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Let G be a discrete group. We identify the group ring C[G] with its left
regular representation on ¢?(G) and consider two natural completions.

The von Neumann algebra L(G) is the “pointwise” completion,
L(G) = msor

The reduced C*-algebra C¥(G) is the “uniform” completion,
(6 - era.

We have inclusions

C[G] c C}(G) C L(G).
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Theorem (Murray-von Neumann 1936)

The following are equivalent:
1. L(G) is simple.
2. L(G) has a unique trace.
3. The conjugacy class of every s # e in G is infinite.

The canonical trace on L(G) extends the canonical trace on C[G],

T(Zsec as\s) = @e.
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We say that F, is C*-simple and has the unique trace property.

Variants of Powers’ proof became the main method for establishing
these properties.
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Theorem (Powers 1975)

A group with Powers’ averaging property is C*-simple and has the
unique trace property.

Proof.

For C*-simplicity, let / be a non-trivial closed two-sided ideal of C*(G).
By faithfulness there is a € C}(G) with 7(a) = 1. Applying Powers'’
averaging property implies 1 € /. The unique trace property is similarly

straightforward.
O






Theorem (Powers 1975)

The free group F, has Powers' averaging property. Hence it is
C*-simple and has the unique trace property.
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C*-simple and unique trace Authors

property (if R,(G) trivial)

Free groups F, for n > 2 ‘ Powers (1975)

Linear groups T. Poznansky (unpublished,
2008)

Groups with zero first ?-Betti J. Peterson and A. Thom

number (2010)

Acylindrically hyperbolic groups F. Dahmani, V. Guirardel, and
D. Osin (2011)

Free Burnside groups B(m, n) A.Y. Olshanskii and D.V. Osin

for m > 2 and n odd and large (2014)
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C*-simple and unique trace Authors

property (if R,(G) trivial)

Free groups F, for n > 2 ‘ Powers (1975)

Linear groups T. Poznansky (unpublished,
2008)

Groups with zero first ?-Betti J. Peterson and A. Thom

number (2010)

Acylindrically hyperbolic groups F. Dahmani, V. Guirardel, and
D. Osin (2011)

Free Burnside groups B(m, n) A.Y. Olshanskii and D.V. Osin

for m > 2 and n odd and large (2014)

See e.g. de la Harpe's survey from 2007.
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A discrete group is C*-simple if and only if it has a (topologically) free
boundary action.

Theorem (BKKO 2014)

A discrete group has the unique trace property if and only if it has a
trivial amenable radical. Hence every C*-simple group has the unique
trace property.
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Definition (Furstenberg 1973)

A compact G-space X is a G-boundary if for every probability
measure £ € P(X), the weak* closure of the orbit Gu contains the
point masses {dx | x € X}.

Question: Why is this definition natural?
1. Boundaries have nice rigidity properties.
2. Topological "boundaries” arising in nature are often boundaries in

this sense, e.g. Gromov boundaries of non-elementary hyperbolic
groups.

3. Boundary actions encode interesting properties of G. For example,
G is amenable if and only if there are no non-trivial G-boundaries.
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We give an injectivity-theoretic characterization of G-boundaries.

Theorem (KK 2014)

Let G be a compact G-space. The following are equivalent:

1. The space X is a G-boundary.

2. The algebra C(X) is an essential extension of C in the category of
operator systems equipped with G-equivariant unital completely
positive maps.

3. The reduced crossed product C(X) x, G is an essential extension
of C¥(G) in the category of operator systems equipped with
G-equivariant unital completely positive maps.

Fix a category C of objects and morphisms with a notion of embedding.
For A, B, E € C with A C E, we say E is an essential extension of A
if whenever ¢ : E — B is a morphism such that ¢|4 is an embedding,

then ¢ is an embedding.
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Theorem (KK 2014)

The following are equivalent:

1. The group G is C*-simple.

2. The reduced crossed product C(X) x, G is simple for some
G-boundary X.

3. The G-action on some G-boundary X is (topologically) free.

“Half" of the result follows from results about injectivity.

The other half is more difficult. For an ideal J of C}(G), key idea is to
find an approximate G-equivariant embedding of C(0gG) as a
subalgebra of C}(G)/J.
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Definition
A subgroup H < G is said to be normalish if for every t1,...,t, € G,
the intersection

tHE NNt HE !
is infinite.
Theorem (BKKO 2014)

A group with no non-trivial finite normal subgroups and no amenable
normalish subgroups is C*simple.

We recover essentially all previously known examples of C*-simple
groups. Plus some new ones.
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Theorem (BKKO 2014)

A discrete group with only countably many amenable subgroups is
C*-simple if and only if it has no non-trivial normal amenable
subgroups.

