Factoring linear differential operators in positive characteristic JNCF 2023

Raphaël Pagès ${ }^{1}$
${ }^{1}$ INRIA - France
(Bordeaux, Paris-Saclay)

March 6, 2023

Algebra of differential operators

Object of study
Differential operators in $\mathbb{F}_{p}(x)\langle\partial\rangle=\left\{a_{n}(x) \partial^{n}+\cdots+a_{1}(x) \partial+a_{0}(x)\right\}$.

Algebra of differential operators

Object of study
Differential operators in $\mathbb{F}_{p}(x)\langle\partial\rangle=\left\{a_{n}(x) \partial^{n}+\cdots+a_{1}(x) \partial+a_{0}(x)\right\}$.

Commutation rule:

$$
\partial f=f \partial+f^{\prime} \quad f^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} x} f
$$

Derivation:

Algebra of differential operators

Object of study

Differential operators in $\mathbb{F}_{p}(x)\langle\partial\rangle=\left\{a_{n}(x) \partial^{n}+\cdots+a_{1}(x) \partial+a_{0}(x)\right\}$.

Commutation rule:

$$
\partial f=f \partial \partial+f^{\prime} \quad f^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} x} f
$$

Derivation:

Goal: Factor differential operators as a product of irreducible differential operators.

Algebra of differential operators

Object of study

Differential operators in $\mathbb{F}_{p}(x)\langle\partial\rangle=\left\{a_{n}(x) \partial^{n}+\cdots+a_{1}(x) \partial+a_{0}(x)\right\}$.

Commutation rule:

$$
\partial f=f \partial \partial+f^{\prime} \quad f^{\prime}=\frac{\mathrm{d}}{\mathrm{~d} x} f
$$

Goal: Factor differential operators as a product of irreducible differential operators.

Running example:
$\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2 \in \mathbb{F}_{3}(x)\langle\partial\rangle$

State of the art

- M. van der Put. Modular methods for factoring differential operators. Unpublished manuscript, 1997.
- M. Giesbrecht, Y. Zhang, Factoring and decomposing Ore polynomials over $\mathbb{F}_{p}(t)$, ISSAC 2003.
- T. Cluzeau, factorisation of differential systems in characteristic p, ISSAC 2003.
- X. Caruso, J. Le Borgne. A new faster algorithm for factoring skew polynomials over finite fields. JSC 2017.
- J. Gomez-Torrecillas, F. J. Lobillo, G. Navarro, Computing the bound of an Ore polynomial. Applications to factorisation, JSC 2019.

State of the art

Problem: For reducible divisors of $Q\left(x^{p}, \partial^{p}\right)$ with $Q \in \mathbb{F}_{p}[u, v]$.

State of the art

Problem: For reducible divisors of $Q\left(x^{p}, \partial^{p}\right)$ with $Q \in \mathbb{F}_{p}[u, v]$.

Lacks a way to factor central operators e.g ∂^{p}

State of the art

Problem: For reducible divisors of $Q\left(x^{p}, \partial^{p}\right)$ with $Q \in \mathbb{F}_{p}[u, v]$.

Lacks a way to factor central operators e.g ∂^{p}

Notation

$C:=\mathbb{F}_{p}\left(x^{p}\right)$ is the field of constants of $\mathbb{F}_{p}(x)$. $C\left[\partial^{p}\right]$ is the center of $\mathbb{F}_{p}(x)\langle\partial\rangle$.

Main tools

Classical (van der Put, Cluzeau)

Tool 1: p-curvature and first reduction

Main tools

Classical (van der Put, Cluzeau)
Tool 1: p-curvature and first reduction
Tool 2: Understanding the structure of the differential equations. Morita's equivalence.

Main tools

Classical (van der Put, Cluzeau)
Tool 1: p-curvature and first reduction
Tool 2: Understanding the structure of the differential equations. Morita's equivalence.

New! Tool 3: Algebraic geometry tools for solving p-Riccati equation.

- Divisor arithmetic on algebraic curves and Riemann-Roch spaces
- Group structure and p-torsion of the Jacobian.

Main tools

Classical (van der Put, Cluzeau)
Tool 1: p-curvature and first reduction
Tool 2: Understanding the structure of the differential equations. Morita's equivalence.

