HOMEWORK: STATIONARY MEASURES

Stationary measures are quasi-invariant. Consider a continuous group action $G \curvearrowright X$ of a lcsc group G on a lcsc space and take $\mu \in \operatorname{Prob}(G)$. Let $\nu \in \operatorname{Prob}(X)$ be a μ -stationary Borel measure.

- (1) Let $A \subset X$ be a Borel subset. Prove that the map $g \in G \mapsto \nu(g^{-1}A) \in [0,1]$ is continuous.
- (2) Assume that $\nu(A) = 0$. Prove that for μ -almost every $g \in G$, $\nu(g^{-1}A) = 0$.
- (3) Assume that the support of μ generates G as a semi-group (this means that for any open set $U \subset G$, there exists $n \ge 1$ such that $\mu^{*n}(U) > 0$). Prove that ν is quasi-invariant under G.

Absence of stationary measures. This exercise aims to prove that if G is a non-compact lcsc group then for any probability measure $\mu \in \operatorname{Prob}(G)$ which is equivalent to the Haar measure, there is no μ -stationary Borel probability measure on G for the left translation action $G \curvearrowright G$.

Let us assume by contradiction that there exists such a μ -stationary measure $\nu \in \operatorname{Prob}(G)$.

- (1) Using the previous exercise, prove that ν is automatically equivalent to the left Haar measure on G (you may want to use the fact that G is a homogeneous space, and review the exercises about such spaces).
- (2) Denote by $f \in L^1(G, \lambda)$ the Radon-Nykodym derivative of ν with respect to the Haar measure. Check that f satisfies the harmonic equation: $f(x) = \int_G f(g^{-1}x)d\mu(g)$ for almost every $x \in G$. Prove that the minimum function $\min(f, 1)$ also satisfies this equation equation.
- (3) Prove that a stationary function F ∈ L²(G, λ) is necessarily constant, and hence equal to 0. *Hint.* Play with the expression ∫_G⟨F, λ_g(F)⟩dμ(g), where ⟨·, ·⟩ denotes the scalar product on L²(G, λ) and λ_g denotes the left regular representation of G on L²(G, λ).
- (4) Derive a contradiction.