This implies the C*-simplicity of (torsion and torsion-free) Tarski
monster groups. Plus the result of Olshanskii-Osin about the
C*-simplicity of free Burnside groups B(m, n) for m > 2 and n odd and
large.
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Theorem (BKKO 2014)

Every tracial state on C}(G) is concentrated on the amenable radical
R:(G) (the largest amenable normal subgroup).

This means that for every tracial state 7 on C;(G), 7(\s) = 0 for
s € G\R,(G).

Corollary

Every C*-simple group has the unique trace property.
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Question

Does the unique trace property imply C*-simplicity?

Answer: No!

Example (Le Boudec 2015)

There are groups with the unique trace property that are not C*-simple.
Examples are enlargements of groups acting on their Bass-Serre tree.



Characterizations of C*-simplicity
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Question

Where do traces on C}(G) “come from?”

Partial Answer: Amenable invariant subgroups of G give rise to
traces on C}(G).
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Definition (Abért-Glasner-Virag 2014)

An invariant random subgroup p of G is a G-invariant probability
measure on the space of subgroups S(G) of G. If u is supported on
amenable subgroups it is said to be amenable.

For example, if N < G is normal, then the point mass dy is an
invariant random subgroup.

Theorem (Tucker-Drob 2012)

If v is an amenable invariant random subgroup on G, then

Tu(Ag) = p{H € 5(G) | g € H}

extends to a trace on C}(G).
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We consider a topological analogue of the notion of an invariant
random subgroup.

Equip S(G) with the Chabauty topology (i.e. the product topology on

{0,1}°).

Definition (Glasner-Weiss 2015)

A uniformly recurrent subgroup of G is a G-invariant closed
topologically minimal (i.e. every orbit is dense) subset of S(G).

Connection to IRSs: The support of any non-trivial (i.e. u # d0(c})
ergodic invariant random subgroup p contains a non-trivial uniformly
recurrent subgroup.
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Theorem (K 2015)

A group G is C*-simple if and only if it has non-trivial amenable
uniformly recurrent subgroups.

Key idea is that amenable uniformly recurrent subgroups correspond to
boundaries in the state space of C}(G). Special case is that amenable
invariant random subgroups correspond to traces on C*(G).



Theorem (Haagerup® 2015, K 2015)

A group G is C*-simple if and only if it has Powers’ averaging property,
i.e. if and only if for every a € C}(G) and € > 0 there are
g1,---,8n € G such that

1
H; D Agad, 1 — T(a)lH <e

1We recently learned from Mikael Rgrdam that Haagerup independently obtained
this result earlier this year.



Characterization in terms of uniformly recurrent subgroups leads to an
intrinsic characterization of C*-simplicity.



Characterization in terms of uniformly recurrent subgroups leads to an
intrinsic characterization of C*-simplicity.

Definition
A subgroup H < G is recurrent if for every sequence (g,) in G there is
a subsequence (g5, ) such that

() &nHen! # {e}.



Characterization in terms of uniformly recurrent subgroups leads to an
intrinsic characterization of C*-simplicity.

Definition
A subgroup H < G is recurrent if for every sequence (g,) in G there is
a subsequence (g5, ) such that

() &nHen! # {e}.

Theorem (K 2015)

A group G is C*-simple if and only if it has no amenable recurrent
subgroups.



Characterization in terms of uniformly recurrent subgroups leads to an
intrinsic characterization of C*-simplicity.

Definition
A subgroup H < G is recurrent if for every sequence (g,) in G there is
a subsequence (g5, ) such that

() &nHen! # {e}.

Theorem (K 2015)

A group G is C*-simple if and only if it has no amenable recurrent
subgroups.

Leads to an easy proof that Le Boudec's examples have the unique
trace property but are not C*-simple.
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Big Open Question

Is F amenable?

It is easy to see that F is recurrent as a subgroup of T. By the previous
characterization of C*-simplicity, this implies the following result:

Theorem (Haagerup-Olesen 2014)

If T is C*-simple, then F is non-amenable.
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It is known that F is not elementary amenable.

Conjecture (Brin 2004, Guba-Sapir 2007)

Subgroups of F are either elementary amenable or contain a copy of F.

If this conjecture holds, then based on work of Brin, it should be the
case that every recurrent subgroup of T contains a copy of F.

From the characterization of C*-simplicity, this would imply the
converse of Haagerup-Olesen, i.e. that the non-amenability of F is
equivalent to the C*-simplicity of T.



Thanks!