New! Tool 3: Algebraic geometry tools for solving p-Riccati equation.

- Divisor arithmetic on algebraic curves and Riemann-Roch spaces
- Group structure and p-torsion of the Jacobian.

Contribution

An algorithm able to fully factor central differential operators which will extend to operators with coefficients in finite separable extensions of $\mathbb{F}_{p}(x)$.

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_{L}:=\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$.
- $\mathcal{D}_{L} L^{\prime}$ is the $\mathbb{F}_{p}(x)\langle\partial\rangle$-submodule of \mathcal{D}_{L} generated by L^{\prime}.

A guideline: studying the submodules of $\mathbb{F}_{p}(x)(\partial) / \mathbb{F}_{p}(x)(\partial) \swarrow$

Notation

- $\mathcal{D}_{L}:=\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$.
- $\mathcal{D}_{L} L^{\prime}$ is the $\mathbb{F}_{p}(x)\langle\partial\rangle$-submodule of \mathcal{D}_{L} generated by L^{\prime}.

Let $L \in \mathbb{F}_{p}(x)\langle\partial\rangle$

A guideline: studying the submodules of $\mathbb{F}_{p}(x)(\partial) / \mathbb{F}_{p}(x)(\partial) \swarrow$

Notation

- $\mathcal{D}_{L}:=\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$.
- $\mathcal{D}_{L} L^{\prime}$ is the $\mathbb{F}_{p}(x)\langle\partial\rangle$-submodule of \mathcal{D}_{L} generated by L^{\prime}.

Let $L \in \mathbb{F}_{p}(x)\langle\partial\rangle$

Lemma

$$
L^{\prime} \mapsto \mathcal{D}_{L} L^{\prime}
$$

is a one-to-one decreasing bijection between

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_{L}:=\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$.
- $\mathcal{D}_{L} L^{\prime}$ is the $\mathbb{F}_{p}(x)\langle\partial\rangle$-submodule of \mathcal{D}_{L} generated by L^{\prime}.

Let $L \in \mathbb{F}_{p}(x)\langle\partial\rangle$

Lemma

$$
L^{\prime} \mapsto \mathcal{D}_{L} L^{\prime}
$$

is a one-to-one decreasing bijection between

- The set of right divisors of L (up to a multiplicative element in $\mathbb{F}_{p}(x)^{\times}$)

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_{L}:=\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$.
- $\mathcal{D}_{L} L^{\prime}$ is the $\mathbb{F}_{p}(x)\langle\partial\rangle$-submodule of \mathcal{D}_{L} generated by L^{\prime}.

Let $L \in \mathbb{F}_{p}(\boldsymbol{x})\langle\partial\rangle$

Lemma

$$
L^{\prime} \mapsto \mathcal{D}_{L} L^{\prime}
$$

is a one-to-one decreasing bijection between

- The set of right divisors of L (up to a multiplicative element in $\mathbb{F}_{p}(x)^{\times}$)
- The set of $\mathbb{F}_{p}(x)\langle\partial\rangle$-submodules of \mathcal{D}_{L}.

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_{L}:=\mathbb{F}_{p}(x)\langle\partial\rangle / \mathbb{F}_{p}(x)\langle\partial\rangle L$.
- $\mathcal{D}_{L} L^{\prime}$ is the $\mathbb{F}_{p}(x)\langle\partial\rangle$-submodule of \mathcal{D}_{L} generated by L^{\prime}.

Let $L \in \mathbb{F}_{p}(\boldsymbol{x})\langle\partial\rangle$

Lemma

$$
L^{\prime} \mapsto \mathcal{D}_{L} L^{\prime}
$$

is a one-to-one decreasing bijection between

- The set of right divisors of L (up to a multiplicative element in $\mathbb{F}_{p}(x)^{\times}$)
- The set of $\mathbb{F}_{p}(x)\langle\partial\rangle$-submodules of \mathcal{D}_{L}.

Direct consequence of $\mathbb{F}_{p}(x)\langle\partial\rangle$ being a left principal ideal domain.

