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Let G be a graph, k -graph, or groupoid, and C∗(G ) the
universal C*-algebra defined from it.

Uniqueness Theorems: Under what circumstances is a
∗-homomorphism φ : C∗(G )→ B(H) injective?

Classical theorems addressing this question assume either
(a) the existence of intertwining “gauge actions" on the

algebras, or
(b) an aperiodicity condition on G itself.

Theorem (Brown-Nagy-R-Sims-Williams)
There is a canonical subalgebra M ⊂ C∗(G ) such that a
∗-homomorphism φ : C∗(G )→ B(H) is injective iff φ|M is
injective.
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Let E be a graph. Denote by En the set of paths in E of
length n (E0 is the set of vertices) and E∗ = ∪En.

A (nondegenerate*) Cuntz-Krieger E-system on H is a family
{Tλ, λ ∈ E∗} of partial isometries in B(H) satisfying

(i) Tv , v ∈ E0, are *nonzero mutually orthogonal projections,
(ii) Tλµ = TλTµ for all λ, µ ∈ E∗ s.t. s(λ) = r(µ),
(iii) T ∗λTλ = Ts(λ) for all λ ∈ E∗,

(iv) For v ∈ E0, n ∈ N,
∑
{TλT ∗λ |, λ ∈ En, r(λ) = v} = Tv .

(Assuming E is row-finite with no sources.)

Exercise: C∗{Tλ} = span{TλT ∗ν | s(λ) = s(ν)}
Denote C∗(E) = C∗{tλ}, where {tλ} is a universal C-K system.
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• Coburn’s Theorem (‘67): e
f

C∗{Tλ} ∼= T

• Cuntz (‘77):

(n loops)

C∗(Tλ) ∼= On
Cuntz algebras

• Cuntz-Krieger (‘80): Uniqueness theorem for Cuntz-Krieger
algebras OA.

• A cycle:

v1

v2

E
v3

e3,1

e2,3

e1,2

φ : C∗(E) → M3(C)

tvi 7→ εii

tei,j 7→ εji

is not injective.
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Cuntz-Krieger Uniqueness Theorem:
(Kumjian-Pask-Raeburn-Fowler, et. al. (‘90’s))
If every cycle in E has an entry (L), and φ is nondegenerate
then φ is injective.

Theorem Szymański (2001), Nagy-R (2010):
Condition (L) can be replaced with a condition on the spectrum
of φ(tλ) where the λ are the cycles without entry.

Cycles without entry reveal lack of aperiodicity in the infinite
path space of the graph. Let us now expand our view to higher
rank graphs.
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Let k ∈ N+. We regard Nk as a category with a single object, 0,
and with composition of morphisms given by addition.

A k -graph is a countable category Λ along with a “degree”
functor d : Λ→ Nk satisfying the unique factorization property:

For all λ ∈ Λ, and m, n ∈ Nk , if d(λ) = m + n then there are
unique µ ∈ d−1{m} and ν ∈ d−1{n} such that λ = µν.

Remarks:
I Think of elements of degree εi as edges of color i .
I If d(α) = εi , d(β) = εj and s(α) = r(β), there there are

unique α′, β′ with d(α′) = εj and d(β) = εi s.t. αβ = α′β′.
I These “commuting squares” determine all factorization

rules of the k -graph.
I C∗(Λ) is defined by associating to each λ ∈ Λ a partial

isometry tλ, in accordance with the Cuntz-Krieger relations.
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Example

:

eb

fb

gb

hb

er

fr

gr

hr

αb

βb

αr

βr

Commutation rules:

ebαr = erαb ebβr = erβb

βbgr = βr gb βbhr = βr hb

αbfr = αr fb fbfr = fr fb
gbgr = gr gb gbhr = hr gb

hbgr = gr hb hbhr = hr hb
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Aperiodicity – defined via the infinite path space Λ∞

Λ∞ = {degree-preserving covariant functors Ωk → Λ}

k = 1 picture e0 e1 e2 e3
x(1,3) = e1e2
d(e1e2) = 2

k = 2 picture

r(α)

s(α) x((1,2), (3,3)) = α

d(α) = (2,1)

A path x ∈ Λ∞ is eventually periodic if there are α 6= β in Λ and
y ∈ Λ∞ such that x = αy = βy ; otherwise x is aperiodic.
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Λ is aperiodic if every vertex is the range of an aperiodic path.
• Uniqueness theorems of Raeburn-Sims-Yeend and
Kumjian-Pask assume aperiodicity of the k -graph.

