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Let G be a discrete group. We identify the group ring C[G ] with its left
regular representation on `2(G ) and consider two natural completions.

The von Neumann algebra L(G ) is the “pointwise” completion,

L(G ) = C[G ]
SOT

.

The reduced C*-algebra C∗r (G ) is the “uniform” completion,

C∗r (G ) = C[G ]
‖·‖
.

We have inclusions

C[G ] ⊂ C∗r (G ) ⊂ L(G ).
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Group von Neumann algebras



Theorem (Murray-von Neumann 1936)

The following are equivalent:

1. L(G ) is simple.

2. L(G ) has a unique trace.

3. The conjugacy class of every s 6= e in G is infinite.

The canonical trace on L(G ) extends the canonical trace on C[G ],

τ(
∑

s∈G asλs) = ae .
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(Reduced) group C*-algebras



Let F2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra C∗r (F2) is simple and has a unique trace.

We say that F2 is C*-simple and has the unique trace property.

Variants of Powers’ proof became the main method for establishing
these properties.



Let F2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra C∗r (F2) is simple and has a unique trace.

We say that F2 is C*-simple and has the unique trace property.

Variants of Powers’ proof became the main method for establishing
these properties.



Let F2 denote the free group on two generators.

Theorem (Powers 1975)

The reduced C*-algebra C∗r (F2) is simple and has a unique trace.

We say that F2 is C*-simple and has the unique trace property.

Variants of Powers’ proof became the main method for establishing
these properties.



Definition

A group G has Powers’ averaging property if for every a ∈ C∗r (G ) and
ε > 0 there are g1, . . . , gn ∈ G such that∥∥∥∥1

n

∑
λgi aλg−1

i
− τ(a)1

∥∥∥∥ < ε.

Theorem (Powers 1975)

A group with Powers’ averaging property is C*-simple and has the
unique trace property.

Proof.

For C*-simplicity, let I be a non-trivial closed two-sided ideal of C∗r (G ).
By faithfulness there is a ∈ C∗r (G ) with τ(a) = 1. Applying Powers’
averaging property implies 1 ∈ I . The unique trace property is similarly
straightforward.
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Theorem (Powers 1975)

The free group F2 has Powers’ averaging property. Hence it is
C*-simple and has the unique trace property.



Many more positive results obtained.

C*-simple and unique trace
property (if Ra(G ) trivial)

Authors

Free groups Fn for n ≥ 2 Powers (1975)

...
...

Linear groups T. Poznansky (unpublished,
2008)

Groups with zero first `2-Betti
number

J. Peterson and A. Thom
(2010)

Acylindrically hyperbolic groups F. Dahmani, V. Guirardel, and
D. Osin (2011)

Free Burnside groups B(m, n)
for m ≥ 2 and n odd and large

A.Y. Olshanskii and D.V. Osin
(2014)

See e.g. de la Harpe’s survey from 2007.
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Necessary and sufficient conditions



Theorem (KK 2014)

A discrete group is C*-simple if and only if it has a (topologically) free
boundary action.

Theorem (BKKO 2014)

A discrete group has the unique trace property if and only if it has a
trivial amenable radical. Hence every C*-simple group has the unique
trace property.
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G -Boundaries



Definition (Furstenberg 1973)

A compact G -space X is a G -boundary if for every probability
measure µ ∈ P(X ), the weak* closure of the orbit Gµ contains the
point masses {δx | x ∈ X}.

Question: Why is this definition natural?

1. Boundaries have nice rigidity properties.

2. Topological “boundaries” arising in nature are often boundaries in
this sense, e.g. Gromov boundaries of non-elementary hyperbolic
groups.

3. Boundary actions encode interesting properties of G . For example,
G is amenable if and only if there are no non-trivial G -boundaries.
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We give an injectivity-theoretic characterization of G -boundaries.

Theorem (KK 2014)

Let G be a compact G-space. The following are equivalent:

1. The space X is a G-boundary.

2. The algebra C (X ) is an essential extension of C in the category of
operator systems equipped with G-equivariant unital completely
positive maps.

3. The reduced crossed product C (X ) or G is an essential extension
of C∗r (G ) in the category of operator systems equipped with
G-equivariant unital completely positive maps.

Definition

Fix a category C of objects and morphisms with a notion of embedding.
For A,B,E ∈ C with A ⊂ E , we say E is an essential extension of A
if whenever φ : E → B is a morphism such that φ|A is an embedding,
then φ is an embedding.
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Main results



Theorem (KK 2014)

The following are equivalent:

1. The group G is C*-simple.

2. The reduced crossed product C (X ) or G is simple for some
G-boundary X .

3. The G-action on some G-boundary X is (topologically) free.

“Half” of the result follows from results about injectivity.

The other half is more difficult. For an ideal J of C∗r (G ), key idea is to
find an approximate G -equivariant embedding of C (∂FG ) as a
subalgebra of C∗r (G )/J.
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Some Applications



Definition

A subgroup H < G is said to be normalish if for every t1, . . . , tn ∈ G ,
the intersection

t1Ht−1
1 ∩ · · · ∩ tnHt−1

n

is infinite.

