The faithful subalgebra

Sarah Reznikoff

joint work with Jonathan H. Brown, Gabriel Nagy, Aidan Sims, and Dana Williams funded in part by NSF DMS-1201564

West Coast Operator Algebras Seminar UCSD, October 11, 2015

Let \mathscr{G} be a graph, *k*-graph, or groupoid, and $C^*(\mathscr{G})$ the universal C*-algebra defined from it.

Uniqueness Theorems: Under what circumstances is a *-homomorphism $\phi : C^*(\mathscr{G}) \to B(H)$ injective?

Classical theorems addressing this question assume either

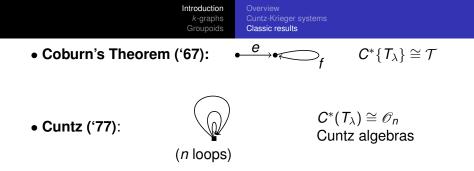
- (a) the existence of intertwining "gauge actions" on the algebras, or
- (b) an aperiodicity condition on \mathscr{G} itself.

Theorem (Brown-Nagy-R-Sims-Williams) There is a canonical subalgebra $\mathscr{M} \subset C^*(\mathscr{G})$ such that a *-homomorphism $\phi : C^*(\mathscr{G}) \to B(H)$ is injective iff $\phi|_{\mathscr{M}}$ is injective.

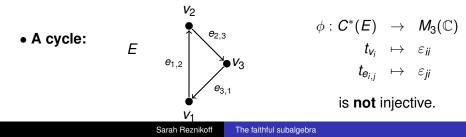
Let *E* be a graph. Denote by E^n the set of paths in *E* of length *n* (E^0 is the set of vertices) and $E^* = \cup E^n$.

A (nondegenerate*) Cuntz-Krieger *E*-system on *H* is a family $\{T_{\lambda}, \lambda \in E^*\}$ of partial isometries in *B*(*H*) satisfying

Exercise: $C^*{T_{\lambda}} = \overline{\text{span}}{T_{\lambda}T_{\nu}^* | s(\lambda) = s(\nu)}$ Denote $C^*(E) = C^*{t_{\lambda}}$, where ${t_{\lambda}}$ is a *universal* C-K system.



• **Cuntz-Krieger ('80)**: Uniqueness theorem for Cuntz-Krieger algebras \mathcal{O}_A .



Cuntz-Krieger Uniqueness Theorem:

(Kumjian-Pask-Raeburn-Fowler, et. al. ('90's)) If every cycle in *E* has an entry (L), and ϕ is nondegenerate then ϕ is injective.

Theorem Szymański (2001), Nagy-R (2010): Condition (L) can be replaced with a condition on the spectrum of $\phi(t_{\lambda})$ where the λ are the cycles without entry.

Cycles without entry reveal lack of aperiodicity in the *infinite path space* of the graph. Let us now expand our view to higher rank graphs.

Let $k \in \mathbb{N}^+$. We regard \mathbb{N}^k as a category with a single object, 0, and with composition of morphisms given by addition.

A *k***-graph** is a countable category Λ along with a "degree" functor $d : \Lambda \to \mathbb{N}^k$ satisfying the *unique factorization property*:

For all $\lambda \in \Lambda$, and $m, n \in \mathbb{N}^k$, if $d(\lambda) = m + n$ then there are unique $\mu \in d^{-1}\{m\}$ and $\nu \in d^{-1}\{n\}$ such that $\lambda = \mu\nu$.

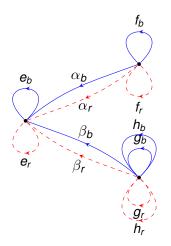
Remarks:

- Think of elements of degree ε_i as edges of color *i*.
- If d(α) = ε_i, d(β) = ε_j and s(α) = r(β), there there are unique α', β' with d(α') = ε_j and d(β) = ε_i s.t. αβ = α'β'.
- These "commuting squares" determine all factorization rules of the k-graph.
- C^{*}(Λ) is defined by associating to each λ ∈ Λ a partial isometry t_λ, in accordance with the Cuntz-Krieger relations.

ntroduction Definition *k*-graphs Example Groupoids Aperiodic

Example

:



Commutation rules:

