Université de Bordeaux Licence de Sciences et Technologies 2016-2017

Devoir surveillé n°2

1er avril 2017, Durée 1h30 Documents non autorisés.

Exercice 1. Pour tout entier naturel non nul n, on note S_n le groupe des permutations de l'ensemble $\{1,\ldots,n\}$.

Dans S_4 , on considère l'ensemble H des permutations γ qui fixent 4, c'est-à-dire

$$H = \{ \gamma \in S_4 \mid \gamma(4) = 4 \}.$$

- 1. Montrer que H est un sous-groupe de S_4 .
- 2. Construire un isomorphisme de groupes entre H et S_3 .
- 3. Déterminer l'ordre de H et son indice dans S_4 .
- 4. Le sous-groupe H est-il distingué dans S_4 ? (justifiez votre réponse)
- 5. Montrer que deux éléments α et β de S_4 appartiennent à la même classe à gauche modulo H si et seulement si $\alpha(4) = \beta(4)$. En déduire un système de représentants des classes à gauche de S_4 modulo H.

Exercice 2. On considère, dans le groupe $GL_2(\mathbb{R})$ des matrices 2×2 réelles et inversibles, les sous-ensembles

$$H = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R} \text{ et } ac \neq 0 \right\} \text{ et } K = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, b \in \mathbb{R} \right\}.$$

Noter que K est inclus dans H.

- 1. Montrer que H et K sont des sous-groupes de $GL_2(\mathbb{R})$.
- 2. Montrer que K est distingué dans H. Est-il distingué dans $GL_2(\mathbb{R})$?

Exercice 3. Pour tout entier naturel non nul n, on note s_n la surjection canonique de \mathbb{Z} sur $\mathbb{Z}/n\mathbb{Z}$, qui à un entier k associe sa classe modulo n.

1. Montrer que l'application

$$f: \quad \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} \times \mathbb{Z}$$
$$(k,\ell) \longmapsto (2k+\ell,3k+\ell)$$

est un isomorphisme de groupes.

2. On note s l'application

$$s: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$$

 $(k,\ell) \longmapsto (s_4(k), s_6(\ell))$

- (a) Justifier que *s* est un morphisme de groupes.
- (b) Montrer que $\varphi = s \circ f$ est un morphisme surjectif.
- 3. Déterminer le noyau de φ [on pourra commencer par calculer $\varphi(2,0)$ et $\varphi(0,12)$].
- 4. En déduire un isomorphisme de groupes entre $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$ et $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$.