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NEUMANN ALGEBRAS
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ABSTRACT. We give a short proof of a result of T. Bates and T. Giordano stating that any
uniformly bounded Borel cocycle into a finite von Neumann algebra is cohomologous to a
unitary cocycle [3]. We also point out a separability issue in their proof. Our approach is based
on the existence of a non-positive curvature metric on the positive cone of a finite von Neumann
algebra.

1. STATEMENT OF THE MAIN RESULT

Let ' be a discrete countable group acting on a standard probability space (.S, u) with p being
quasi-invariant and ergodic. Let M be a von Neumann algebra and denote by GL(M) its
invertible group, equipped with strong operator topology. A Borel map o : I' x S — GL(M) is
called a cocycle if for any g, h € ', for almost all s € S,

a(gh, s) = a(g, hs)a(h, s).

A cocycle is said uniformly bounded if there exists ¢ > 0 such that for any g € I', for almost
all s € S, |la(g, s)|| < ¢. Two cocyles o, B : T' x S — GL(M) are cohomologous if there exists a
Borel map ¢ : S — GL(M) such that for all h € I" and almost all s € S,

B(h,s) = ¢(hs)a(h, s)o(s) .

In this note, we give a new proof of the following result due to T. Bates & T. Giordano, this
Theorem generalizes results of both F.-H. Vasilescu & L. Zsidé [6] and R. J. Zimmer [7].

Theorem ([3], Theorem 3.3). Let I' be a discrete countable group acting on (S,u) standard
Borel space with probability measure u which is quasi-invariant and ergodic and M be a finite
von Neumann algebra with separable predual. Let o : T' x S — GL(M) be a uniformly bounded
Borel cocycle. Then « is cohomologous to a cocycle valued in the unitary group of M.

Their approach is based on adapting the Ryll-Nardzewski fixed point theorem. However it
seems that there is a gap in the argument, and we were not able to determine to what extend
this gap was fillable, see the Remark below. Our approach takes a different road, though; it is
based on a more geometric property of finite von Neumann algebras, in the spirit of [5].

Acknowledgment. We are grateful to Thierry Giordano for interesting discussions on this
paper, and particularly on the Remark below.

2. CIRCUMCENTER AND NON-POSITIVE CURVATURE

Let (X, d) be a metric space and B C X a non-empty bounded subset of X. The circumradius
of B is the real number
r(B) := inf supd(z,y).
zeX yeB
A point x € X is called a circumcenter of B if the closed ball centered at x and with radius
r = r(B) contains B. Note that, in general, a circumcenter does not always exist and is not

necessarily unique.
1



2 R. BOUTONNET AND J. ROYDOR

A geodesic metric space (X,d) is called a CAT(0)-space if it satisfies the semi-parallelogram
law: for any x1,x9 € X, there exists z € X such that for all z € X,

d(zy,22)? + 4d(z, )% < 2d(x1, )* + 2d(x2, T)*.

In a complete CAT(0)-space, every non-empty bounded subset always admits a unique circum-
center, see for instance [4, Theorem VI.4.2]. Of course it is not always the case that a subset
contains its circumcenter, but its closed convex hull does.

The important point for us is that the set of positive elements in a finite von Neumann algebra

can be endowed with a metric satisfying the semi-parallelogram law, see [2]. Let M be a finite

von Neumann algebra with finite trace 7. For x € M, its Ly-norm is denoted by ||z|]2 :=

7(x*x)'/2. Denote by GL(M)4 the set of positive invertible elements. For a,b € GL(M), set
d(a,b) := | In(a™"/?ba"/?)]|,.

This defines a metric on GL(M)y. Here are the main features of this metric; for more details

we refer to [5] and the references therein.

(i) For any g € GL(M), d(a,b) = d(g"ag, g"bg);
(ii) The metric d satisfies the semi-parallelogram law;
(iii) For all ¢ > 1, the metric d is equivalent to || - |2 on the set

GL(M),:={x € GLM),,c ' <z <}
In fact, for all ¢ > 1, the space (GL(M).,d) is a (geodesic) CAT(0)-space, which is
bounded, complete and separable (this is not the case of GL(M)4).

Consequently, for all ¢ > 1, every non-empty subset B C GL(M). admits a unique circumcenter,
which lies in GL(M)..

3. PROOF OF THE THEOREM

For each s € S, denote Bs = {a(g,s)*a(g,s), g € I'}. Since a is a uniformly bounded cocycle,
there exists ¢ > 1 and a conull Borel set Sy C S such that for all s € Sy and all h € T,

Bs C GL(M). and a(h, s)*Bpsa(h, s) = Bs.
For every s € Sy, denote by v(s) € GL(M), the unique circumcenter of Bs. By uniqueness,
property (i) above implies:

alh, s)*y(hs)a(h,s) =~(s), forall s € Sp.

We claim that the map s € S — (s)/2 € M (with ~ arbitrarily defined on S\ Sp) almost
surely coincides with a Borel map (. After we prove this claim, we will get that the Borel map

B:(h,s) €T xS — p(hs)a(h,s)p(s)™t € GL(M)
is a unitary cocycle cohomologous to «, giving the theorem.

To prove the claim we follow the argument in [I, Lemma 3.18]. As the cocycle « is a Borel map
and T is countable, for all v € GL(M),, the map

s €S+ r(v,Bs) :=supd(v,alg,s)*alg,s))
gel
is Borel. By continuity of the maps v — r(v, Bs), s € S, and separability (iii) of GL(M)., we
deduce that the map
se€e S+ inf r(v,Bs) =r(Bs)
vEGL(M),

coincides with an infimum over a countable subset of GL(M)., and hence is Borel. For n > 1,
the following set D,, is a Borel bundle over S:

D, ={(s,v) € S x GL(M). : r(v,Bs)* <r(Bs)* +n~ '}
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By [8, Theorem A.9], there exist Borel maps &, : S — GL(M). such that (s,&,(s)) € Dy, for
all s in some conull subset S; C S. For all s € S5yN Sy, the semi-parallelogram law implies that
the sequence (&,(s)), converges to y(s). More precisely, for all fixed n, with ;1 = 7(s) and
x2 = &n(s), there exists z € GL(M), such that for all z € B,

d(x1, )% + 4d(z, )% < 2d(x1, )% + 2d(z2, z)°.
Taking the supremum over z € Bs we get,
d(y(s),€n(8))? + 4r(z, Bs)? < 2r(y(s), Bs)? + 2r(€n(s), Bs)? < 4r(B,)* + 2n~ 1.

Since r(z, Bs) > r(Bs), this readily gives the desired convergence. Therefore v almost surely
coincides with the Borel map lim,, &,, which finishes the proof.

Remark. We point out a gap in the proof of the main result by T. Bates and T. Giordano [3],
Theorem 3.3]. With the notations of that proof, at the bottom of p. 747, it is not clear why
a countable cover of X should exist. For instance, in the case where M is the trivial algebra
M = C, then M and Bc are simply balls (in the || - ||oo-morm) inside M = L*°(S), of radii
C and ¢, respectively. Of course, there exists a ultraweakly dense sequence (), of X, but B,
has empty interior (for the ultraweak topology) inside L*°(S), so (¢, + B:), has a priori no
reason to cover X.
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