Setting

Setting

Trying to factor $N\left(\partial^{p}\right)$

Setting

Setting

Trying to factor $N\left(\partial^{p}\right)$
$N(Y)$ is irreducible over C.

Setting

Setting

Trying to factor $N\left(\partial^{p}\right)$
$N(Y)$ is irreducible over C.

$$
\begin{gathered}
N\left(\partial^{p}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2 \\
N(Y)=\left(2 x^{6}+2\right) Y^{2}+\left(x^{6}+2\right) Y+2 x^{6}+2 x^{3}+2
\end{gathered}
$$

Setting

Setting

Trying to factor $N\left(\partial^{p}\right)$
$N(Y)$ is irreducible over C.

$$
\begin{aligned}
N\left(\partial^{p}\right) & =\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2 \\
N(Y) & =\left(2 x^{6}+2\right) Y^{2}+\left(x^{6}+2\right) Y+2 x^{6}+2 x^{3}+2
\end{aligned}
$$

Notation

$$
C_{N}:=C[Y] / N(Y)
$$

Setting

Setting

Trying to factor $N\left(\partial^{p}\right)$
$N(Y)$ is irreducible over C.

$$
\begin{aligned}
N\left(\partial^{p}\right) & =\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2 \\
N(Y) & =\left(2 x^{6}+2\right) Y^{2}+\left(x^{6}+2\right) Y+2 x^{6}+2 x^{3}+2
\end{aligned}
$$

Notation

$C_{N}:=C[Y] / N(Y)$

Facts

$\mathcal{D}_{N\left(\partial^{p}\right)}$ is a C_{N}-algebra $\left(Y \mapsto \partial^{p}\right)$

Structure results

Proposition (van der Put)

$\mathcal{D}_{N\left(\partial^{p}\right)}$ is a central simple $C_{N^{-}}$algebra of dimension p^{2}.

Structure results

Proposition (van der Put)

$\mathcal{D}_{N\left(\partial^{p}\right)}$ is a central simple $C_{N^{-}}$algebra of dimension p^{2}.

Theorem (Artin-Wedderburn)

Any central simple $C_{N^{-}}$algebra is isomorphic to a matrix algebra over a division algebra.

Structure results

Proposition (van der Put)

$\mathcal{D}_{N\left(\partial^{p}\right)}$ is a central simple $C_{N^{-}}$algebra of dimension p^{2}.

Theorem (Artin-Wedderburn)

Any central simple $C_{N^{-}}$algebra is isomorphic to a matrix algebra over a division algebra.

Corollary

$\mathcal{D}_{N\left(\partial^{p}\right)}$ is either a division algebra or isomorphic to $\mathcal{M}_{p}\left(C_{N}\right)$.

Morita's equivalence

If $\mathcal{D}_{N\left(\partial^{p}\right)}$ is a division algebra then $N\left(\partial^{p}\right)$ has no nontrivial divisor and is irreducible.

Morita's equivalence

If $\mathcal{D}_{N\left(\partial^{p}\right)}$ is a division algebra then $N\left(\partial^{p}\right)$ has no nontrivial divisor and is irreducible.

Suppose that $\mathcal{D}_{N\left(\partial^{\rho}\right)}$ is isomorphic to $M_{p}\left(C_{N}\right)$.

Morita's equivalence

If $\mathcal{D}_{N\left(\partial^{p}\right)}$ is a division algebra then $N\left(\partial^{p}\right)$ has no nontrivial divisor and is irreducible.
Suppose that $\mathcal{D}_{N\left(\partial^{\rho}\right)}$ is isomorphic to $M_{p}\left(C_{N}\right)$.
Morita's equivalence
The categories of C_{N}-vector spaces and left- $M_{p}\left(C_{N}\right)$-modules are equivalent.

Morita's equivalence

If $\mathcal{D}_{N\left(\partial^{p}\right)}$ is a division algebra then $N\left(\partial^{p}\right)$ has no nontrivial divisor and is irreducible.
Suppose that $\mathcal{D}_{N\left(\partial^{\rho}\right)}$ is isomorphic to $M_{p}\left(C_{N}\right)$.

Morita's equivalence

The categories of C_{N}-vector spaces and left- $M_{p}\left(C_{N}\right)$-modules are equivalent.