$e_b \alpha_r = e_r \alpha_b$	$\pmb{e_b}eta_{r}$	$= e_r \beta_b$
$\beta_b g_r = \beta_r g_b$	$\beta_{b}h_{r}$	$= \beta_r h_b$
$\alpha_{b} f_{r} = \alpha_{r} f_{b}$	f _b f _r	$= f_r f_b$
$g_b g_r = g_r g_b$	$g_b h_r$	$=h_rg_b$
$h_b g_r = g_r h_b$	h _b h _r	$= h_r h_b$

Aperiodicity – defined via the infinite path space Λ^{∞} $\Lambda^{\infty} = \{ \text{degree-preserving covariant functors } \Omega_k \to \Lambda \}$

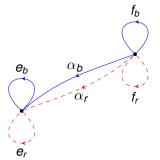
$$k = 1 \text{ picture} \qquad \underbrace{e_0 \quad e_1 \quad e_2 \quad e_3 \quad x(1,3) = e_1 e_2}_{k = 2 \text{ picture}} \\ k = 2 \text{ picture} \qquad \underbrace{f_1 \quad e_2 \quad e_3 \quad x(1,2), (3,3)}_{k = 1 \text{ picture}} \\ \underbrace{f_1 \quad e_1 \quad e_2 \quad e_3 \quad x((1,2), (3,3))}_{k = 1 \text{ picture}} \\ \underbrace{f_1 \quad e_1 \quad e_$$

A path $x \in \Lambda^{\infty}$ is *eventually periodic* if there are $\alpha \neq \beta$ in Λ and $y \in \Lambda^{\infty}$ such that $x = \alpha y = \beta y$; otherwise x is *aperiodic*.

 Λ is **aperiodic** if every vertex is the range of an aperiodic path.

• Uniqueness theorems of Raeburn-Sims-Yeend and Kumjian-Pask assume aperiodicity of the *k*-graph.

Theorem Nagy-R (2010), Nagy-Brown-R (2013) A *-homomorphism $\phi : C^*(\Lambda) \to \mathcal{A}$ is injective iff it is injective on the subalgebra $\mathscr{M} := C^*(t_\alpha t_\delta^* | \forall \gamma \in \Lambda^\infty \ \alpha \gamma = \delta \gamma)$. **Example:**



Commutation rules:

$$e_b \alpha_r = e_r \alpha_b \quad \alpha_b f_r = \alpha_r f_b$$

$$f_b f_r = f_r f_b \quad e_b e_r = e_r e_b$$

Letting
$$\alpha = e_b \alpha_\beta$$
, $\delta = e_r \alpha_\beta$, we have $\alpha \gamma = \delta \gamma$ for all $\gamma \in \Lambda^{\infty}$.

Introduction	Basics
<i>k</i> -graphs	k-graph groupoids
Groupoids	

A **groupoid** is a small category \mathcal{G} in which every element has an inverse. A topological groupoid is one in which multiplication and inversion are continuous. It is *étale* if the range and source are local homeomorphisms.

- $C^*(\mathcal{G})$ is defined to be a completion of $C_c(\mathcal{G})$.
- $C_r^*(\mathcal{G})$ is the image of $C^*(\mathcal{G})$ under the direct sum of the left regular representations.
- $\mathcal{G}^{(0)} = \{gg^{-1} | g \in \mathcal{G}\}$, the *unit space* of \mathcal{G} .
- $\mathsf{lso}(\mathcal{G}) := \{g \in \mathcal{G} \mid r(g) = s(g)\}$, the *isotropy subgroupoid* of \mathcal{G} .

Theorem (Brown-Nagy-R-Sims-Williams, 2014) Let \mathcal{G} be a locally compact, amenable, Hausdorff, étale groupoid. If $\phi : C^*(\mathcal{G}) \to A$ is a C^* -homomorphism, then the following are equivalent.

(i) ϕ is injective. (ii) ϕ is injective on $C^*((Iso(\mathcal{G}))^\circ)$.
 Introduction
 Basics

 k-graphs
 k-graph groupoids

 Groupoids
 Results

Groupoid of a k-graph

To a k-graph Λ , we associate the groupoid

$$\begin{aligned} \mathcal{G}_{\Lambda} &= \{ (\alpha y, d, \beta y) \mid y \in \Lambda^{\infty}, \ \alpha, \beta \in \Lambda, \ d = d_{\Lambda}(\beta) - d_{\Lambda}(\alpha) \} \\ s(x, d, y) &= \ y = r(y, d', z) \qquad (x, d, y)^{-1} = \ (y, -d, x) \\ (x, d, y)(y, d', w) &= \ (x, d + d', w) \end{aligned}$$

• The cylinder sets $Z(\alpha, \beta) = \{(\alpha y, d, \beta y)\}$ form a basis for a locally compact, amenable, Hausdorff, étale topology.

