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Abstract. We give a short proof of a result of T. Bates and T. Giordano stating that any
uniformly bounded Borel cocycle into a finite von Neumann algebra is cohomologous to a
unitary cocycle [3]. We also point out a separability issue in their proof. Our approach is based
on the existence of a non-positive curvature metric on the positive cone of a finite von Neumann
algebra.

1. Statement of the main result

Let Γ be a discrete countable group acting on a standard probability space (S, µ) with µ being
quasi-invariant and ergodic. Let M be a von Neumann algebra and denote by GL(M) its
invertible group, equipped with strong operator topology. A Borel map α : Γ× S → GL(M) is
called a cocycle if for any g, h ∈ Γ, for almost all s ∈ S,

α(gh, s) = α(g, hs)α(h, s).

A cocycle is said uniformly bounded if there exists c > 0 such that for any g ∈ Γ, for almost
all s ∈ S, ‖α(g, s)‖ ≤ c. Two cocyles α, β : Γ× S → GL(M) are cohomologous if there exists a
Borel map φ : S → GL(M) such that for all h ∈ Γ and almost all s ∈ S,

β(h, s) = φ(hs)α(h, s)φ(s)−1.

In this note, we give a new proof of the following result due to T. Bates & T. Giordano, this
Theorem generalizes results of both F.-H. Vasilescu & L. Zsidó [6] and R. J. Zimmer [7].

Theorem ([3], Theorem 3.3). Let Γ be a discrete countable group acting on (S, µ) standard
Borel space with probability measure µ which is quasi-invariant and ergodic and M be a finite
von Neumann algebra with separable predual. Let α : Γ× S → GL(M) be a uniformly bounded
Borel cocycle. Then α is cohomologous to a cocycle valued in the unitary group of M.

Their approach is based on adapting the Ryll-Nardzewski fixed point theorem. However it
seems that there is a gap in the argument, and we were not able to determine to what extend
this gap was fillable, see the Remark below. Our approach takes a different road, though; it is
based on a more geometric property of finite von Neumann algebras, in the spirit of [5].

Acknowledgment. We are grateful to Thierry Giordano for interesting discussions on this
paper, and particularly on the Remark below.

2. Circumcenter and non-positive curvature

Let (X, d) be a metric space and B ⊂ X a non-empty bounded subset of X. The circumradius
of B is the real number

r(B) := inf
x∈X

sup
y∈B

d(x, y).

A point x ∈ X is called a circumcenter of B if the closed ball centered at x and with radius
r = r(B) contains B. Note that, in general, a circumcenter does not always exist and is not
necessarily unique.
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A geodesic metric space (X, d) is called a CAT(0)-space if it satisfies the semi-parallelogram
law: for any x1, x2 ∈ X, there exists z ∈ X such that for all x ∈ X,

d(x1, x2)2 + 4d(z, x)2 ≤ 2d(x1, x)2 + 2d(x2, x)2.

In a complete CAT(0)-space, every non-empty bounded subset always admits a unique circum-
center, see for instance [4, Theorem VI.4.2]. Of course it is not always the case that a subset
contains its circumcenter, but its closed convex hull does.

The important point for us is that the set of positive elements in a finite von Neumann algebra
can be endowed with a metric satisfying the semi-parallelogram law, see [2]. Let M be a finite
von Neumann algebra with finite trace τ . For x ∈ M, its L2-norm is denoted by ‖x‖2 :=

τ(x∗x)1/2. Denote by GL(M)+ the set of positive invertible elements. For a, b ∈ GL(M)+, set

d(a, b) := ‖ ln(a−1/2ba−1/2)‖2.
This defines a metric on GL(M)+. Here are the main features of this metric; for more details
we refer to [5] and the references therein.

(i) For any g ∈ GL(M), d(a, b) = d(g∗ag, g∗bg);
(ii) The metric d satisfies the semi-parallelogram law;

(iii) For all c > 1, the metric d is equivalent to ‖ · ‖2 on the set

GL(M)c := {x ∈ GL(M)+ , c
−1 ≤ x ≤ c}.

