(i.e. it has no non-trivial abelian quotient). Therefore π0(G) is contained in SL(g). So
as a non-compact subgroup of SL(g), π0(∆) contains a sequence (gn) such that gn/‖gn‖
converges to a non-invertible matrix (here we pick for ‖·‖ an arbitrary norm on End(V )).
This shows that the proximal rank of the restriction of π0 to ∆ is an integer k strictly
smaller than dim(g).

Therefore the representation πk0 of G on the exterior product Λk(g) has its restriction to
∆ which is proximal. Since G is semi-simple, we may decompose this representation of
G as a direct sum of irreducible ones. Then one of them, at least, has a restriction to ∆
which is proximal. This is the desired representation.

Note that since G is connected, it has no proper finite index closed subgroup. So any
irreducible representation of G is strongly irreducible. �



CHAPTER 5

Extra topics

The proof of Margulis’ superrigidity theorem will require two more lemmas that we isolate
in this chapter. The first lemma is the existence of boundary maps, Lemma 5.8, which is
based on the classical notion of an amenable group. The second lemma is Lemma 5.9 in
which we construct a nice measure on a lattice Γ in a semi-simple Lie group, which will
be our reference measure for some dynamical systems.

1. Amenable groups

There are many equivalent formulations of amenability for topological groups. The one
that we will use is based on a fixed point property for affine actions on compact convex
sets.

Definition 5.1. A compact convex space is a non-empty compact convex subset C of a
locally convex topological vector space space E. We denote by Aff(C) the vector space of
all affine functions on C, i.e., of all restrictions to C of continuous affine functions E → R.
An affine action of a group G on a compact convex space is by definition a group action
Gy C which extends to a continuous action on E by affine transformations.

Example 5.2. The typical example is that of probability spaces. If X is a compact set,
then the space Prob(X) of all Borel probability measures on X is a compact convex space,
when viewed as a subset of E = C(X)′, endowed with the weak-* topology. This is due
to Banach-Alaoglu theorem. Any continuous action σ of a group G on X induces a norm
continuous action of G on C(X) by the formula g · f := f ◦σ−1, for all f ∈ C(X), g ∈ G.
By duality, this gives a weak-* continuous action of G on E (by linear transformations).
When restricted to Prob(X), this action is exactly the action given by the push forward
of measures. Indeed, we have for all µ ∈ Prob(X), f ∈ C(X), g ∈ G:

(g · µ)(f) = µ(g−1 · f) = µ(f ◦ σg) =

∫
X

f(gx) dµ(x) = (g∗µ)(f).

We get that Gy Prob(X) is an affine action.

Definition 5.3. A topological group G is said to be amenable if every affine action of
G on a compact convex space admits a fixed point.

Alternatively, amenability can be expressed in terms of invariant measures.

Lemma 5.4. A topological group G is amenable if and only if for every continuous action
of G on a compact space X (not necessarily convex), there exists a G-invariant probability
measure on X.

Proof. If G is amenable, and if G y X is a continuous action on a compact space
X, then the push forward action G y Prob(X) is an affine action on a compact convex
space. So it must have a fixed point, i.e. a G-invariant probability measure on X.

38
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The converse is based on the barycenter map Bar : Prob(C) → C, where Bar(µ) is the
unique point x ∈ C such that f(x) =

∫
C f(y) dµ(y), for all affine map f ∈ Aff(C). Take

an affine action of G on the compact convex set C. If there is a G-invariant probability
measure on C, then its barycenter must be a G-invariant point in C. �

The class of amenable groups is rather large, as the following lemma shows. But the
class of non-amenable groups is very large as well. Typically, connected semi-simple Lie
groups will never be amenable, unless they are compact.

Lemma 5.5. The following facts are true.

(1) Compact groups are amenable.
(2) Abelian groups are amenable.
(3) Amenability is stable under taking (continuous) quotients, extensions.
(4) A connected semi-simple Lie group is amenable if and only if it is compact.

Proof. (1) If G is a compact group acting on a compact set X, then we may fix a
point x ∈ X, and consider the orbit map g ∈ G 7→ gx ∈ X. Then the normalized Haar
measure on G is left G-invariant, and its push forward under the orbit map becomes a
G-invariant probability measure on X.
(2) Assume that G is any abelian topological group. Consider an affine action of G on
a compact convex space C. For any subgroup H < G, we denote by CH ⊂ C the closed
subset of fixed points under H. Since G is abelian, this subset is globally G-invariant.

We first claim that if H = 〈g〉 is generated by a single element g, then CH is non-empty.
Indeed, take an arbitrary point x ∈ C and consider the sequence (xn)n≥1 defined by

xn =
1

n

n−1∑
k=0

gk(x) ∈ C.

Denote by y ∈ C any limit point of this sequence. Then for all n ≥ 1, we have gxn−xn =
(gn(x)− x)/n, which tends to 0 in E as n goes to infinity. This shows that gy = y, and
hence CH is not empty.

More generally, if H is a subgroup of G such that CH is not empty and g ∈ G is any
element, then the above paragraph applied to the action G y CH shows that C〈H,g〉 =
(CH)g is not empty. We may apply this observation inductively to prove that CH is
non-empty for any finitely generated subgroup H of G.

Therefore, the family C〈g〉, g ∈ G, has the finite intersection property: any finite intersec-
tion of such sets is non-empty. This proves that

CG =
⋂
g∈G

C〈g〉 6= ∅.

(3) Any action of a quotient of G is in particular an action of G, so it is straightforward
from the definition that amenability passes to quotients. Consider now an extension
1 → H → G → Q → 1 with H and Q both amenable. Take an affine action on a
compact convex space G y C. Then by assumption the set CH is non-empty. It is
moreover globally G-invariant since H is normal inside G. The action G y CH then
factors to an affine action of Q, and thus (CH)Q is non-empty. But this set coincides with
CG.
(4) We only treat the case where G has finite center. The proof of the general case is the
same but one needs to know that the universal cover of a compact semi-simple group is
compact.
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If G is a non-compact connected semi-simple Lie group with finite center, then it admits
a simple quotient with trivial center which is non-compact. Let us show that such a
quotient G0 is non-amenable. By simplicity, in the adjoint representation of G0 there
is no invariant vector. Since G0 is non-compact Theorem 4.5 tells us that there is no
invariant probability measure under the projective action of G0 on P(g0). So G0 is non-
amenable. �

Remark 5.6. Although we will not use this, let us mention that amenability passes to
closed subgroups. This relies on the axiom of choice. Be careful however, amenability
does not pass to arbitrary subgroups! For example, one may embed a non-abelian free
group (densely) into the compact group SO(3). But non-abelian free groups, viewed as
discrete groups, are not amenable.

