C*-simplicity for discrete groups

Matthew Kennedy joint with E. Breuillard, M. Kalantar, N. Ozawa

University of Waterloo, Waterloo, Canada

October 10, 2015

The von Neumann algebra L(G) is the "pointwise" completion,

$$L(G) = \overline{\mathbb{C}[G]}^{SOT}$$

The von Neumann algebra L(G) is the "pointwise" completion,

$$L(G) = \overline{\mathbb{C}[G]}^{SOT}$$

The **reduced C*-algebra** $C_r^*(G)$ is the "uniform" completion,

$$\mathrm{C}^*_r(G) = \overline{\mathbb{C}[G]}^{\|\cdot\|}.$$

The **von Neumann algebra** L(G) is the "pointwise" completion,

$$L(G) = \overline{\mathbb{C}[G]}^{SOT}$$

The **reduced C*-algebra** $C_r^*(G)$ is the "uniform" completion,

$$\mathrm{C}^*_r(G) = \overline{\mathbb{C}[G]}^{\|\cdot\|}.$$

We have inclusions

 $\mathbb{C}[G] \subset \mathrm{C}^*_r(G) \subset L(G).$

Group von Neumann algebras

The following are equivalent:

1. L(G) is simple.

The following are equivalent:

- 1. L(G) is simple.
- 2. L(G) has a unique trace.

The following are equivalent:

- 1. L(G) is simple.
- 2. L(G) has a unique trace.
- 3. The conjugacy class of every $s \neq e$ in G is infinite.

The following are equivalent:

- 1. L(G) is simple.
- 2. L(G) has a unique trace.
- 3. The conjugacy class of every $s \neq e$ in G is infinite.

The canonical trace on L(G) extends the canonical trace on $\mathbb{C}[G]$,

$$\tau(\sum_{s\in G}a_s\lambda_s)=a_e.$$

(Reduced) group C*-algebras

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

We say that \mathbb{F}_2 is **C*-simple** and has the **unique trace property**.

Let \mathbb{F}_2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra $C_r^*(\mathbb{F}_2)$ is simple and has a unique trace.

We say that \mathbb{F}_2 is **C*-simple** and has the **unique trace property**.

Variants of Powers' proof became the main method for establishing these properties.

Definition

A group G has Powers' averaging property if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i} a\lambda_{g_i^{-1}} - au(a)\mathbf{1}
ight\| < \epsilon.$$

Definition

A group G has Powers' averaging property if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i}\mathsf{a}\lambda_{g_i^{-1}}- au(\mathsf{a})\mathbf{1}
ight\|<\epsilon.$$

Theorem (Powers 1975)

A group with Powers' averaging property is C*-simple and has the unique trace property.

Definition

A group G has Powers' averaging property if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i} \mathsf{a}\lambda_{g_i^{-1}} - au(\mathsf{a})\mathbf{1}
ight\| < \epsilon.$$

Theorem (Powers 1975)

A group with Powers' averaging property is C*-simple and has the unique trace property.

Proof.

For C*-simplicity, let I be a non-trivial closed two-sided ideal of $C_r^*(G)$. By faithfulness there is $a \in C_r^*(G)$ with $\tau(a) = 1$. Applying Powers' averaging property implies $1 \in I$. The unique trace property is similarly straightforward.

Theorem (Powers 1975)

The free group \mathbb{F}_2 has Powers' averaging property. Hence it is C^* -simple and has the unique trace property.

Many more positive results obtained.

Many more positive results obtained.

C*-simple and unique trace property (if $R_a(G)$ trivial)	Authors
Free groups \mathbb{F}_n for $n \geq 2$	Powers (1975)
:	:
Linear groups	T. Poznansky (unpublished, 2008)
Groups with zero first ℓ^2 -Betti number	J. Peterson and A. Thom (2010)
Acylindrically hyperbolic groups	F. Dahmani, V. Guirardel, and D. Osin (2011)
Free Burnside groups $B(m, n)$ for $m \ge 2$ and n odd and large	A.Y. Olshanskii and D.V. Osin (2014)

Many more positive results obtained.

