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Subfactors: inclusions of von Neumann algebras with trivial center.

Theorem ([Jon83])

{index} = {4 cos2
π

n
, n = 3, 4, · · · } ∪ [4,∞].

Fact (Invariants of subfactors)

Standard Invariant ⇒ Principal Graph ⇒ Index

Theorem ([Pop94])

The standard invariant is a complete invariant of strongly amenable
subfactors of the hyperfinite factor of type II1.

Standard invariant → quantum symmetry
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A, D, E classification

Theorem (Jones, Ocneanu,...,90s)

The classification of subfactors with index less 4:

An, one

D2n, one

E6, a complex conjugate pair.

E8, a complex conjugate pair.
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Axiomatizations of the standard invariants

Three axiomatizations:

(1) Ocneanu’s paragroup [Ocn88]

(2) Popa’s standard λ-lattices [Pop95]

(3) Jones’ subfactor planar algebras [Jon98]
A mysterious condition: 360◦ rotation invariance appeared in (1), (3)
but not in (2).

Theorem

Positivity + Flatness =⇒ Rotation invariance
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Skein theory

Skein theory: presenting subfactor planar algebras by generators and
(algebraic and topological) relations.
The Temperley-Lieb-Jones planar algebra has no generators nor
relations.
Three fundamental problems:

Evaluation
Consistency
Positivity
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BMW

Example (BMW [BW89, Mur87])

The Birman-Murakami-Wenzl (BMW) algebra is a q, r -parameterized
(unshaded, unoriented) planar algebra generated by (the universal R matrix)

with the following relations:

Reidemester move I: = r ; = r−1

Reidemester move II: =

Reidemester move III: =

BMW relation: − = (q − q−1)( − )
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Universal skein theory

Universal skein theory: a presentation for any subfactor planar algebra
(given principal graphs)

Theorem

Evaluation, consistency and positivity can be proved by solving polynomial
equations.

Theorem

Connections ↔ λ lattices ↔ pre subfactor planar algebras
Flatness ↔ standard ↔ vertical isotopy

Pre subfactor planar algebras: subfactor planar algebras without vertical
isotopy
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Prove the flatness by UST

step 1: connection is solved in an efficient way

step 1.5: connection → λ lattice → pre-subfactor planar algebra

step 2: prove/disprove the flatness

The pre-subfactor planar algebra provides new methods to prove the
flatness, such as a good choice of the generator, extra skein relations and
the positivity.

Remark

The positivity does NOT rely on the flatness. Instead, it is a powerful tool
to prove the flatness and something more interesting.
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A, D, E classification by UST

We have an independent classification and construction of subfactors with
index less than 4, i.e. An, D2n, E6, E8.

Furthermore, by the universal skein theory, we can construct “D2n−1
subfactors”.
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Another skein theory

The universal skein theory is efficient to construct small index subfactors,
but not for large index ones. Moreover, one need to know the principal
graph to apply the universal skein theory. We need a different type of skein
theory to construct subfactors with large index without knowing the
principal graph. That is the Yang-Baxter relation motivated by the
Yang-Baxter equation.
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Proposition (Basis for 2,3-boxes)

P2,+ = spanC

{
, , R

}

P3,+ = spanC
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RR ∼

R

R
R modulo lower terms 15 = 16−1
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Based on former work joint with Bisch and Jones, [BJ97, BJ03, BJL]

Theorem ([Liu])

Any unshaded subfactor planar algebra P generated by P2 and
dim(P3) ≤ 15 is one of the following:

(1) Bisch-Jones;

(2) BMW;

(3) EN+2.