Corollary 5.7. Solvable groups are amenable. In particular the minimal parabolic sub-
group P of a connected semi-simple Lie group is amenable.

Proof. The fat that solvable groups are amenable is checked by induction thanks
to the previous lemma. Now it is known from Iwasawa decomposition that a minimal
parabolic subgroup P as in the statement is a compact extension of a solvable group. So
P must be amenable. �

Of course, in our special case G = SLd(R), P is nothing but the (solvable) subgroup of
upper triangular matrices. So it is clearly amenable.

2. A boundary map

Proposition 5.8. Let Γ be a lattice in a connected semi-simple Lie group G and denote
by P a minimal parabolic subgroup. Consider a continuous action of Γ on a compact
metrizable space X. Then there exists a Γ-equivariant map θ : G/P → Prob(X).

Here we mean that the map θ : G/P → Prob(X) is such that θ(γx) = γθ(x) for every
γ ∈ Γ and almost every x ∈ G/P . The only property of P used in the proof is amenability.

Proof. As usual, we view Prob(X) as a compact convex subset of the dual space
C(X)′, endowed with the weak-* topology.

We denote by F := L1
Γ(G,C(X)) the Banach space of all measurable Γ-equivariant func-

tions f : G→ C(X) such that

‖f‖ :=

∫
Γ\G
‖f(g)‖ dg <∞.

In the above integral, we use the fact that f is Γ-equivariant, and thus, g ∈ G 7→ ‖f(g)‖ is
left Γ-invariant to view the latter as a function on Γ\G, which we integrate with respect to
the unique right-G-invariant probability measure on Γ\G. We’ll use this again implicitly
a few lines below.

On the other hand we denote by E := L∞Γ (G,C(X)′) the vector space of all measurable,
bounded, Γ-equivariant maps φ : g ∈ G 7→ φg ∈ C(X)′.

In the definition of E and F , C(X) (resp. C(X)′) is endowed with the Borel σ-algebra
of its norm topology (resp. its weak-* topology). Measurability of functions is thus
considered with respect to these σ-algebras. Of course we abuse with notation here, and
in fact elements of E and F are only considered modulo almost everywhere equality.



3. EXISTENCE OF NICE MEASURES ON LATTICES 41

Since X is separable, one can prove that E identifies with the dual of the Banach space
F thanks to the pairing

(m, f) 7→
∫

Γ\G
φg(f(g)) dg.

So we may endow E with the weak-* topology. Inside E we have the convex subset
C := L∞Γ (G,Prob(X)). This set is easily seen to be bounded in E with respect to the
dual norm on E (coming from the norm on F ), moreover it is a weak-* closed subset of
E, so it must be weak-* compact, thanks to the Banach-Alaoglu theorem.

Now observe that the right action of G on itself gives by pre-composition a norm con-
tinuous linear action of G on F , and hence a weak-* continuous action on E. Observe
that since the measure on Γ\G is right G-invariant, this dual action on E is also given
by pre-composition, i.e.

(g · φ)h = φhg, for all φ ∈ E, g, h ∈ G.
Moreover C is clearly globally invariant under this action. By amenability of P , we
may find a fixed point θ ∈ C under the action of P . This fixed point is then a map
G → Prob(X) which is left Γ-equivariant and right P -invariant. We may thus factorize
it to a Γ equivariant map G/P → Prob(X). �

3. Existence of nice measures on lattices

Let G be a connected semi-simple Lie group P a minimal parabolic subgroup and K
a maximal compact subgroup of G. Then it follows from the Iwasawa decomposition
K acts transitively on G/P . Moreover, since K is amenable, there exists a K-invariant
Borel probability measure ν0 on G/P . By transitivity, this measure is unique, and any K-
quasi-invariant measure on G/P is equivalent to ν0. In particular any G-quasi-invariant
measure on G/P is equivalent to ν0, which implies that ν0 is in fact quasi-invariant under
G.

Moreover from uniqueness, it follows that if µ0 ∈ Prob(G) is any left K-invariant proba-
bility measure on G, then any µ0-stationary measure on G/P must be K-invariant, and
hence, ν0 is the unique µ0-stationary measure on G/P . The following proposition shows
that even though a lattice in G does not carry a K-invariant probability measure, there
still exist measures µ on it such that ν0 is µ-stationary.

Lemma 5.9. Let Γ be a lattice in a connected semi-simple Lie group G with trivial center.
Denote by ν0 the unique K-invariant measure on G/P . Then there exists a probability
measure µ ∈ Prob(Γ) whose support is all of Γ and such that ν0 is µ-stationary.

Proof. For t ∈ [0, 1], we define a set

Pt := {µ ∈ Prob(G) | µ(Γ) ≥ 1− t and µ({h}) > 0, for all h ∈ Γ}.
Consider the function τ : G→ [0, 1] given by

τ(g) = inf{t ∈ [0, 1] | ∃µ ∈ Pt : g∗ν0 = µ ∗ ν0}.
We admit that this is a measurable function on G, with respect to the σ-algebra of Haar
measurable subsets. This can be proved using [Arv76, Section 3], but this would require
us introducing too much formalism in view of the time we have.

We now prove a series of claims that will eventually lead to the fact that τ is uniformly
bounded away from 1.
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Claim 1. For every g ∈ G, γ ∈ Γ, there exists εg,γ > 0 and a finite measure µg,γ on G
such that g∗ν0 = εg,γγ∗ν0 + µg,γ ∗ ν0.