C*-simple and unique trace property (if $R_a(G)$ trivial)	Authors
Free groups \mathbb{F}_n for $n \geq 2$	Powers (1975)
:	÷
Linear groups	T. Poznansky (unpublished, 2008)
Groups with zero first ℓ^2 -Betti number	J. Peterson and A. Thom (2010)
Acylindrically hyperbolic groups	F. Dahmani, V. Guirardel, and D. Osin (2011)
Free Burnside groups $B(m, n)$ for $m \ge 2$ and n odd and large	A.Y. Olshanskii and D.V. Osin (2014)

See e.g. de la Harpe's survey from 2007.

Necessary and sufficient conditions

Theorem (KK 2014)

A discrete group is C*-simple if and only if it has a (topologically) free boundary action.

Theorem (KK 2014)

A discrete group is C*-simple if and only if it has a (topologically) free boundary action.

Theorem (BKKO 2014)

A discrete group has the unique trace property if and only if it has a trivial amenable radical. Hence every C*-simple group has the unique trace property.

G-Boundaries

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Question: Why is this definition natural?

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Question: Why is this definition natural?

1. Boundaries have nice rigidity properties.

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Question: Why is this definition natural?

- 1. Boundaries have nice rigidity properties.
- 2. Topological "boundaries" arising in nature are often boundaries in this sense, e.g. Gromov boundaries of non-elementary hyperbolic groups.

A compact *G*-space *X* is a *G*-boundary if for every probability measure $\mu \in \mathcal{P}(X)$, the weak* closure of the orbit $G\mu$ contains the point masses $\{\delta_x \mid x \in X\}$.

Question: Why is this definition natural?

- 1. Boundaries have nice rigidity properties.
- 2. Topological "boundaries" arising in nature are often boundaries in this sense, e.g. Gromov boundaries of non-elementary hyperbolic groups.
- 3. Boundary actions encode interesting properties of *G*. For example, *G* is amenable if and only if there are no non-trivial *G*-boundaries.

Theorem (KK 2014)

Let G be a compact G-space. The following are equivalent:

1. The space X is a G-boundary.

Theorem (KK 2014)

Let G be a compact G-space. The following are equivalent:

- 1. The space X is a G-boundary.
- 2. The algebra C(X) is an essential extension of \mathbb{C} in the category of operator systems equipped with G-equivariant unital completely positive maps.

Theorem (KK 2014)

Let G be a compact G-space. The following are equivalent:

- 1. The space X is a G-boundary.
- 2. The algebra C(X) is an essential extension of \mathbb{C} in the category of operator systems equipped with G-equivariant unital completely positive maps.
- 3. The reduced crossed product C(X) ⋊_r G is an essential extension of C^{*}_r(G) in the category of operator systems equipped with G-equivariant unital completely positive maps.

Theorem (KK 2014)

Let G be a compact G-space. The following are equivalent:

- 1. The space X is a G-boundary.
- 2. The algebra C(X) is an essential extension of \mathbb{C} in the category of operator systems equipped with G-equivariant unital completely positive maps.
- The reduced crossed product C(X) ⋈_r G is an essential extension of C^{*}_r(G) in the category of operator systems equipped with G-equivariant unital completely positive maps.

Definition

Fix a category C of objects and morphisms with a notion of embedding. For $A, B, E \in C$ with $A \subset E$, we say E is an **essential extension** of A if whenever $\phi : E \to B$ is a morphism such that $\phi|_A$ is an embedding, then ϕ is an embedding.
Main results

The following are equivalent:

1. The group G is C^* -simple.

The following are equivalent:

- 1. The group G is C^* -simple.
- 2. The reduced crossed product $C(X) \rtimes_r G$ is simple for some *G*-boundary *X*.

The following are equivalent:

- 1. The group G is C^* -simple.
- 2. The reduced crossed product $C(X) \rtimes_r G$ is simple for some *G*-boundary *X*.
- 3. The G-action on some G-boundary X is (topologically) free.

The following are equivalent:

- 1. The group G is C^* -simple.
- 2. The reduced crossed product $C(X) \rtimes_r G$ is simple for some *G*-boundary *X*.
- 3. The G-action on some G-boundary X is (topologically) free.

"Half" of the result follows from results about injectivity.

The following are equivalent:

- 1. The group G is C^* -simple.
- 2. The reduced crossed product $C(X) \rtimes_r G$ is simple for some *G*-boundary *X*.
- 3. The G-action on some G-boundary X is (topologically) free.

"Half" of the result follows from results about injectivity.

