A NOTE ON UNIFORMLY BOUNDED COCYCLES INTO FINITE VON NEUMANN ALGEBRAS

R. BOUTONNET AND J. ROYDOR

ABSTRACT. We give a short proof of a result of T. Bates and T. Giordano stating that any uniformly bounded Borel cocycle into a finite von Neumann algebra is cohomologous to a unitary cocycle [3]. We also point out a separability issue in their proof. Our approach is based on the existence of a non-positive curvature metric on the positive cone of a finite von Neumann algebra.

1. STATEMENT OF THE MAIN RESULT

Let Γ be a discrete countable group acting on a standard probability space (S, μ) with μ being quasi-invariant and ergodic. Let \mathcal{M} be a von Neumann algebra and denote by $GL(\mathcal{M})$ its invertible group, equipped with strong operator topology. A Borel map $\alpha : \Gamma \times S \to GL(\mathcal{M})$ is called a cocycle if for any $g, h \in \Gamma$, for almost all $s \in S$,

$$\alpha(gh, s) = \alpha(g, hs)\alpha(h, s).$$

A cocycle is said uniformly bounded if there exists c > 0 such that for any $g \in \Gamma$, for almost all $s \in S$, $\|\alpha(g, s)\| \leq c$. Two cocycles $\alpha, \beta : \Gamma \times S \to GL(\mathcal{M})$ are cohomologous if there exists a Borel map $\phi : S \to GL(\mathcal{M})$ such that for all $h \in \Gamma$ and almost all $s \in S$,

$$\beta(h,s) = \phi(hs)\alpha(h,s)\phi(s)^{-1}.$$

In this note, we give a new proof of the following result due to T. Bates & T. Giordano, this Theorem generalizes results of both F.-H. Vasilescu & L. Zsidó [6] and R. J. Zimmer [7].

Theorem ([3], Theorem 3.3). Let Γ be a discrete countable group acting on (S, μ) standard Borel space with probability measure μ which is quasi-invariant and ergodic and \mathcal{M} be a finite von Neumann algebra with separable predual. Let $\alpha : \Gamma \times S \to GL(\mathcal{M})$ be a uniformly bounded Borel cocycle. Then α is cohomologous to a cocycle valued in the unitary group of \mathcal{M} .

Their approach is based on adapting the Ryll-Nardzewski fixed point theorem. However it seems that there is a gap in the argument, and we were not able to determine to what extend this gap was fillable, see the Remark below. Our approach takes a different road, though; it is based on a more geometric property of finite von Neumann algebras, in the spirit of [5].

Acknowledgment. We are grateful to Thierry Giordano for interesting discussions on this paper, and particularly on the Remark below.

2. CIRCUMCENTER AND NON-POSITIVE CURVATURE

Let (X, d) be a metric space and $B \subset X$ a non-empty bounded subset of X. The circumradius of B is the real number

$$r(B) := \inf_{x \in X} \sup_{y \in B} d(x, y).$$

A point $x \in X$ is called a *circumcenter* of B if the closed ball centered at x and with radius r = r(B) contains B. Note that, in general, a circumcenter does not always exist and is not necessarily unique.

A geodesic metric space (X, d) is called a CAT(0)-space if it satisfies the *semi-parallelogram* law: for any $x_1, x_2 \in X$, there exists $z \in X$ such that for all $x \in X$,

$$d(x_1, x_2)^2 + 4d(z, x)^2 \le 2d(x_1, x)^2 + 2d(x_2, x)^2$$

In a complete CAT(0)-space, every non-empty bounded subset always admits a unique circumcenter, see for instance [4, Theorem VI.4.2]. Of course it is not always the case that a subset contains its circumcenter, but its closed convex hull does.

The important point for us is that the set of positive elements in a finite von Neumann algebra can be endowed with a metric satisfying the semi-parallelogram law, see [2]. Let \mathcal{M} be a finite von Neumann algebra with finite trace τ . For $x \in \mathcal{M}$, its L_2 -norm is denoted by $||x||_2 :=$ $\tau(x^*x)^{1/2}$. Denote by $GL(\mathcal{M})_+$ the set of positive invertible elements. For $a, b \in GL(\mathcal{M})_+$, set

$$d(a,b) := \|\ln(a^{-1/2}ba^{-1/2})\|_2$$

This defines a metric on $GL(\mathcal{M})_+$. Here are the main features of this metric; for more details we refer to [5] and the references therein.

- (i) For any $g \in GL(\mathcal{M}), d(a, b) = d(g^*ag, g^*bg);$
- (ii) The metric d satisfies the semi-parallelogram law;
- (iii) For all c > 1, the metric d is equivalent to $\|\cdot\|_2$ on the set

$$GL(\mathcal{M})_c := \{ x \in GL(\mathcal{M})_+, \, c^{-1} \le x \le c \}.$$

In fact, for all c > 1, the space $(GL(\mathcal{M})_c, d)$ is a (geodesic) CAT(0)-space, which is bounded, complete and separable (this is not the case of $GL(\mathcal{M})_+$).

Consequently, for all c > 1, every non-empty subset $B \subset GL(\mathcal{M})_c$ admits a unique circumcenter, which lies in $GL(\mathcal{M})_c$.