Theorem (BKKO 2014)

A group with no non-trivial finite normal subgroups and no amenable
normalish subgroups is C*-simple.

We recover essentially all previously known examples of C*-simple
groups. Plus some new ones.
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Theorem (BKKO 2014)

A discrete group with only countably many amenable subgroups is
C*-simple if and only if it has no non-trivial normal amenable
subgroups.

This implies the C*-simplicity of (torsion and torsion-free) Tarski
monster groups. Plus the result of Olshanskii-Osin about the
C*-simplicity of free Burnside groups B(m, n) for m ≥ 2 and n odd and
large.
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Uniqueness of the trace



Theorem (BKKO 2014)

Every tracial state on C∗r (G ) is concentrated on the amenable radical
Ra(G ) (the largest amenable normal subgroup).

This means that for every tracial state τ on C∗r (G ), τ(λs) = 0 for
s ∈ G\Ra(G ).

Corollary

Every C*-simple group has the unique trace property.



Theorem (BKKO 2014)

Every tracial state on C∗r (G ) is concentrated on the amenable radical
Ra(G ) (the largest amenable normal subgroup).

This means that for every tracial state τ on C∗r (G ), τ(λs) = 0 for
s ∈ G\Ra(G ).

Corollary

Every C*-simple group has the unique trace property.



Theorem (BKKO 2014)

Every tracial state on C∗r (G ) is concentrated on the amenable radical
Ra(G ) (the largest amenable normal subgroup).

This means that for every tracial state τ on C∗r (G ), τ(λs) = 0 for
s ∈ G\Ra(G ).

Corollary

Every C*-simple group has the unique trace property.



Question

Does the unique trace property imply C*-simplicity?

Answer: No!

Example (Le Boudec 2015)

There are groups with the unique trace property that are not C*-simple.
Examples are enlargements of groups acting on their Bass-Serre tree.
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Where do traces on C∗r (G ) “come from?”

Partial Answer: Amenable invariant subgroups of G give rise to
traces on C∗r (G ).
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Let S(G ) denote the space of subgroups of G equipped with the
conjugation action.

Definition (Abèrt-Glasner-Viràg 2014)

An invariant random subgroup µ of G is a G -invariant probability
measure on the space of subgroups S(G ) of G . If µ is supported on
amenable subgroups it is said to be amenable.

For example, if N < G is normal, then the point mass δN is an
invariant random subgroup.

Theorem (Tucker-Drob 2012)

If µ is an amenable invariant random subgroup on G, then

τµ(λg ) = µ{H ∈ S(G ) | g ∈ H}

extends to a trace on C∗r (G ).
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We consider a topological analogue of the notion of an invariant
random subgroup.

Equip S(G ) with the Chabauty topology (i.e. the product topology on
{0, 1}G ).

Definition (Glasner-Weiss 2015)

A uniformly recurrent subgroup of G is a G -invariant closed
topologically minimal (i.e. every orbit is dense) subset of S(G ).

Connection to IRSs: The support of any non-trivial (i.e. µ 6= δ{e})
ergodic invariant random subgroup µ contains a non-trivial uniformly
recurrent subgroup.
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A group G is C*-simple if and only if it has non-trivial amenable
uniformly recurrent subgroups.

Key idea is that amenable uniformly recurrent subgroups correspond to
boundaries in the state space of C∗r (G ). Special case is that amenable
invariant random subgroups correspond to traces on C∗r (G ).
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Theorem (Haagerup1 2015, K 2015)

A group G is C*-simple if and only if it has Powers’ averaging property,
i.e. if and only if for every a ∈ C∗r (G ) and ε > 0 there are
g1, . . . , gn ∈ G such that∥∥∥∥1

n

∑
λgi aλg−1

i
− τ(a)1

∥∥∥∥ < ε.

1We recently learned from Mikael Rørdam that Haagerup independently obtained
this result earlier this year.



Characterization in terms of uniformly recurrent subgroups leads to an
intrinsic characterization of C*-simplicity.

Definition

A subgroup H < G is recurrent if for every sequence (gn) in G there is
a subsequence (gnk ) such that⋂

gnk Hg−1
nk 6= {e}.

Theorem (K 2015)

A group G is C*-simple if and only if it has no amenable recurrent
subgroups.

Leads to an easy proof that Le Boudec’s examples have the unique
trace property but are not C*-simple.
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Consider Thompson’s groups F < T .

Big Open Question

Is F amenable?

It is easy to see that F is recurrent as a subgroup of T . By the previous
characterization of C*-simplicity, this implies the following result:

Theorem (Haagerup-Olesen 2014)

If T is C*-simple, then F is non-amenable.
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It is known that F is not elementary amenable.

Conjecture (Brin 2004, Guba-Sapir 2007)

Subgroups of F are either elementary amenable or contain a copy of F .

If this conjecture holds, then based on work of Brin, it should be the
case that every recurrent subgroup of T contains a copy of F .

From the characterization of C*-simplicity, this would imply the
converse of Haagerup-Olesen, i.e. that the non-amenability of F is
equivalent to the C*-simplicity of T .
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Thanks!