The other half is more difficult. For an ideal J of $C_r^*(G)$, key idea is to find an approximate G-equivariant embedding of $C(\partial_F G)$ as a subalgebra of $C_r^*(G)/J$.

Some Applications

Definition

A subgroup H < G is said to be *normalish* if for every $t_1, \ldots, t_n \in G$, the intersection

$$t_1Ht_1^{-1}\cap\cdots\cap t_nHt_n^{-1}$$

is infinite.

Definition

A subgroup H < G is said to be *normalish* if for every $t_1, \ldots, t_n \in G$, the intersection

$$t_1Ht_1^{-1}\cap\cdots\cap t_nHt_n^{-1}$$

is infinite.

Theorem (BKKO 2014)

A group with no non-trivial finite normal subgroups and no amenable normalish subgroups is C^* -simple.

Definition

A subgroup H < G is said to be *normalish* if for every $t_1, \ldots, t_n \in G$, the intersection

$$t_1Ht_1^{-1}\cap\cdots\cap t_nHt_n^{-1}$$

is infinite.

Theorem (BKKO 2014)

A group with no non-trivial finite normal subgroups and no amenable normalish subgroups is C^* -simple.

We recover essentially all previously known examples of C*-simple groups. Plus some new ones.

A discrete group with only countably many amenable subgroups is C*-simple if and only if it has no non-trivial normal amenable subgroups.

A discrete group with only countably many amenable subgroups is C*-simple if and only if it has no non-trivial normal amenable subgroups.

This implies the C*-simplicity of (torsion and torsion-free) Tarski monster groups. Plus the result of Olshanskii-Osin about the C*-simplicity of free Burnside groups B(m, n) for $m \ge 2$ and n odd and large.

Uniqueness of the trace

Every tracial state on $C_r^*(G)$ is concentrated on the amenable radical $R_a(G)$ (the largest amenable normal subgroup).

Every tracial state on $C_r^*(G)$ is concentrated on the amenable radical $R_a(G)$ (the largest amenable normal subgroup).

This means that for every tracial state τ on $C^*_r(G)$, $\tau(\lambda_s) = 0$ for $s \in G \setminus R_a(G)$.

Every tracial state on $C_r^*(G)$ is concentrated on the amenable radical $R_a(G)$ (the largest amenable normal subgroup).

This means that for every tracial state τ on $C^*_r(G)$, $\tau(\lambda_s) = 0$ for $s \in G \setminus R_a(G)$.

Corollary

Every C*-simple group has the unique trace property.

Does the unique trace property imply C*-simplicity?

Does the unique trace property imply C*-simplicity?

Answer: No!

Does the unique trace property imply C*-simplicity?

Answer: No!

Example (Le Boudec 2015)

There are groups with the unique trace property that are not C*-simple. Examples are enlargements of groups acting on their Bass-Serre tree.

Characterizations of C*-simplicity

Where do traces on $\mathrm{C}^*_r(\mathcal{G})$ "come from?"

Where do traces on $C^*_r(G)$ "come from?"

Partial Answer: Amenable invariant subgroups of G give rise to traces on $C^*_r(G)$.

Definition (Abert-Glasner-Virag 2014)

An *invariant random subgroup* μ of *G* is a *G*-invariant probability measure on the space of subgroups S(G) of *G*. If μ is supported on amenable subgroups it is said to be *amenable*.

Definition (Abert-Glasner-Virag 2014)

An *invariant random subgroup* μ of *G* is a *G*-invariant probability measure on the space of subgroups S(G) of *G*. If μ is supported on amenable subgroups it is said to be *amenable*.

For example, if N < G is normal, then the point mass δ_N is an invariant random subgroup.

Definition (Abert-Glasner-Virag 2014)

An *invariant random subgroup* μ of *G* is a *G*-invariant probability measure on the space of subgroups S(G) of *G*. If μ is supported on amenable subgroups it is said to be *amenable*.

For example, if N < G is normal, then the point mass δ_N is an invariant random subgroup.

Theorem (Tucker-Drob 2012)

If μ is an amenable invariant random subgroup on G, then

$$\tau_{\mu}(\lambda_{g}) = \mu\{H \in \mathcal{S}(G) \mid g \in H\}$$

extends to a trace on $C^*_r(G)$.

Equip $\mathcal{S}(G)$ with the Chabauty topology (i.e. the product topology on $\{0,1\}^G$).