We first introduce an auxiliary measure µ0 ∈ Prob(G). We let U ⊂ G be an open
neighborhood of the identity with compact closure and which is left K-invariant. We
denote by µ0 ∈ Prob(G) the restriction to U of an appropriately normalized Haar measure
on G (to ensure that µ0 is indeed a probability measure on G). Observe that

⋃
n≥1 U

n

contains an open subgroup of G, hence is equal to G by connectedness. Then we know
that ν0 is a µ0-stationary measure on G/P .

Observe that any convolution power µ∗n0 , n ≥ 2, of µ0 is absolutely continuous with
respect to the Haar measure, and that the corresponding Radon-Nykodim derivative is
continuous and supported on Un. Since U is compact and

⋃
n≥1 U

n = G, we may find
n such that gUn contains γ(U) = supp(γ∗µ0). Therefore there exists εg,γ > 0 such that
g∗µ

∗n
0 > εg,γγ∗µ0. In particular, the measure µg,γ := g∗µ

∗n
0 −εg,γγ∗µ0 is a positive measure.

And we have

g∗ν0 = g∗(µ
∗n
0 ∗ ν0) = (εg,γγ∗µ0 + µg,γ) ∗ ν0 = εg,γγ∗ν0 + µg,γ ∗ ν0.

This proves Claim 1.

Claim 2. For every g ∈ G, τ(g) < 1.

Choose a family (aγ)γ∈Γ of (strictly) positive numbers such that
∑

γ aγ = 1, and sum up
the equalities from Claim 1 as γ varies:

g∗ν0 =
∑
γ∈Γ

aγg∗ν0 =
∑
γ∈Γ

aγ(εg,γγ∗ν0 + µg,γ ∗ ν0) = (
∑
γ∈Γ

aγεg,γδγ + aγµg,γ) ∗ ν0.

Note that the measure µ :=
∑

γ∈Γ aγεg,γδγ+aγµg,γ is in Pt, where t = 1−
∑

γ∈Γ aγεg,γ < 1.

This proves that τ(g) < 1.

Claim 3. We may find ` < 1 such that τ(g) < ` for every g ∈ G.

We will use the auxiliary measure µ0 ∈ Prob(G) again. First observe that τ is left Γ-
invariant: τ(γg) = τ(g) for every g ∈ G, γ ∈ Γ. Moreover, since ν0 is µ0-stationary, we
have

(3.1) τ(g) ≤
∫
G

τ(gh) dµ0(h).

This is based on von Neumann’s measurable selection theorem, see for instance [Arv76,
Theorem 3.4.3]. Although we omit the proof of the theorem, let us briefly sketch how to
use it to prove the inequality. Fix ε > 0 and consider the Borel subset of G× Prob(G)

X := {(g, µ) ∈ G× Prob(G) | µ ∈ Pτ(g)+ε, g∗ν0 = µ ∗ ν0}
The Borel map θ : (g, µ) ∈ X 7→ g ∈ G is surjective. Then the measurable selection
theorem tells us that we may find a measurable section σ : G→ X such that θ ◦ σ = id.
Then σ(g) is of the form (g, µg), and g ∈ G 7→ µg ∈ Prob(G) is measurable. For every
g ∈ G, we then have

(

∫
G

µgh dµ0(h)) ∗ ν0 =

∫
G

µgh ∗ ν0 dµ0(h) =

∫
G

(gh)∗ν0 dµ0(h) = g∗ν0.

Moreover the measure µ =
∫
G
µgh dµ0(h) has atoms at every point of Γ and satisfies

µ(Γ) =

∫
G

µgh(Γ)dµ0(h) ≥ 1−
∫
G

τ(gh)dµ0(h)− ε.

This shows that τ(g) ≤
∫
G
τ(gh)dµ0(h)+ε. Since ε can be arbitrarily small, we get (3.1).
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Now we view τ as a function onX := Γ\G. Denote by λX the rightG-invariant probability
measure on X. Equation (3.1) and Cauchy-Schwarz inequality give∫

X

τ(x)2 dλX(x) ≤
∫
X

(

∫
G

τ(xh) dµ0(h))2 dλX(x)

≤
∫
X

∫
G

τ(xh)2 dµ0(h)) dλX(x)

=

∫
G

∫
X

τ(xh)2 dλX(x) dµ0(h)

=

∫
X

τ(x)2 dλX(x).

So all the implied inequalities are actually equalities. In particular the equality in the
Cauchy-Schwarz inequality tells us that h 7→ τ(xh) is µ0-essentially constant for almost
every x ∈ G. We further deduce that τ is essentially constant on G. This does not give
on the nose that τ is constant on G, since it is a priori not continuous, but since (3.1) is
true for every g ∈ G, this gives the claim.

Applying von Neumann’s measurable selection theorem once again, and using an av-
eraging argument, we conclude that for every µ1 ∈ Prob(G) we may find a measure
µ ∈ P` such that µ1 ∗ ν0 = µ ∗ ν0. We may decompose µ as a convex combination
µ = (1 − `)µ′1 + `µ2 where µ′1, µ2 ∈ Prob(G), supp(µ′1) = Γ. So we can inductively
construct measures µn, µ

′
n ∈ Prob(G), n ≥ 1, such that supp(µ′n) = Γ, µ1 = δe, and

ν0 = µ1 ∗ ν0 = (1− `)µ′1 ∗ ν0 + `µ2 ∗ ν0

= (1− `)µ′1 ∗ ν0 + `((1− `)µ′2 ∗ ν0 + `µ3 ∗ ν0)

= (1− `)µ′1 ∗ ν0 + (1− `)`µ′2 ∗ ν0 + (1− `)`2µ′3 ∗ ν0 + . . . .

Thus, we find that ν0 = µ∞ ∗ ν0, where µ∞ = (1 − `)
∑

k≥0 `
kµ′k+1. This measure has

support equal to Γ. �



CHAPTER 6

Margulis superrigidity theorem

1. Algebraic preliminaries

The general statement of Margulis superrigidity theorem requires the language of alge-
braic groups. We will try to keep it to a minimum, and rather state the result in the
setting of Lie groups. Nevertheless some unavoidable language needs to be introduced.