In fact, for all c > 1, the space (GL(M)c, d) is a (geodesic) CAT(0)-space, which is
bounded, complete and separable (this is not the case of GL(M)+).

Consequently, for all c > 1, every non-empty subset B ⊂ GL(M)c admits a unique circumcenter,
which lies in GL(M)c.

3. Proof of the Theorem

For each s ∈ S, denote Bs = {α(g, s)∗α(g, s), g ∈ Γ}. Since α is a uniformly bounded cocycle,
there exists c > 1 and a conull Borel set S0 ⊂ S such that for all s ∈ S0 and all h ∈ Γ,

Bs ⊂ GL(M)c and α(h, s)∗Bhsα(h, s) = Bs.

For every s ∈ S0, denote by γ(s) ∈ GL(M)c the unique circumcenter of Bs. By uniqueness,
property (i) above implies:

α(h, s)∗γ(hs)α(h, s) = γ(s), for all s ∈ S0.

We claim that the map s ∈ S 7→ γ(s)1/2 ∈ M (with γ arbitrarily defined on S \ S0) almost
surely coincides with a Borel map ϕ. After we prove this claim, we will get that the Borel map

β : (h, s) ∈ Γ× S 7−→ ϕ(hs)α(h, s)ϕ(s)−1 ∈ GL(M)

is a unitary cocycle cohomologous to α, giving the theorem.

To prove the claim we follow the argument in [1, Lemma 3.18]. As the cocycle α is a Borel map
and Γ is countable, for all v ∈ GL(M)c, the map

s ∈ S 7−→ r(v,Bs) := sup
g∈Γ

d(v, α(g, s)∗α(g, s))

is Borel. By continuity of the maps v 7→ r(v,Bs), s ∈ S, and separability (iii) of GL(M)c, we
deduce that the map

s ∈ S 7−→ inf
v∈GL(M)c

r(v,Bs) = r(Bs)

coincides with an infimum over a countable subset of GL(M)c, and hence is Borel. For n ≥ 1,
the following set Dn is a Borel bundle over S:

Dn = {(s, v) ∈ S ×GL(M)c : r(v,Bs)
2 ≤ r(Bs)

2 + n−1}.
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By [8, Theorem A.9], there exist Borel maps ξn : S → GL(M)c such that (s, ξn(s)) ∈ Dn, for
all s in some conull subset S1 ⊂ S. For all s ∈ S0 ∩ S1, the semi-parallelogram law implies that
the sequence (ξn(s))n converges to γ(s). More precisely, for all fixed n, with x1 = γ(s) and
x2 = ξn(s), there exists z ∈ GL(M)c such that for all x ∈ Bs,

d(x1, x2)2 + 4d(z, x)2 ≤ 2d(x1, x)2 + 2d(x2, x)2.

Taking the supremum over x ∈ Bs we get,

d(γ(s), ξn(s))2 + 4r(z,Bs)
2 ≤ 2r(γ(s), Bs)

2 + 2r(ξn(s), Bs)
2 ≤ 4r(Bs)

2 + 2n−1.

Since r(z,Bs) ≥ r(Bs), this readily gives the desired convergence. Therefore γ almost surely
coincides with the Borel map limn ξn, which finishes the proof.

Remark. We point out a gap in the proof of the main result by T. Bates and T. Giordano [3,
Theorem 3.3]. With the notations of that proof, at the bottom of p. 747, it is not clear why
a countable cover of X should exist. For instance, in the case where M is the trivial algebra

M = C, then M̃C and Bε are simply balls (in the ‖ · ‖∞-morm) inside M̃ = L∞(S), of radii
C and ε, respectively. Of course, there exists a ultraweakly dense sequence (φn)n of X, but Bε

has empty interior (for the ultraweak topology) inside L∞(S), so (φn + Bε)n has a priori no
reason to cover X.
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