Fact

If L is a divisor of $N\left(\partial^{p}\right)$ then L is irreducible if and only if $\operatorname{ord}(L)=\operatorname{deg}(N)$.

Extending the field of constants

Hypothesis: N is separable over C.

Extending the field of constants

Hypothesis: N is separable over C.

Notation

y_{N} is the image of Y in $C_{N}=C[Y] / N(Y)$.

Extending the field of constants

Hypothesis: N is separable over C.

Notation

y_{N} is the image of Y in $C_{N}=C[Y] / N(Y)$.
$K_{N}=\mathbb{F}_{p}(\boldsymbol{x}) \cdot C_{N}$

Extending the field of constants

Hypothesis: N is separable over C.

Notation

y_{N} is the image of Y in $C_{N}=C[Y] / N(Y)$.
$K_{N}=\mathbb{F}_{p}(\boldsymbol{x}) \cdot C_{N}$

Recall: $\mathcal{D}_{N\left(\partial^{p}\right)}=\mathbb{F}_{p}(x)\langle\partial\rangle / N\left(\partial^{p}\right)$

$$
\begin{array}{cc}
\mathbb{F}_{p}(\boldsymbol{x})\langle\partial\rangle \leadsto K_{N}\langle\partial\rangle \\
\downarrow & \downarrow \\
\mathbb{F}_{p}(x)\langle\partial\rangle / N\left(\partial^{p}\right) & \varphi_{----\rangle} \\
\downarrow K_{N}\langle\partial\rangle / \partial^{p}-y_{N}
\end{array}
$$

"p-Riccati" equation

Lemma (Jacobson, van der Put)
$L^{\prime} \in K_{N}\langle\partial\rangle$ is an irreducible divisor of $\partial^{p}-y_{N}$ iff $L^{\prime}=\partial-f$

"p-Riccati" equation

Lemma (Jacobson, van der Put)
$L^{\prime} \in K_{N}\langle\partial\rangle$ is an irreducible divisor of $\partial^{p}-y_{N}$ iff $L^{\prime}=\partial-f$ with

$$
f^{(p-1)}+f^{p}=y_{N}
$$

"p-Riccati" equation

Lemma (Jacobson, van der Put)
$L^{\prime} \in K_{N}\langle\partial\rangle$ is an irreducible divisor of $\partial^{p}-y_{N}$ iff $L^{\prime}=\partial-f$ with

$$
f^{(p-1)}+f^{p}=y_{N}
$$

Lemma (P., 2022)

Let $f \in K_{N}$ be such that $f^{(p-1)}+f^{p}=y_{N}$. Then

$$
\partial^{p}-y_{N}=\operatorname{lclm}_{i=1}^{p}\left(\partial-f-\frac{i}{x}\right)
$$

Algorithm

- Compute $f \in K_{N}$ such that $f^{(p-1)}+f^{p}=y_{N}$.

Algorithm

- Compute $f \in K_{N}$ such that $f^{(p-1)}+f^{p}=y_{N}$.
- Compute $L=\operatorname{gcrd}\left(\varphi_{N}^{-1}(\partial-f), N\left(\partial^{\rho}\right)\right)$.

The case when $L \neq N\left(\partial^{P}\right)$ (after van der Put)

$$
L_{N}:=\operatorname{gcrd}\left(\varphi_{N}(L), \partial^{p}-y_{N}\right)
$$

is a non trivial divisor of $\partial^{p}-y_{N}$.

The case when $L \neq N\left(\partial^{P}\right)$ (after van der Put)

$$
L_{N}:=\operatorname{gcrd}\left(\varphi_{N}(L), \partial^{p}-y_{N}\right)
$$

is a non trivial divisor of $\partial^{p}-y_{N}$.

Fact

If $L_{N}=\partial^{m}+a_{m-1} \partial^{m-1}+\cdots+a_{0}$ then $-\frac{a_{m-1}}{m}$ is a solution of the p-Riccati equation.

The case when $L \neq N\left(\partial^{p}\right)$ (after van der Put)

$$
L_{N}:=\operatorname{gcrd}\left(\varphi_{N}(L), \partial^{p}-y_{N}\right)
$$

is a non trivial divisor of $\partial^{p}-y_{N}$.

