
HOMEWORK: LOCALLY COMPACT GROUPS AND LATTICES

1. Locally compact groups

The first exercise is not the easiest, but it gives many reassuring properties about lcsc groups.

Topological properties of lcsc groups. Let G be an lcsc group.

(1) Prove that G is para-compact, i.e. it is the union of countably many compact subsets. (Hint.
First prove that G admits a dense countable set (gn)n≥1. Then prove that for any compact
neighborhood K ⊂ G of the identity, G =

⋃
n gnK.) Does the converse hold true?

(2) Prove that there exists an increasing sequence of compact symmetric subsets (En)n∈Z of G such
that G =

⋃
nEn, En forms a basis of neighborhoods of the identity in G and EnEnEn ⊂ En+1

for all n ∈ Z.
(3) Prove that the function d : G×G→ R+ defined as follows is a distance on G:

d(x, y) = inf{t ∈ R+ | ∃n1, . . . , nk ∈ Z, ∃g1 ∈ En1 , . . . , gk ∈ Enk
such that

t = 2n1 + · · ·+ 2nk and y−1x = g1 · · · gk}.

Check that d is left invariant, in the sense that d(gx, gy) = d(x, y) for all g, x, y ∈ G.
(4) Prove that any ball B(g, r) := {h ∈ G | d(g, h) < r} is a neighborhood of g ∈ G.
(5) Conversely, prove that for any neighborhood U of g ∈ G, there exists r > 0 small enough so

that B(g, r) ⊂ U . (Hint. First reduce to the case where g = e and U = En for some n. Then
prove that B(e, 2n) ⊂ En. This last part is the most difficult). Conclude that the topology
of G coincides with that defined by d, and that the closed balls B(e,R) are compact for all
radius R > 0 (we say that d is proper).

In conclusion, any lcsc group G is metrizable, with a proper, G-invariant distance. Check that G is
complete for this distance.

Open subgroups. Prove that an open subgroup in a lcsc group is also closed.

Connected component of the identity. Let G be an lcsc group and denote by G0 the connected
component of the identity element in G. Prove that G0 is a closed normal subgroup of G. Is it always
open in G? And if G is a Lie group?

Prove that if G is a connected group then it has no proper closed subgroup of finite index (By definition
a subgroup H < G is said to have finite index if G can be covered with finitely many translates of H).

Haar measure. Check that the formulae for the Haar measures on P and on SL2(R) given in the
notes are correct.

Modular function. Check that if λ is a left Haar measure then A 7→ λ(A−1) is a right Haar measure.
Moreover, check the formula∫

G
f(x−1)dλ(x) =

∫
G

∆(x)f(x) dλ(x), for all f ∈ Cc(G).
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2. Lattices

Groups acting on trees. Let T be a tree, i.e. a graph with no cycle. V (T ) will denote its set of
vertices. We denote by G the group of all automorphisms of the tree. Consider the family of sets
Ug,F ⊂ G indexed by elements g ∈ G and finite subsets F ⊂ V (T ) and given by

Ug,F = {h ∈ G | g(x) = h(x), for all x ∈ F}.

(1) Prove that the family of sets Ug,F forms an open basis for a topology on G. This topology

coincides with the restriction to G of the product topology on V (T )V (T ) (where V (T ) is viewed
as a discrete set).

(2) Assume that every vertex of T has the same degree d < ∞. Prove that the stabilizer Gv of
any vertex v ∈ V (T ) is compact and open in G.

(3) Let Γ be a subgroup of G that acts transitively on V (T ) and such that Γ ∩ Gv is finite for
some (and hence any) v ∈ V (T ). Prove that Γ is a co-compact lattice in G.

SLd(Z) is a lattice. This exercise aims to provide a proof that Γ := SLd(Z) is a lattice inG := SLd(R).
Consider the following subgroups of G:

• K := SO(d);
• A < G the subgroup of diagonal matrices with positive diagonal entries (and determinant 1);
• N < G the subgroup of upper triangular matrices, with 1’s on the diagonal.

We denote by λK , λA and λN Haar measures on K, A and N , respectively.

Part I. Computation of the Haar measure on SLd(R).

(1) Prove the Iwasawa decomposition G = KAN : every element g ∈ G can be uniquely expressed
as the product g = kan of elements k ∈ K, a ∈ A and n ∈ N .

(2) Note that N is parametrized by d(d− 1)/2 real numbers. Namely, an element n is described
by its entries n1,2, n1,3, . . . , n1,d, . . . , nd−1,d. Prove that λN is given (up to a possible rescaling)
by the formula∫

N
f(n)dλN (n) =

∫
Rd(d−1)/2

f(n)dn1,2dn1,3 . . . dnd−1,d, for all f ∈ Cc(N).

Here dni,j denotes the Lebesgue measure with respect to the real variable ni,j .

(3) Denote by ρ : A→ R∗+ the homomorphism defined by the formula ρ(a) =
∏

i<j(a
−1
i aj), for all

a = diag(a1, . . . , ad). Check that∫
N
f(a−1na)dλN (n) = ρ(a)

∫
N
f(n)dλN (n), for all f ∈ Cc(N).

(4) Prove that a Haar measure on G is given by the formula∫
G
f(g)dλG(g) =

∫
K

∫
A

∫
N
f(kan)ρ(a)dλK(k)dλA(a)dλN (n), for all f ∈ Cc(G).

Hint. As an intermediate step, one may check that the push forward measure µ of a Haar
measure λG under the quotient map G → K\G is a right Haar measure on the group AN ,
after identifying K\G ' AN .

Part II. Finding a nice domain D ⊂ G such that G = DΓ.

(5) Consider a lattice ∆ ⊂ Rd admitting a basis v1, . . . , vd. Denote by w1, . . . , wd the orthogonal
family deduced from v1, . . . , vd by the Gramm-Schmidt orthogonalization process, that is, w1 =
v1 and wi+1 := PV ⊥i

(vi+1), where Vi = span(v1, . . . , vi) and PV ⊥i
is the orthogonal projection on

the orthogonal space V ⊥i . Check that the set F := {
∑d

i=1 λiwi | |λi| ≤ 1/2, for all 1 ≤ i ≤ d}
satisfies ∆ + F = Rd.
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(6) Prove that ∆ admits a basis v1, . . . , vd with the following properties. Setting w1, . . . , wd the
orthogonal family deduced from v1, . . . , vd by the Gramm-Schmidt orthogonalization process,
then for all i < d,

‖wi+1‖/‖wi‖ ≥
√

3/2, vi+1 = wi+1 +
∑
j≤i

λjwj , with each |λj | ≤ 1/2,

and ‖w1‖ . . . ‖wd‖ = d∆

(7) Deduce that every element of G can be written as a product g = dγ for some element γ ∈ Γ
and d ∈ D, where D is described in terms of the Iwasawa decomposition D = KA2/

√
3N1/2,

with
A2/
√

3 := {diag(a1, . . . , ad) ∈ A | ai/ai+1 ≤ 2/
√

3},
N1/2 := {n ∈ N | |ni,j | ≤ 1/2 for all i < j}.

Part III. Conclusion

(8) Prove that Γ is a lattice in G.