• The map $t_{\alpha}t_{\beta}^* \mapsto \chi_{Z(\alpha,\beta)}$ implements an iso $C^*(\Lambda) \cong C^*(\mathcal{G}_{\Lambda})$, which restricts to $C^*(t_{\alpha}t_{\beta}^* | \forall \gamma \in \Lambda^{\infty} \ \alpha\gamma = \beta\gamma\} \cong C^*(\mathsf{Iso}(\mathcal{G}_{\Lambda})^\circ)$.

Properties of the subalgebra

(Renault, '80) A masa C*-subalgebra $\mathcal{B} \subseteq \mathcal{A}$ is **Cartan** if

- (i) \exists a faithful conditional expectation $\mathcal{A} \to \mathcal{B}$,
- (ii) The normalizer of $\mathcal B$ in $\mathcal A$ generates $\mathcal A$, and
- (iii) \mathcal{B} contains an approximate unit of \mathcal{A} .

Extension properties for pure states on masa $\mathcal{B} \subset \mathcal{A}$:

(**UEP**) Every pure state extends uniquely to A.

A Cartan subalgebra with the UEP is a Kumjian C^* -diagonal.

(AEP) Densely many pure states extend uniquely.

Thm (Nagy-R, 2011) When *G* is a directed graph, $\mathcal{M} \subseteq C^*(G)$ is Cartan and satisfies AEP; i.e, it is a **pseudo-diagonal**.

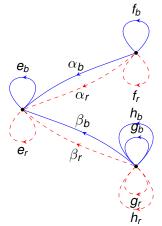
Introduction	
k-graphs	k-graph groupoids
Groupoids	Results

Thm (BNRSW, 2015) Let \mathcal{G} be a Hausdorff, étale groupoid. Let $\mathcal{M} = C^*(Iso(\mathcal{G})^\circ)$.

- (a) If $(Iso(\mathcal{G}))^{\circ}$ is closed and amenable, then the restriction map $f \mapsto f|_{Iso(\mathcal{G})^{\circ}}$ extends to a faithful conditional expectation $E : C^*(\mathcal{G}) \to \mathcal{M}$.
- (b) If (Iso(G))° is not closed, then there is no conditional expectation onto the subalgebra.
- (c) If $(Iso(\mathcal{G}))^{\circ}$ is abelian and either (i) it is also closed, or (ii) there exists a continuous 1-cocycle $c : \mathcal{G} \to H$ (countable discrete abelian group) s.t. $\forall x \in G^{(0)} \ c_{G_x^x}$ is injective, then \mathcal{M}_r is masa.

Cor (BNRSW, 2015; Yang, 2014) \mathcal{M} is always a masa in $C^*(\Lambda)$, Λ a *k*-graph.

Example of 2-graph C^* -algebras with $(Iso(\mathcal{G}))^\circ$ not closed, and hence \mathcal{M} not Cartan (no cond. exp.).



Commutation rules:

$$\begin{aligned} \mathbf{e}_{b}\alpha_{r} &= \mathbf{e}_{r}\alpha_{b} \quad \mathbf{e}_{b}\beta_{r} &= \mathbf{e}_{r}\beta_{b} \\ \beta_{b}g_{r} &= \beta_{r}g_{b} \quad \beta_{b}h_{r} &= \beta_{r}h_{b}, \\ g_{b}g_{r} &= g_{r}g_{b} \quad g_{b}h_{r} &= h_{r}g_{b}, \\ h_{b}g_{r} &= g_{r}h_{b} \quad h_{b}h_{r} &= h_{r}h_{b} \\ \alpha_{b}f_{r} &= \alpha_{r}f_{b} \quad f_{b}f_{r} &= f_{r}f_{b} \end{aligned}$$

The element $(e_r(e_be_r)^{\infty}, (1, -1), e_b(e_be_r)^{\infty}) \in \overline{Iso(\mathcal{G})^{\circ}} \setminus Iso(\mathcal{G})^{\circ}.$

Abstract Uniqueness Theorem (Brown-Nagy-R) Let *A* be a C*-algebra and $M \subset A$ a C*-subalgebra. Suppose there is a set S of pure states on *M* satisfying

(i) each $\psi \in \mathcal{S}$ extends uniquely to a state $\tilde{\psi}$ on \mathcal{A} , and

(ii) the direct sum $\bigoplus_{\psi \in S} \pi_{\tilde{\psi}}$ of the GNS representations associated to the extensions to *A* of elements in *S* is faithful on *A*.