We will use a naive approach to algebraic geometry, focusing on the points of rather than
the function rings.

1.1. The Zariski topology. In this section k denotes an arbitrary field.

Definition 6.1. A subset V ⊂ kn is said to be Zariski closed if there exists a family of
polynomials I ⊂ k[X1, . . . , Xn] such that V is exactly the set Z(I) of common zeroes of
all elements of I.

One checks that the Zariski closed sets form the family of closed sets of a topology,
called the Zariski topology. If V is Zariski closed, then in fact V = Z(I(V )), where
I(V ) ⊂ k[X1, . . . , Xn] is the ideal of all polynomials vanishing on V . More generally, if
V ⊂ kn is any subset, then Z(I(V )) is a closed set containing V , it turns out to be equal

to the Zariski closure of V , denoted by V
Z

(or V when there is no ambiguity).

Example 6.2. Let us give some comments and examples in the setting of groups.

• The set SL(n, k) is Zariski closed inside Mn(k) ' kn
2
, being the zero set of

det−1.
• The set GL(n, k) is not Zariski closed inside Mn(k), but it can still be seen as

a Zariski closed subset of Mn(k) × k ' kn
2+1, as the zero set of the polynomial

P (A, x) = 1 − x det(A), A ∈ Mn(k), x ∈ k. Concretely, this corresponds to
identify the group GL(n, k) with its image under the map

A ∈ GL(n, k) 7→ (A, 1/ det(A)) ∈Mn(k)× k.
Exercise: check that the induced topology on GL(n, k) of the Zariski topology
in any of these two embeddings is the same.

Let us record an easy fact.

Lemma 6.3. If G ⊂ GL(n, k) is a subgroup, then its Zariski closure G inside GL(n, k) is
again a subgroup.

Proof. By the comments above, G is equal to Z(I(G)) ∩ GL(n, k), where I(G) is

the set of polynomials in n2 variables that vanish on G ⊂ Mn(k) ' kn
2
. Assume that

a, b ∈ G and take P ∈ I(G). Since G is a group, we know that for all h ∈ G, the
polynomial Rh : x 7→ P (xh) vanishes on G, i.e. Rh ∈ I(G). Since a ∈ G, we deduce that
P (ah) = Rh(a) = 0 for all h ∈ G. Thus the polynomial La : y 7→ P (ay) vanishes on G.
Since b ∈ G, we conclude that P (ab) = La(b) = 0. Hence ab ∈ G.

44
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We want to proceed similarly for the inverse, but unfortunately, the inverse map x ∈
GL(n, k) 7→ x−1 ∈ GLn(k) does not extend to a nice polynomial map on Mn(k). Instead,
we use the other embedding GL(n, k) ⊂Mn(k)×k described above. With this embedding,
the inverse map extends to the map θ : (A, x) ∈Mn(k)×k 7→ (xA′, det(A)) ∈Mn(k)×k,
where A′ is the transpose of the commatrix of A.

Again, G
Z

may be expressed as Z(I(G)) where this time I(G) is the set of polynomials
in n2 + 1 variables that vanish on G ⊂ Mn(k) × k. If a ∈ G, and P ∈ I(G), then the
map x 7→ P (θ(x)) is a polynomial that vanishes on G, thus it vanishes on a: P (θ(a)) =
P (a−1) = 0. This shows that a−1 ∈ G. �

The above proof illustrates that the embedding GL(n, k) ⊂ Mn(k) × k is more relevant
to consider functions on G. In this respect, we will say that a function GL(n, k) → k
is rational if it is the restriction to GL(n, k) of a polynomial map on Mn(k) × k. In
particular, the map g 7→ det(g)−1 is rational.

Definition 6.4. An (affine) algebraic group is a Zariski closed subgroup of some GL(n, k).
A function G→ k on such a group is called rational if it is the restriction to G of a rational
function on GL(n, k).

Note that in the above definition the ambient linear group GL(n, k) is part of the data.
This is because we didn’t take the time to describe the relevant category associated with
the Zariski topology and rational maps. This may seem annoying but it will be enough
for our purposes.

Definition 6.5. An algebraic representation of an algebraic group on a k-vector space
V is a group homomorphism π : G → GL(V ) such that for any rational function f :
GL(V )→ C, the function f ◦ π is rational on G.

Exercise 6.6. Check that π is algebraic if and only if for every v ∈ V and χ ∈ V ∗, the
coefficient function g 7→ χ(π(g)v) is rational on G.

Lemma 6.7. If G ⊂ GL(n, k) is an algebraic group and Γ ⊂ G is a Zariski dense subset,
then for any algebraic representation π : G→ GL(V ), π(G) is Zariski closed and π(Γ) is
Zariski dense in π(G).

Proof. We admit the first fact. It is based on commutative algebra. The second
fact is trivial: in any topological space the image of a dense set by a continuous map is
dense. �

1.2. Algebraic Lie groups. In this section, we specify to the case where k = R or
k = C. In this case, k and Mn(k), GL(n, k),... all carry both a Zariski topology and a
locally compact topology. We will add the term Zariski to any property that refers to
the Zariski topology.

Remark 6.8. An algebraic group G ⊂ GL(n, k) is closed inside GL(n, k) (for both
topologies), so G is naturally endowed with a Lie group structure over k.

The following result is a special feature of algebraic Lie groups.

Theorem 6.9. An algebraic group G ⊂ GL(n, k) has only finitely many connected com-
ponents, when seen as a Lie group over k.
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Elements of proof. The proof splits into two parts: First one shows that G has
only finitely many Zariski-connected components. Then one shows that if G is Zariski
connected, then it has only finitely many connected component, when viewed as a Lie
group.
The first part follows from the Noetherian property of the ring k[X1, . . . , Xn2+1]: any
non-decreasing chain of ideals is eventually constant. So topologically, any non-increasing
chain of Zariski closed subsets of G is eventually constant. Exercise: fill the blanks!
The second part is more involved. A good reference is [Sha13, Chapter 7.2]. �

As for Lie groups, the adjoint representation plays a pivotal role in the study of algebraic
groups.