3. Proof of the Theorem

For each $s \in S$, denote $B_s = \{\alpha(g, s)^* \alpha(g, s), g \in \Gamma\}$. Since α is a uniformly bounded cocycle, there exists c > 1 and a conull Borel set $S_0 \subset S$ such that for all $s \in S_0$ and all $h \in \Gamma$,

$$B_s \subset GL(\mathcal{M})_c$$
 and $\alpha(h,s)^* B_{hs} \alpha(h,s) = B_s$.

For every $s \in S_0$, denote by $\gamma(s) \in GL(\mathcal{M})_c$ the unique circumcenter of B_s . By uniqueness, property (i) above implies:

$$\alpha(h,s)^*\gamma(hs)\alpha(h,s) = \gamma(s), \text{ for all } s \in S_0.$$

We claim that the map $s \in S \mapsto \gamma(s)^{1/2} \in \mathcal{M}$ (with γ arbitrarily defined on $S \setminus S_0$) almost surely coincides with a Borel map φ . After we prove this claim, we will get that the Borel map

$$\beta: (h,s) \in \Gamma \times S \longmapsto \varphi(hs)\alpha(h,s)\varphi(s)^{-1} \in GL(\mathcal{M})$$

is a unitary cocycle cohomologous to α , giving the theorem.

To prove the claim we follow the argument in [1, Lemma 3.18]. As the cocycle α is a Borel map and Γ is countable, for all $v \in GL(\mathcal{M})_c$, the map

$$s \in S \longmapsto r(v, B_s) := \sup_{g \in \Gamma} d(v, \alpha(g, s)^* \alpha(g, s))$$

is Borel. By continuity of the maps $v \mapsto r(v, B_s)$, $s \in S$, and separability (iii) of $GL(\mathcal{M})_c$, we deduce that the map

$$s \in S \longmapsto \inf_{v \in GL(\mathcal{M})_c} r(v, B_s) = r(B_s)$$

coincides with an infimum over a countable subset of $GL(\mathcal{M})_c$, and hence is Borel. For $n \geq 1$, the following set D_n is a Borel bundle over S:

$$D_n = \{(s,v) \in S \times GL(\mathcal{M})_c : r(v,B_s)^2 \le r(B_s)^2 + n^{-1}\}.$$

By [8, Theorem A.9], there exist Borel maps $\xi_n : S \to GL(\mathcal{M})_c$ such that $(s, \xi_n(s)) \in D_n$, for all s in some conull subset $S_1 \subset S$. For all $s \in S_0 \cap S_1$, the semi-parallelogram law implies that the sequence $(\xi_n(s))_n$ converges to $\gamma(s)$. More precisely, for all fixed n, with $x_1 = \gamma(s)$ and $x_2 = \xi_n(s)$, there exists $z \in GL(\mathcal{M})_c$ such that for all $x \in B_s$,

$$d(x_1, x_2)^2 + 4d(z, x)^2 \le 2d(x_1, x)^2 + 2d(x_2, x)^2$$

Taking the supremum over $x \in B_s$ we get,

$$d(\gamma(s),\xi_n(s))^2 + 4r(z,B_s)^2 \le 2r(\gamma(s),B_s)^2 + 2r(\xi_n(s),B_s)^2 \le 4r(B_s)^2 + 2n^{-1}$$

Since $r(z, B_s) \ge r(B_s)$, this readily gives the desired convergence. Therefore γ almost surely coincides with the Borel map $\lim_n \xi_n$, which finishes the proof.

Remark. We point out a gap in the proof of the main result by T. Bates and T. Giordano [3, Theorem 3.3]. With the notations of that proof, at the bottom of p. 747, it is not clear why a countable cover of X should exist. For instance, in the case where \mathcal{M} is the trivial algebra $\mathcal{M} = \mathbb{C}$, then $\widetilde{\mathcal{M}}_C$ and B_{ε} are simply balls (in the $\|\cdot\|_{\infty}$ -morm) inside $\widetilde{\mathcal{M}} = L^{\infty}(S)$, of radii C and ε , respectively. Of course, there exists a ultraweakly dense sequence $(\phi_n)_n$ of X, but B_{ε} has empty interior (for the ultraweak topology) inside $L^{\infty}(S)$, so $(\phi_n + B_{\varepsilon})_n$ has a priori no reason to cover X.

References

- C. ANANTHARAMAN-DELAROCHE, Cohomology of property (T) groupoids and applications. Erg. Th. Dynam. Sys. 25 (2005), 977–1013.
- [2] E. ANDRUCHOW, G. LAROTONDA, Nonpositively curved metric in the positive cone of a finite von Neumann algebra. J. London Math. Soc. (2) 74 (2006), no. 1, 205–218.
- [3] T. BATES, T. GIORDANO, Bounded cocycles on finite von Neumann algebras. Internat. J. Math. 12 (2001), 743-750.
- [4] K. S. BROWN, Buildings. Springer-Verlag, New York, 1989.
- [5] M. MIGLIOLI, Unitarization of uniformly bounded subgroups in finite von Neumann algebras. Bull. Lond. Math. Soc. 46 (2014), 1264–1266.
- [6] F.-H. VASILESCU, L. ZSIDÓ, Uniformly bounded groups in finite W*-algebras. Acta Sci. Math. (Szeged) 36 (1974), 189–192.
- [7] R. J. ZIMMER, Compactness conditions on cocycles of ergodic transformation groups. J. London Math. Soc.
 (2) 15 (1977), no. 1, 155–163.
- [8] R. J. ZIMMER, Ergodic theory and semisimple groups. Monographs in Mathematics, 81. Birkhauser Verlag, Basel, 1984.