Theorem Nagy-R (2010), Nagy-Brown-R (2013)
A ∗-homomorphism φ : C∗(Λ)→ A is injective iff it is injective
on the subalgebra M := C∗(tαt∗δ | ∀γ ∈ Λ∞ αγ = δγ}.
Example:

eb

fb

er

fr

αb

αr

Commutation rules:

ebαr = erαb αbfr = αr fb
fbfr = fr fb eber = er eb

Letting α = ebαβ, δ = erαβ, we
have αγ = δγ for all γ ∈ Λ∞.
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A groupoid is a small category G in which every element has
an inverse. A topological groupoid is one in which multiplication
and inversion are continuous. It is étale if the range and source
are local homeomorphisms.

• C∗(G) is defined to be a completion of Cc(G).
• C∗r (G) is the image of C∗(G) under the direct sum of the left
regular representations.
• G(0) = {gg−1 |g ∈ G}, the unit space of G.
• Iso(G) := {g ∈ G | r(g) = s(g)}, the isotropy subgroupoid of G.

Theorem (Brown-Nagy-R-Sims-Williams, 2014)
Let G be a locally compact, amenable, Hausdorff, étale
groupoid. If φ : C∗(G)→ A is a C∗-homomorphism, then the
following are equivalent.

(i) φ is injective.
(ii) φ is injective on C∗((Iso(G))◦).
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Groupoid of a k -graph
To a k -graph Λ, we associate the groupoid

GΛ = {(αy ,d , βy) | y ∈ Λ∞, α, β ∈ Λ, d = dΛ(β)− dΛ(α)}

s(x ,d , y) = y = r(y ,d ′, z) (x ,d , y)−1 = (y ,−d , x)

(x ,d , y)(y ,d ′,w) = (x ,d + d ′,w)

• The cylinder sets Z (α, β) = {(αy ,d , βy)} form a basis for a
locally compact, amenable, Hausdorff, étale topology.

• The map tαt∗β 7→ χZ (α,β) implements an iso C∗(Λ) ∼= C∗(GΛ),
which restricts to C∗(tαt∗β | ∀γ ∈ Λ∞ αγ = βγ} ∼= C∗(Iso(GΛ)◦).
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Properties of the subalgebra
(Renault, ‘80) A masa C*-subalgebra B ⊆ A is Cartan if
(i) ∃ a faithful conditional expectation A → B,
(ii) The normalizer of B in A generates A, and
(iii) B contains an approximate unit of A.

Extension properties for pure states on masa B ⊂ A:

(UEP) Every pure state extends uniquely to A.

A Cartan subalgebra with the UEP is a Kumjian C∗-diagonal.

(AEP) Densely many pure states extend uniquely.

Thm (Nagy-R, 2011) When G is a directed graph,M⊆ C∗(G)
is Cartan and satisfies AEP; i.e, it is a pseudo-diagonal.
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Thm (BNRSW, 2015) Let G be a Hausdorff, étale groupoid. Let
M = C∗(Iso(G)◦).
(a) If (Iso(G))◦ is closed and amenable, then the restriction

map f 7→ f |Iso(G)◦ extends to a faithful conditional
expectation E : C∗(G)→M.

(b) If (Iso(G))◦ is not closed, then there is no conditional
expectation onto the subalgebra.

(c) If (Iso(G))◦ is abelian and either (i) it is also closed, or (ii)
there exists a continuous 1-cocycle c : G → H (countable
discrete abelian group) s.t. ∀x ∈ G(0) cGx

x
is injective, then

Mr is masa.
Cor (BNRSW, 2015; Yang, 2014)
M is always a masa in C∗(Λ), Λ a k -graph.
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Example of 2-graph C∗-algebras with (Iso(G))◦ not closed, and
henceM not Cartan (no cond. exp.).

eb

fb

gb

hb

er

fr

gr

hr

αb

βb

αr

βr

Commutation rules:

ebαr = erαb ebβr = erβb

βbgr = βr gb βbhr = βr hb,

gbgr = gr gb gbhr = hr gb,

hbgr = gr hb hbhr = hr hb

αbfr = αr fb fbfr = fr fb

The element
(er (eber )∞, (1,−1),eb(eber )∞) ∈ Iso(G)◦ \ Iso(G)◦.
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Abstract Uniqueness Theorem (Brown-Nagy-R)
Let A be a C*-algebra and M ⊂ A a C∗-subalgebra. Suppose
there is a set S of pure states on M satisfying

(i) each ψ ∈ S extends uniquely to a state ψ̃ on A, and
(ii) the direct sum ⊕ψ∈Sπψ̃ of the GNS representations

associated to the extensions to A of elements in S is
faithful on A.