Lemma 6.10. Let G ⊂ GL(n, k) be an algebraic group. Then the adjoint representation
Ad : G→ GL(g) is algebraic.

Proof. The result is obvious for G = GL(n, k) itself as the adjoint representation is
just given by Ad(g)(A) = gAg−1, g ∈ G, A ∈Mn(k).

In the general case we use a restriction trick. Since G ⊂ GL(n, k), we have an embedding

of Lie algebras g ⊂Mn(k). Denote by G̃ ⊂ GL(Mn(k)) the algebraic subgroup of elements
that leave globally invariant the subspace g ⊂ Mn(k). Then the adjoint representation
GL(n, k) → GL(Mn(k)) restricts to an algebraic representation β : G → GL(Mn(k)),

with range inside G̃. Moreover, the restriction map α : G̃ → GL(g) is clearly algebraic.
So the result follows from the observation that α ◦ β : G→ GL(g) is exactly the adjoint
representation of G. �

Given a connected semi-simple Lie group G with trivial center, we will freely speak about
the Zariski topology on G to refer to the Zariski topology in its adjoint representation,
i.e. in the algebraic group Aut(g) ⊂ GL(g).

2. The statement

Theorem 6.11 (Margulis superrigidity theorem). Let G and H be connected semi-simple
Lie groups with trivial center. Assume that G has rank at least equal to 2 and that H
has no compact factor. Let Γ be an irreducible lattice in G and π : Γ → H a group
homomorphism such that π(Γ) is Zariski dense in H.

Then π extends to a Lie group homomorphism G→ H.

Let us discuss some of the assumptions of this theorem.

Remark 6.12 (Assumptions on G). The requirement that G is connected and has trivial
center is a natural assumption and will not be discussed. The rank condition on G is
necessary. In our simplified setting where G = PSLd(R), it means that d ≥ 3. In fact, we
may observe that the theorem fails when d = 2. Indeed, G = PSL2(R) contains a lattice
which is isomorphic with a free group on two generators F2. This free group itself has
a finite index subgroup Γ isomorphic with a free group on three generators F3. Then Γ
is still a lattice in G, while the surjective morphism Γ → F2 given by killing one of the
generators does not extend to a continuous morphism G→ G, because G is simple, while
the morphism Γ→ F2 has infinite kernel.
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Remark 6.13 (Assumptions on Γ). The irreducibility assumption is necessary, other-
wise we could produce a counterexample by considering a product lattice F3 × F3 inside
PSL2(R)× PSL2(R) as before.
Besides, note that the definition of irreducibility we gave prevents G to admit compact
factors. A softer definition could allow this situation, but we would then have to assume
that G has no compact factors.

Remark 6.14 (Assumptions on H). In fact in the conclusion of the theorem, one can
prove that the extension of π is a surjective morphism. Thus several assumptions on H
are necessary: trivial center, semi-simplicity, no compact factors. Let us mention about
this last assumption that the morphisms from Γ into compact simple Lie groups are well
understood. We provide below one example of such a morphism.

Example 6.15. Consider the quadratic form Q : R5 → R given by

Q(x) = x2
1 + x2

2 + x2
3 −
√

2x2
4 −
√

2x2
5, for all x ∈ R5.

Then it follows from Borel and Harish-Chandra’s theorem that SO(Q,Z[
√

2]) is a lat-
tice inside G := SO(Q,R). But the non-trivial Galois automorphism σ of Z[

√
2] over

Z changes the quadratic form Q to a positive definite quadratic form Qσ. This Galois
automorphism σ induces an embedding of rings Z[

√
2] ↪→ R and further a group homo-

morphism π : Γ ↪→ GL(5,R) such that π(Γ) ⊂ H := SO(Qσ,R). But since G is simple
and non-compact there is no non-trivial continuous morphism G→ H into the compact
group H.

About the conclusion of the theorem, we make the following observation.

Proposition 6.16. The extension morphism given by Margulis’ superrigidity theorem is
unique.

Proof. Representing H on a finite dimensional vector space V , it suffices to show
that two continuous representations π1, π2 : G → GL(V ) which coincide on a lattice Γ
are equal. To that aim, define a finite dimensional representation π̃ : G → GL(End(V ))
by the formula

π̃(g) : T ∈ End(V ) 7→ π1(g)Tπ2(g)−1 ∈ End(V ), for all g ∈ G.

Then by assumption π̃(Γ) fixes the line R id ⊂ End(V ). So by Borel-density theorem
(Corollary 4.6), π̃(G) must fix this line as well. Since G is semi-simple, it has no character,
so in fact π̃(G) must fix the element id ∈ End(V ). This implies that π1(g) = π2(g) for
all g ∈ G. �

3. The proof

3.1. First reduction. We observe that it suffices to prove Margulis’ theorem in the
case where H is simple. Indeed, if this is true in this case, then if H is an arbitrary
connected semi-simple Lie group with trivial center, we may write H as a product H1 ×
· · · × Hn of simple Lie groups with trivial center. Then composing the morphism π :
Γ→ H with each projection on the factors Hi, we obtain morphisms πi : Γ→ Hi, which
must extend to continuous morphisms G→ Hi, still denoted by πi. Then the morphism
g ∈ G 7→ (π1(g), . . . , πn(g)) ∈ H, is a continuous extension of π.
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3.2. What do we aim for? It will be useful for us to assume that H is represented
(non-trivially) on a vector space V . Since H is simple, this amounts to having an em-
bedding σ : H ⊂ GL(V ). But we also want to keep track of the Zariski topology, so we
will assume that this representation σ is algebraic. We then claim that σ(H) ⊂ GL(V )
is equal to the connected component of its Zariski closure. Indeed, first recall that since
H is simple, it is equal to the connected component of the algebraic group Aut(h). In
this context, an algebraic representation of H is by definition the restriction to H of an
algebraic representation σ of the algebraic group Aut(h) on V . By Lemma 6.7, we deduce
that σ(Aut(h)) is Zariski closed and contains σ(H). Which easily implies the claim.

