HOMEWORK: LINEAR AND PROJECTIVE REPRESENTATIONS

The alternate product. We let V a vector space over any field of characteristic $\neq 2$, with dimension d and we denote by $T(V) = \bigoplus_{k \geq 1} V^{\otimes k}$ its (graded) tensor algebra (without unit). The product on T(V) is simply given by concatenating the tensors. It is associative but not commutative. We denote by $I \subset T(V)$ the two-sided ideal generated by the elements $v \otimes v$, $v \in V$. We denote by $\Lambda(V)$ the quotient T(V)/I and we call it the exterior algebra. The product in this algebra is denoted by \wedge .

(1) Prove that for every $k \in \mathbb{N}, v_1, \ldots, v_k \in V$ and every permutation $\sigma \in \mathcal{S}_k$, we have

$$(0.1) v_1 \wedge v_2 \wedge \dots \wedge v_k = \varepsilon(\sigma) v_{\sigma(1)} \wedge v_{\sigma(2)} \wedge \dots \wedge v_{\sigma(k)}$$

- (2) Prove that if e_1, \dots, e_d is a basis of V, then $\Lambda(V)$ is linearly spanned by the family $e_I := e_{i_1} \wedge \dots \wedge e_{i_k}$, as $I = \{i_1, \dots, i_k\}$ (always spelled with $i_1 < i_2 < \dots < i_k$) ranges over the non-empty subsets of $\{1, \dots, d\}$.
- (3) Prove that in fact, the family e_I , $I \subset \{1, \ldots, d\}$, is a basis of $\Lambda(V)$. There are two steps:
 - a) Prove the universal property: If A is an associative algebra with a linear map $\iota: V \to A$ satisfying (0.1) for every $v_1, \ldots, v_k \in \iota(V)$, then there is an algebra homomorphism $\Lambda(V) \to A$ whose restriction to V is ι .
 - b) Construct an associative algebra $(A, +, \times)$ with a linear basis f_I , $I \subset \{1, \ldots, d\}$, such that $f_I = f_{i_1} \times f_{i_2} \cdots \times f_{i_k}$ for every $I = \{i_1, \ldots, i_k\}$ (with $i_1 < i_2 < \cdots < i_k$) and in which the subspace spanned by f_I , for I singleton, identifies with V in such a way that (0.1) is satisfied.

In particular, $\Lambda(V)$ is a graded algebra, $\Lambda(V) = \bigoplus_{k=1}^{d} \Lambda^{k}(V)$, where $\Lambda^{k}(V)$ is the image of $V^{\otimes k}$.

- (4) Prove that any homomorphism $T \in \text{End}(V)$ gives rise to an algebra endomorphism of $\Lambda(V)$, and that in particular, this gives a natural algebra homomorphism $\pi : \text{End}(V) \to \text{End}(\Lambda(V))$, which preserves the grading. For each $k = 1, \ldots, d$ we denote by π^k the restriction of π to $\Lambda^k(V)$. Prove that π^k is continuous: if $T_n \in \text{End}(V)$ converges to $T \in \text{End}(V)$ then $\pi^k(T_n)$ converges to $\pi^k(T)$ for any k.
- (5) Let $W \subset V$ be a subspace, with dimension k > 0. Then $\Lambda^k(W) \subset \Lambda^k(V)$ is a one dimensional subspace. Check that an isomorphism $T \in GL(V)$ preserves globally W if and only if $\pi^k(T)$ preserves the line $\Lambda^k(W)$.
- (6) Prove that if $G \subset GL(V)$ has proximal rank k, then $\pi^k(G)$ is proximal.
- (7) Side question: Can you describe what is the representation π^d on the one dimensional space $\Lambda^d(V)$?

Flag varieties. We denote by V a finite dimensional vector space of dimension d.

- (1) Given 0 < k < d, check that the set of all k-dimensional subspaces W of V can be viewed as a subset of the projective space $\mathbb{P}(\Lambda^k(V))$, and that it is a closed subset. We call it the k-Grassmanian variety of V, and denote it by $\operatorname{Gr}_k(V)$.
- (2) The action of G := PSL(V) on V gives rise to an action on $Gr_k(V)$. Check that this action is described in terms of the representation π^k from the previous exercise. Prove that this action is transitive, and thus, $Gr_k(V)$ is identifies (equivariantly) with a homogeneous space G/H, where H is the stabilizer of any given k-dimensional subspace of V.

We elaborate on this example. We define a flag of V to be a chain of subspace

$$\mathcal{F} = \{V_1 \subset V_2 \subset \cdots \subset V_n \subset V\}$$

The list (k_1, \ldots, k_n) of dimensions $k_1 = \dim(V_1)$, $k_2 = \dim(V_2), \ldots, k_n = \dim(V_n)$ is called the *type* of the flag. A *full flag* is a flag whose type is the list of all integers $(1, 2, \ldots, d)$.

(3) Prove that the set of all flags in V of a given type (k_1, \ldots, k_n) identifies with a closed subset of $\operatorname{Gr}_{k_1}(V) \times \cdots \times \operatorname{Gr}_{k_n}(V)$. We call it the *flag variety* of type (k_1, \ldots, k_n) .

- (4) Prove that G = PSL(V) acts transitively on any such flag variety.
- (5) Identify V with \mathbb{R}^d , and denote by $G = PSL(n, \mathbb{R})$, and by P < G the image of the subgroup of upper triangular matrices. Check that G/P is G-equivariantly homeomorphic with a the flag variety of V.