Equip $\mathcal{S}(G)$ with the Chabauty topology (i.e. the product topology on $\{0,1\}^G$).

Definition (Glasner-Weiss 2015)

A uniformly recurrent subgroup of G is a G-invariant closed topologically minimal (i.e. every orbit is dense) subset of S(G).

Equip $\mathcal{S}(G)$ with the Chabauty topology (i.e. the product topology on $\{0,1\}^G$).

Definition (Glasner-Weiss 2015)

A uniformly recurrent subgroup of G is a G-invariant closed topologically minimal (i.e. every orbit is dense) subset of S(G).

Connection to IRSs: The support of any non-trivial (i.e. $\mu \neq \delta_{\{e\}}$) ergodic invariant random subgroup μ contains a non-trivial uniformly recurrent subgroup.

A group G is C^* -simple if and only if it has non-trivial amenable uniformly recurrent subgroups.

A group G is C^* -simple if and only if it has non-trivial amenable uniformly recurrent subgroups.

Key idea is that amenable uniformly recurrent subgroups correspond to boundaries in the state space of $C_r^*(G)$. Special case is that amenable invariant random subgroups correspond to traces on $C_r^*(G)$.

Theorem (Haagerup¹ 2015, K 2015)

A group G is C*-simple if and only if it has Powers' averaging property, i.e. if and only if for every $a \in C_r^*(G)$ and $\epsilon > 0$ there are $g_1, \ldots, g_n \in G$ such that

$$\left\|rac{1}{n}\sum\lambda_{g_i} a\lambda_{g_i^{-1}} - au(a)\mathbf{1}
ight\| < \epsilon.$$

 $^{^1 \}rm We$ recently learned from Mikael Rørdam that Haagerup independently obtained this result earlier this year.

Characterization in terms of uniformly recurrent subgroups leads to an intrinsic characterization of C*-simplicity.

Characterization in terms of uniformly recurrent subgroups leads to an intrinsic characterization of C*-simplicity.

Definition

A subgroup H < G is *recurrent* if for every sequence (g_n) in G there is a subsequence (g_{n_k}) such that

$$\bigcap g_{n_k} H g_{n_k}^{-1} \neq \{e\}.$$

Characterization in terms of uniformly recurrent subgroups leads to an intrinsic characterization of C*-simplicity.

Definition

A subgroup H < G is *recurrent* if for every sequence (g_n) in G there is a subsequence (g_{n_k}) such that

$$\bigcap g_{n_k} H g_{n_k}^{-1} \neq \{e\}.$$

Theorem (K 2015)

A group G is C^* -simple if and only if it has no amenable recurrent subgroups.
Characterization in terms of uniformly recurrent subgroups leads to an intrinsic characterization of C*-simplicity.

Definition

A subgroup H < G is *recurrent* if for every sequence (g_n) in G there is a subsequence (g_{n_k}) such that

$$\bigcap g_{n_k} H g_{n_k}^{-1} \neq \{e\}.$$

Theorem (K 2015)

A group G is C^* -simple if and only if it has no amenable recurrent subgroups.

Leads to an easy proof that Le Boudec's examples have the unique trace property but are not C*-simple.

An application to Thompson's group F

Big Open Question

Is F amenable?

Big Open Question

Is F amenable?

It is easy to see that F is recurrent as a subgroup of T. By the previous characterization of C*-simplicity, this implies the following result:

Big Open Question

Is F amenable?

It is easy to see that F is recurrent as a subgroup of T. By the previous characterization of C*-simplicity, this implies the following result:

Theorem (Haagerup-Olesen 2014)

If T is C^* -simple, then F is non-amenable.

Conjecture (Brin 2004, Guba-Sapir 2007)

Subgroups of F are either elementary amenable or contain a copy of F.

Conjecture (Brin 2004, Guba-Sapir 2007)

Subgroups of F are either elementary amenable or contain a copy of F.

If this conjecture holds, then based on work of Brin, it should be the case that every recurrent subgroup of T contains a copy of F.

Conjecture (Brin 2004, Guba-Sapir 2007)

Subgroups of F are either elementary amenable or contain a copy of F.

If this conjecture holds, then based on work of Brin, it should be the case that every recurrent subgroup of T contains a copy of F.

From the characterization of C*-simplicity, this would imply the converse of Haagerup-Olesen, i.e. that the non-amenability of F is equivalent to the C*-simplicity of T.

Thanks!