From now on we omit the letter σ and really see H ⊂ GL(V ) as a subset. In this context,
we may view π as a representation of Γ on V .

A classical construction when we are given a representation of Γ is to induce it to a
representation of G. So let us denote by L0

Γ(G, V ) the space of all measurable maps f
from G into V that are Γ-equivariant, in the sense that f(γg) = πγ(f(g)) for all γ ∈ Γ,
and almost every g ∈ G. Consider the induced representation π̃ of G on L0

Γ(G, V ) given
by right translation:

(π̃g(f))(h) = f(hg), for all f ∈ L0
Γ(G, V ), g, h ∈ G.

Since the initial representation π is not unitary, we need not find a nice G-invariant norm
on L0

Γ(G, V ). However, this representation is continuous for the topology of convergence
in measure1. All what we need to know about this is that if E ⊂ L0

Γ(G, V ) is a fi-
nite dimensional G-invariant subspace then the restricted representation G → GL(E) is
continuous. This essentially follows from Lemma 6.19.

Exercise 6.17. Assume that the initial representation π does extend to a representation
of G (still denoted by π). Check that π̃ is then conjugate with the representation of G
on L0(G/Γ) ⊗ V defined by the formula λG/Γ(g) ⊗ π(g), g ∈ G. (Hint. Study the map
θ : L0(G/Γ)⊗ V → L0(G, V ) defined by θ(f ⊗ v) : g ∈ G 7→ f(g−1Γ)πg(v) ∈ V .)
Deduce that the induced representation π̃ contains a finite dimensional subspace which
is globally invariant, and on which the representation π̃ is conjugate with the initial
representation π.

From the above exercise, it appears that a good step towards proving the theorem is to
try to find a finite dimensional G-invariant subspace inside L0

Γ(G, V ). Let us prove that
this is indeed sufficient.

Proposition 6.18. If there exists a finite dimensional subspace of L0
Γ(G, V ) which is

globally G-invariant and which contains a non-constant function, then the homomorphism
π : Γ→ H extends to a Lie group homomorphism G→ H.

Proof. Let E ⊂ L0
Γ(G, V ) be such a G-invariant finite dimensional subspace. Let us

first prove a very useful claim.

Claim 1. Any element f ∈ E, viewed as a measurable function defined almost surely,
admits a continuous representative.

The restriction of the induced representation π̃ to E gives a representation π0 : G →
GL(E), which can be checked to be a measurable group homomorphism. Thanks to
Lemma 6.19 below, we deduce that π0 is in fact continuous. Take an element f ∈ E and

1We will not use this but it may be reassuring to know that this is a so-called Polish topology: it is
metrizable, separable and complete.
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fix a basis f1, . . . , f` of E. Then we may find continuous functions c1, . . . , c` : G → R
such that for all g ∈ G, we have

π0(g)(f) =
∑̀
i=1

ci(g)fi.

By Fubini’s theorem, we deduce that for almost every h ∈ G, for almost every g ∈ G, we
have

f(hg) =
∑̀
i=1

ci(g)fi(h).

In particular, we may find an element h ∈ G such that for almost every g ∈ G,
f(g) =

∑`
i=1 ci(h

−1g)fi(h). This last expression is continuous in the variable g ∈ G
(we emphasize that h ∈ G is fixed). This proves Claim 1.

Observe that since E contains a non-constant function, π0 is a non trivial representation
of G. By Borel density theorem, it is a non-trivial representation of Γ.

Thanks to the claim, we may select a (unique) continuous representative of each ele-
ment in E. From uniqueness it actually follows that this representative is everywhere
Γ-equivariant. Then the following evaluation map is well defined, and linear:

Ψ : f ∈ E 7→ f(e) ∈ V.
Moreover, the Γ-equivariance property of each element f ∈ E ⊂ L0

Γ(G, V ) implies that
for all γ ∈ Γ, we have Ψ((π0)γ(f)) = f(γ) = πγ(f(e)) = πγ(Ψ(f)). In other words, Ψ
intertwines the representations π0 and π of Γ.

Claim 2. Ψ is injective and Ψ(E) ⊂ V is globally H-invariant.

Note that Ker(Ψ) is π0(Γ)-globally invariant. By Borel density theorem, we deduce that
Ker(Ψ) is globally π0(G)-invariant. So if f ∈ Ker(Ψ), then (π0)g(f) ∈ Ker(Ψ) for all
g ∈ G, and hence f(g) = 0 for all g ∈ G. This proves that Ψ is injective. For the second
part, observe that Ψ(E) is globally π(Γ)-invariant. Since π is an algebraic representation
of H, and Γ is Zariski dense in H, Lemma 6.7 shows that π(Γ) is Zariski dense in π(H).
This implies that π(H) is contained in the algebraic group of elements of GL(V ) that
leave Ψ(E) globally invariant, as desired.

Since W := Ψ(E) is globally H-invariant, we may consider the restricted representation
H → GL(W ). This is a non-trivial representation of H. Indeed, we observed that Γ acts
non-trivially on E, so Claim 2 and the Γ-equivariance property of Ψ show that Γ acts
non-trivially on W . Since H is simple, the representation H → GL(W ) is faithful. Now,
observe that the group homomorphism

ρ : g ∈ G 7→ Ψ(π0)gΨ
−1 ∈ GL(W )

is continuous and satisfies ρ(γ) = π(γ) for all γ ∈ Γ. In particular, ρ(Γ) ⊂ H. Since G
is semi-simple and connected, Borel density theorem implies that ρ(G) is contained in
the Zariski closure of H. Since ρ(G) is connected, it must be contained in the connected
component of this Zariski closure, i.e. in H. So ρ is the desired extension. �

We used the following general lemma.

Lemma 6.19. A measurable morphism φ between two lcsc groups G and H is continuous.