Then a ∗-homomorphism Φ : A→ B is injective iff Φ|M is
injective.

Our proof of the main theorem applies the AUT to the set S of
pure states of C∗r (Iso(G)◦) that factor through some C∗r (Gu

u ) with
Gu

u = Iso(G)◦u (where Gu
u = Iso(G) ∩ r−1(u)).
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Thank you!

A somewhat arbitrary bibliography follows.

Sarah Reznikoff The faithful subalgebra



Introduction
k -graphs

Groupoids

Basics
k -graph groupoids
Results

A. an Huef and I. Raeburn, The ideal structure of
Cuntz-Krieger algebras, Ergodic Theory Dynam. Systems
17 (1997), 611–624.

J.H. Brown, G. Nagy, and S. Reznikoff, A generalized
Cuntz-Krieger uniqueness theorem for higher-rank graphs,
J. Funct. Anal. (2013).

J.H. Brown, G. Nagy, S. Reznikoff, A. Sims, and
D. Williams, Cartan subalgebras of groupoid C∗-algebras

K.R. Davidson, S.C. Power, and D. Yang, Dilation theory for
rank 2 graph algebras, J. Operator Theory.

D. G. Evans and A. Sims, When is the Cuntz-Krieger
algebra of a higher-rank graph approximately
finite-dimensional?, J. Funct. Anal. 263 (2012), no. 1,
183–215.

Sarah Reznikoff The faithful subalgebra



Introduction
k -graphs

Groupoids

Basics
k -graph groupoids
Results

P. Goldstein, On graph C*-algebras, J. Austral. Math. Soc.
72 (2002), 153–160

A. Kumjian and D. Pask, Higher rank graph C*-algebras,
New York J. Math. 6 (2000), 1–20.

A. Kumjian, D. Pask, and I. Raeburn, Cuntz-Krieger
algebras of directed graphs, Pacific J. Math. 184 (1998)
161–174.

A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs,
groupoids and Cuntz-Krieger algebras, J. Funct. Anal. 144
(1997), 505–541.

Sarah Reznikoff The faithful subalgebra



Introduction
k -graphs

Groupoids

Basics
k -graph groupoids
Results

G. Nagy and S. Reznikoff, Abelian core of graph algebras,
J. Lond. Math. Soc. (2) 85 (2012), no. 3, 889–908.

G. Nagy and S. Reznikoff, Pseudo-diagonals and
uniqueness theorems, (2013), to appear in Proc. AMS.

D. Pask, I. Raeburn, M. Rørdam, A. Sims, Rank-two
graphs whose C*-algebras are direct limits of circle
algebras, J. Functional Anal. 144 (2006), 137–178.

I. Raeburn, A. Sims and T. Yeend, Higher-rank graphs and
their C*-algebras, Proc. Edin. Math. Soc. 46 (2003) 99–115.

N. Phillips, emphCrossed products of the Cantor set by free
minimal actions of Zd , Comm. Math. Phys., 256 (2005),
1–42.

Sarah Reznikoff The faithful subalgebra



Introduction
k -graphs

Groupoids

Basics
k -graph groupoids
Results

A. Sims, Gauge-invariant ideals in the C*-algebras of
finitely aligned higher-rank graphs, Canad. J. Math. 58
(2006), no. 6, 1268–1290.

J. Spielberg, Graph-based models for Kirchberg algebras,
J. Operator Theory 57 (2007), 347–374.

W. Szymański, General Cuntz-Krieger uniqueness
theorem, Internat. J. Math. 13 (2002) 549–555.

D. Yang, Periodic higher rank graphs revisited,
arXiv:1403.6848 (2014).

T. Yeend, Groupoid models for the C*-algebras of
topological higher-rank graphs, J. Operator Theory 57:1
(2007), 96–120

Sarah Reznikoff The faithful subalgebra


	Introduction
	Overview
	Cuntz-Krieger systems
	Classic results

	k-graphs
	Definition
	Example
	Aperiodicity

	Groupoids
	Basics
	k-graph groupoids
	Results