Then a *-homomorphism $\Phi : A \to B$ is injective iff $\Phi|_M$ is injective.

Our proof of the main theorem applies the AUT to the set *S* of pure states of $C_r^*(Iso(\mathcal{G})^\circ)$ that factor through some $C_r^*(\mathcal{G}_u^u)$ with $\mathcal{G}_u^u = Iso(\mathcal{G})_u^\circ$ (where $\mathcal{G}_u^u = Iso(\mathcal{G}) \cap r^{-1}(u)$).

Introduction Basics *k*-graphs *k*-graph gr Groupoids Results

Thank you!

A somewhat arbitrary bibliography follows.

Introduction	
k-graphs	k-graph groupoids
Groupoids	Results

- A. an Huef and I. Raeburn, *The ideal structure of Cuntz-Krieger algebras,* Ergodic Theory Dynam. Systems 17 (1997), 611–624.
- J.H. Brown, G. Nagy, and S. Reznikoff, *A generalized Cuntz-Krieger uniqueness theorem for higher-rank graphs*, J. Funct. Anal. (2013).
- J.H. Brown, G. Nagy, S. Reznikoff, A. Sims, and D. Williams, *Cartan subalgebras of groupoid C*-algebras*
- K.R. Davidson, S.C. Power, and D. Yang, *Dilation theory for rank 2 graph algebras*, J. Operator Theory.
- D. G. Evans and A. Sims, *When is the Cuntz-Krieger algebra of a higher-rank graph approximately finite-dimensional?*, J. Funct. Anal. **263** (2012), no. 1, 183–215.

Introduction	
<i>k</i> -graphs	k-graph groupoids
Groupoids	Results

- P. Goldstein, *On graph C*-algebras*, J. Austral. Math. Soc.
 72 (2002), 153–160
- A. Kumjian and D. Pask, *Higher rank graph C*-algebras*, New York J. Math. **6** (2000), 1–20.
- A. Kumjian, D. Pask, and I. Raeburn, *Cuntz-Krieger algebras of directed graphs*, Pacific J. Math. **184** (1998) 161–174.
- A. Kumjian, D. Pask, I. Raeburn, and J. Renault, *Graphs, groupoids and Cuntz-Krieger algebras*, J. Funct. Anal. 144 (1997), 505–541.

Introduction	
k-graphs	<i>k</i> -graph groupoids
Groupoids	Results

- G. Nagy and S. Reznikoff, *Abelian core of graph algebras*, J. Lond. Math. Soc. (2) **85** (2012), no. 3, 889–908.
- G. Nagy and S. Reznikoff, *Pseudo-diagonals and uniqueness theorems*, (2013), to appear in Proc. AMS.
- D. Pask, I. Raeburn, M. Rørdam, A. Sims, *Rank-two graphs whose C*-algebras are direct limits of circle algebras*, J. Functional Anal. **144** (2006), 137–178.
- I. Raeburn, A. Sims and T. Yeend, *Higher-rank graphs and their C*-algebras*, Proc. Edin. Math. Soc. 46 (2003) 99–115.
- N. Phillips, emphCrossed products of the Cantor set by free minimal actions of Z^d, Comm. Math. Phys., **256** (2005), 1–42.

Introduction	
<i>k</i> -graphs	k-graph groupoids
Groupoids	Results

- A. Sims, Gauge-invariant ideals in the C*-algebras of finitely aligned higher-rank graphs, Canad. J. Math. 58 (2006), no. 6, 1268–1290.
- J. Spielberg, *Graph-based models for Kirchberg algebras*, J. Operator Theory **57** (2007), 347–374.
- W. Szymański, *General Cuntz-Krieger uniqueness theorem*, Internat. J. Math. **13** (2002) 549–555.
- D. Yang, *Periodic higher rank graphs revisited*, arXiv:1403.6848 (2014).
- T. Yeend, Groupoid models for the C*-algebras of topological higher-rank graphs, J. Operator Theory 57:1 (2007), 96–120