Proof. Let O ⊂ H be an open neighborhood of the identity in H and U an open
set such that UU−1 ⊂ O. Then using countably many translates of U one can cover the
whole H. Better: φ(G) ⊂

⋃
n φ(hn)U for countably many hn ∈ G. This implies that
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G = ∪nhnφ−1(U). Hence the measurable set φ−1(U) has positive Haar measure. This
means that φ−1(UU−1) contains an open neighborhood of eG, because the convolution
function 1ϕ−1(U) ∗ 1φ−1(U−1) is continuous, supported inside φ−1(UU−1), and non-zero at
eG. Hence φ−1(O) contains a neighborhood of eG, which shows that φ is continuous. �

3.3. Finding a nice representation. To apply the previous strategy, we will need
to find a nice representation of H.

Proposition 6.20. Let H be a connected non-compact simple Lie group and let ∆ < H
be a Zariski-dense subgroup. Then there exists an algebraic representation H → GL(V )
which is irreducible and such that ∆ acts proximally on V . In fact this representation is
strongly irreducible for ∆.

Proof. This is based on Proposition 4.15. In order to apply it, we need to check that
∆ does not have compact closure. View H as a subgroup of GL(h). If ∆ had compact
closure, then it would preserve some scalar product on h, hence it would be contained
in an orthogonal group (which is algebraic). The intersection of this orthogonal group
with H would be an algebraic group containing ∆, and strictly contained in H,because
H is non-compact. This would contradict the fact that ∆ is Zariski dense in H. So
Proposition 4.15 applies, and it is clear from its proof that the representation that we get
is algebraic.

Moreover if W ⊂ V is a subspace invariant under a finite index subgroup ∆0 of ∆, then
it is invariant under its Zariski closure. Denote by H0 this Zariski closure. Since ∆0 has
finite index inside ∆, we may find g1, . . . , gm ∈ ∆ such that

∆ =
m⊔
i=1

gi∆0.

Since the left multiplication by each gi is algebraic, we find that the Zariski closure of
gi∆0 is giH0. So taking the Zariski closure in the above equality gives H =

⋃m
i=1 giH0. So

H0 has finite index inside H. Since H is connected, it has no-proper closed finite index
subgroup. So H = H0 and W is in fact H-invariant. This forces W = V . �

3.4. Finding a finite dimensional subspace in the induced representation.
Represent the group H on some vector space V as in Proposition 6.20, applied to ∆ =
π(Γ). We denote by ρ this representation. In fact the representation to which we will
apply Proposition 6.18 is the representation σ : H → GL(End(V )), given by σh(T ) =
ρhTρ

−1
h , for all T ∈ End(V ), h ∈ H.

A first step will be to find an element f0 in the induced space L0
Γ(G,End(V )) with good

invariance properties under the G-action. Then we will make sure that the G-orbit of
this function spans a finite dimensional subspace.

The composition of π : Γ → H with the representation ρ : H → GL(V ) gives a linear
representation of Γ on V , and therefore, an action of Γ on the projective space P(V ).

From now on, we assume that G = PSLd(R), and we use the notation A, P , N given in
Chapter 2, Section 3.

Lemma 6.21. There exists a Γ-equivariant measurable map G/P → P(V ).

Proof. By Proposition 5.8, there exist a Γ-equivariant measurable map θ : G/P →
Prob(P(V )). Denote by νP the unique K-invariant probability measure on G/P . Thanks
to Lemma 5.9, we may find a probability measure µ ∈ Prob(Γ) whose support is the
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whole of Γ and such that µ ∗ νP = νP . Since the representation ρ ◦π : Γ→ V is proximal
and strongly irreducible, the result follows from Corollary 4.14. �

In the above proof, it may not be so obvious why we need to use Lemma 5.9 at all.
Indeed one could a priori take for µ any probability measure on Γ, and denote by ν0

a µ-stationary measure on G/P , and apply Corollary 4.14 in the same way. However,
doing so would only tell us that the map θ(x) is a Dirac measure on P(V ) for ν0-almost
every x ∈ G/P . If we don’t have any control on the measure ν0, this condition could
only happen for a very small set of x’s (for instance it might only happen on a countable
set of x’s). So Lemma 5.9 allows us to make sure that this happens for almost every x,
with respect to νP (which is a nice G-quasi-invariant measure).

Lemma 6.22. There exists a non-constant Γ-equivariant measurable map f0 : G/A →
End(V ).

Proof. The map G/P → P(V ) given by Lemma 6.21 also exists for the dual repre-
sentation ρ∗ : H → GL(V ∗), given by ρ∗h(χ) = χ ◦ ρ−1

h ∈ V ∗, for all χ ∈ V ∗, h ∈ H.
Exercise. Check that the representation ρ∗◦π : Γ→ GL(V ∗) is also proximal and strongly
irreducible.
So we also have a Γ-equivariant map G/P → P(V ∗).

Therefore, we may form the product map, G/P × G/P → P(V ) × P(V ∗), which is Γ-
equivariant with respect to the diagonal actions Γ y G/P×G/P and Γ y P(V )×P(V ∗).
This map is measurable, and maps the product measure νP × νP to the product measure
ν × ν∗, where ν (resp. ν∗) is the unique µ-stationary measure on P(V ) (resp. P(V ∗)).

Claim 1. There is one G-orbit in G/P × G/P (for the diagonal action) which has full
measure. It is isomorphic with G/A.

It is well known that any matrix having no vanishing principal minor can be written as
the product LU of a lower triangular matrix L with an upper triangular matrix U . This
is the so-called LU -decomposition, and can be checked by induction on the size of the
matrix. In particular, since the condition of having vanishing minors is of measure 0
inside G, we find that almost every matrix g ∈ G decomposes as a product LU .

We deduce that the group P of lower triangular matrices has a co-null orbit inside G/P ,
namely the orbit of the point P . Denote by O = PP this orbit. Now observe that
P is conjugate to P via the permutation matrix w0 associated with the permutation
σ0 : i 7→ n+ 1− i. In conclusion, the G-orbit of the point (P,w0P ) contains its P -orbit,
which is equal to (P, Pw0P ) = (P,w0PP ) = (P,w0O). So G · (P,w0P ) contains all fibers
(gP, gw0O) for all g ∈ G. As gw0O has full measure inside G/P , the first part of the
claim follows2.