Remark

Case (1) is a limit of case (2).
In case (3), EN+2 is a complex conjugate pair.
The generator is self-contragredient in case (1) and (2), but not in case (3).
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E Series

Definition (Generator and relations)

Let P be the unshaded q-parameterized planar algebra generated by

R = RR which satisfies RR = −i RR and the Yang-Baxter relation:

R = 0;

R

R
= − 1

δ
;

R
RR =

i

δ2
( R +

R
+ R )− 1

δ2
(

R
+ R + R ) + i

R

R
R .

where δ =
i(q + q−1)

q − q−1
.
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Algebraic presentation

α =
q − q−1

2
− i

q − q−1

2
+

q + q−1

2
RR ;

h =

αi − α−1i = (q − q−1)αi

αiαj = αjαi , ∀ |i − j | ≥ 2

αiαi+1αi = αi+1αiαi+1

h2
i =

i(q + q−1)

q − q−1
hi

hihj = hjhi , ∀ |i − j | ≥ 2

hihi±1hi = hi±1hihi±1

αihi = hiαi = qhi

αihj = hjαi ∀ |i − j | ≥ 2
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αiαi+1hi = hi+1αiαi+1 = ihi+1hi

hiαi+1αi = αi+1αihi+1 = −ihihi+1

αihi±1α
−1
i±1 = α−1i±1hiαi±1

hihi±1αi = hiα
−1
i±1

αihi±1hi = αi±1hi

hiαi±1hi = iq−1hi

where α−1i = αi − q − q−1
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Properties

When q = e
iπ

2N+2 , we have the subfactor EN+2.

Principal graph

Trace formula

D2(N+1) symmetry (more subfactors are obtained)

Quotients (more unitary fusion categories are obtained)
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Trace formula

Over the field C(q), the principal graph of P is Young’s lattice.

Theorem ([Liu])

< λ >=
∏
c∈λ

i(qh(c) + q−h(c))

qh(c) − q−h(c)
,

where h(c) is the hook length of the cell c in the Young diagram λ.

Remark

< λ >=
∏
c∈λ

cot(h(c)θ), when q = e iθ,

in particular
δ = cot θ
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Principal graphs

Theorem ([Liu])

When q = e
iπ

2N+2 , the principal graph YL(N) of the quotient EN+2 is the
sublattice of the Young lattice consisting of Young diagrams whose (1, 1)
cell has hook length at most N.

Example ([LMP, Liu])

YL(3) = .
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Dihedral symmetry

Proposition ([Sut02, Liu])

Aut(YL(N)) = D2(N+1).

The Z2 symmetry is from a Z2 automorphism of EN+2 by mapping R to
−R. It reflects the Young diagrams by the diagonal.
The ZN+1 symmetry is from invertible objects of EN+2.
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Z2 symmetry

Principal graphs of EN+2, N = 2, 3, 4 · · · :

· · · .

Principal graphs of the Z2 fixed point algebras:

· · ·
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ZN+1 symmetry

For any odd order subgroup A of ZN+1, there is a A fixed Young diagram λ.

Moreover, we have a subfactor with index <λ>2

|A| .
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Quantum subgroups

There are two grading operators
Jones projection: e in P2

Antisymmetrizer: g in PN

Modulo e: EN+2

Modulo g : SU(N)N+2 ⊂ SU(N(N + 1)/2)1

Modulo e ⊗ g : SU(N + 2)N ⊂ SU((N + 2)(N + 1)/2)1
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Branching Rule

Example (SU(3)5, [Xu98, Ocn00, Liu] · · · )

e e

e2

e3

e4

e5

e 2

e 3

e 4e 5

e⊗6 = ∅
[1]⊗ e = e ⊗ [1]

[1]⊗ [1] = e ⊕ ([1]⊗ e⊗2)⊕ ([1]⊗ e⊗5)
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3D TQFT

Turaev-Viro model [TV92]: unitary fusion category → 3D TQFT

P(q)/e⊗k ⊗ g⊗l →?

RR = ω RR

O(N), ω = 1

Sp(2N), ω = −1

P(q), ω = ±i
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Construction

To construct the sequence of subfactor planar algebras EN+2, we overcome
the three fundamental problems in skein theory:

Problem (and Solution)

Generator Relations (Classification)

Evaluation (Yang-Baxter relation)

Consistency (Kauffman’s argument + HOMFLY-PT invariant)

Positivity (Universal skein theory)

Constructing Matrix units
(Matrix units of Hecke algebras + Basic construction)
Computing the trace formula
(q-Murphy operator + calculations)
Taking the quotient
(String algebras + Wenzl’s formula)
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Thank you!
Paper is available on arXiv:

http://arxiv.org/abs/1507.06030
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