Note moreover that the stabilizer of (P,w0P ) is P ∩ w0Pw
−1
0 = P ∩ P = A. So the

G-orbit of (P,w0P ) is isomorphic (as a G-space), with G/A.

Claim 2. In P(V ) × P(V ∗), the set Z := {(x̄, χ̄) | χ(x) = 0} has measure 0. It is also
invariant under the diagonal Γ-action.

Since we are dealing with a product measure it suffices to check that for every χ̄ ∈ P(V ∗),
the fiber Zχ := {x̄ ∈ P(V ) | χ(x) = 0} has measure 0: ν(Zχ) = 0. But each such fiber
Zχ is equal to a (projective) hyperplane. So the claim follows from Lemma 4.12.

2When G is a general semi-simple Lie group, the decomposition LU that we used is superseded by
the so-called Bruhat decomposition. This decomposition gives a complete description of all the orbits of
the action of G on G/P ×G/P
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So, we get a measurable Γ-equivariant map G/A→ Zc (by perturbing our initial map on
a subset of measure 0 if needed). We may compose it with the map

(x̄, χ̄) ∈ Zc 7→ {v ∈ V 7→ χ(v)

χ(x)
x ∈ V } ∈ End(V ).

One checks that the composed map f0 : G/A→ End(V ) is Γ-equivariant when Γ acts on
End(V ) by the formula γ(T ) = ρπ(γ)Tρ

−1
π(γ), for all T ∈ End(V ), γ ∈ Γ. One easily checks

that f0 is non-constant. �

We may view the function f0 from Lemma 6.22 as an element f0 ∈ L0
Γ(G,End(V )) which

is π̃(A)-invariant, and non-constant. Here, we recall that π̃ is defined by the formula
π̃g(f)(h) = f(hg) for all g, h ∈ G, f ∈ L0

Γ(G,End(V )).

We want to check that span(π̃(G)f0) is finite dimensional. This is where we will use the
higher rank condition on G (in our case, the d ≥ 3 condition for G = PSLd(R)). More
precisely, we will need the following property.

Lemma 6.23. There exist infinite subgroups A1, . . . , Ak ⊂ A such that every element of g
can be written as a product g1 . . . gk of elements in the centralizers gi ∈ ZG(Ai). Formally,
G = ZG(A1) · · ·ZG(Ak).

Proof. For 1 ≤ i ≤ n− 1, define Ai = {diag(a1, . . . , an) | ai = ai+1,
∏
aj = 1}.

Exercise. Check that P is contained in a product Z(Ai1) · · ·Z(Ai`) for appropriate indices
i1, . . . , i`. Taking the transpose this is also the case of P , and hence of Y := PP . By the
LU -decomposition, this set is co-null in G. Hence G = Y Y , which implies the lemma. �

Proposition 6.24. Let E ⊂ L0
Γ(G,End(V )) be a finite dimensional subspace which is

globally A-invariant. Let A0 ⊂ A be an infinite subgroup and denote by C := ZG(A0).
Then the linear span E ′ of π̃(C)E is still finite dimensional and globally A-invariant.

The proposition relies on the following consequence of Howe-Moore theorem.

Lemma 6.25. Let A0 ⊂ G be a non-compact subgroup and consider a linear, finite dimen-
sional Γ×A0-module W . Note that Γ×A0 acts on G by left-right action. Then the vector
space of all measurable Γ× A0-equivariant functions from G to W is finite dimensional.

Proof. Take finitely many such measurable functions f1, . . . , fn : G → W . For all
g ∈ G, we denote by d(g) the dimension of span({f1(g), . . . , fn(g)}). Then d : G→ R is
a bounded measurable function, which is Γ×A0 invariant. By Howe-Moore theorem, A0

acts ergodically on G/Γ, so Γ×A0 acts ergodically on G. This shows that d is a constant
function, bounded by dim(W ). We may now choose the family f1, . . . , fn such that the
corresponding pointwise dimension d is maximal. We may also assume that n = d.

Take now any other Γ×A0-equivariant measurable function f : G→ W . Then for almost
every g ∈ G, we may write f(g) as a (unique) linear combination f(g) =

∑d
i=1 ci(g)fi(g).

By uniqueness, the coefficient functions ci must be measurable. Since f and the fi’s are
equivariant, the functions ci must also be Γ×A0-invariant (here we use the fact that W
is a linear Γ × A0-module). Applying Howe-Moore theorem again, these functions must
be constant. Then we deduce that

f =
d∑
i=

cifi.

So f1, . . . , fd is a generating family, proving that our space has finite dimension. �
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Proof of Proposition 6.24. Note that A normalizes A0, so it normalizes C =
ZG(A0) as well. Therefore, π̃(a)π̃(c)f = π̃(aca−1)(π̃(f)) ∈ E ′, for all a ∈ A, c ∈ C,
f ∈ E. This implies that E ′ is globally A-invariant.

We now need to prove that E ′ has finite dimension. For this, note that every element
c ∈ C acts as an A0-equivariant linear map from E into L0

Γ(G,End(V )).

Claim. The vector space X := HomA0(E,L
0
Γ(G,End(V ))) is finite dimensional.

This claim implies the proposition, because E ′ is contained in the image of the bilinear
map

(L, f) ∈ X × E 7→ L(f) ∈ L0
Γ(G,End(V )).

To prove the claim, denote by W := Hom(E,End(V )). This finite dimensional vector
space is endowed with a linear action of Γ×A0, coming from the action of Γ on End(V ),
and the action of A0 on E. The proposition follows from Lemma 6.25 and the following
exercise.
Exercise. Prove that X identifies as a vector space with L0

Γ×A0
(G,W ). �

Using this proposition, we can prove by induction that for every finite family of infinite
subgroups A1, . . . , An ⊂ A, the vector space span({ZG(A1) · · ·ZG(An)f0}) is finite dimen-
sional. So Lemma 6.23 implies that indeed the G-orbit of f0 spans a finite dimensional
subspace. This concludes the proof of Margulis superrigidity theorem.
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