Fact

If $L_{N}=\partial^{m}+a_{m-1} \partial^{m-1}+\cdots+a_{0}$ then $-\frac{a_{m-1}}{m}$ is a solution of the p-Riccati equation.
proof:
$L_{N}=\left(\partial-f_{1}\right) \cdots\left(\partial-f_{m}\right)$.

The case when $L \neq N\left(\partial^{p}\right)$ (after van der Put)

$$
L_{N}:=\operatorname{gcrd}\left(\varphi_{N}(L), \partial^{p}-y_{N}\right)
$$

is a non trivial divisor of $\partial^{p}-y_{N}$.

Fact

If $L_{N}=\partial^{m}+a_{m-1} \partial^{m-1}+\cdots+a_{0}$ then $-\frac{a_{m-1}}{m}$ is a solution of the p-Riccati equation.
proof:
$L_{N}=\left(\partial-f_{1}\right) \cdots\left(\partial-f_{m}\right)$.
$-\frac{a_{m-1}}{m}=\frac{1}{m}\left(f_{1}+\cdots+f_{m}\right)$

The case when $L \neq N\left(\partial^{p}\right)$ (after van der Put)

$$
L_{N}:=\operatorname{gcrd}\left(\varphi_{N}(L), \partial^{p}-y_{N}\right)
$$

is a non trivial divisor of $\partial^{p}-y_{N}$.

Fact

If $L_{N}=\partial^{m}+a_{m-1} \partial^{m-1}+\cdots+a_{0}$ then $-\frac{a_{m-1}}{m}$ is a solution of the p-Riccati equation.
proof:
$L_{N}=\left(\partial-f_{1}\right) \cdots\left(\partial-f_{m}\right)$.
$-\frac{a_{m-1}}{m}=\frac{1}{m}\left(f_{1}+\cdots+f_{m}\right)$
The space of solutions of p-Riccati is an affine space

Factoring $N\left(\partial^{p}\right)$: when $K_{N}=\mathbb{F}_{p}(x)$

Suppose that $K_{N}=\mathbb{F}_{p}(x), y_{N}=g^{p} \in \mathbb{F}_{p}\left(x^{p}\right)$ and that $f^{(p-1)}+f^{p}=g^{p}$ has a solution in $\mathbb{F}_{p}(x)$.

Factoring $N\left(\partial^{p}\right)$: when $K_{N}=\mathbb{F}_{p}(x)$

Suppose that $K_{N}=\mathbb{F}_{p}(x), y_{N}=g^{p} \in \mathbb{F}_{p}\left(x^{p}\right)$ and that $f^{(p-1)}+f^{p}=g^{p}$ has a solution in $\mathbb{F}_{p}(x)$.

Step 1: Show that there is a solution whose denominator divides that of g.

Factoring $N\left(\partial^{p}\right)$: when $K_{N}=\mathbb{F}_{p}(x)$

Suppose that $K_{N}=\mathbb{F}_{p}(x), y_{N}=g^{p} \in \mathbb{F}_{p}\left(x^{p}\right)$ and that $f^{(p-1)}+f^{p}=g^{p}$ has a solution in $\mathbb{F}_{p}(x)$.

Step 1: Show that there is a solution whose denominator divides that of g.
Step 2: Deduce that the degree of the numerator of this solution is at most $\operatorname{deg}(g)$.

Factoring $N\left(\partial^{p}\right)$: when $K_{N}=\mathbb{F}_{p}(x)$

Suppose that $K_{N}=\mathbb{F}_{p}(x), y_{N}=g^{p} \in \mathbb{F}_{p}\left(x^{p}\right)$ and that $f^{(p-1)}+f^{p}=g^{p}$ has a solution in $\mathbb{F}_{p}(x)$.

Step 1: Show that there is a solution whose denominator divides that of g.
Step 2: Deduce that the degree of the numerator of this solution is at most $\operatorname{deg}(g)$.

Step 3: Solve an \mathbb{F}_{p}-linear system.

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

$$
\left(2 X^{2}+2\right) Y^{2}+\left(X^{2}+2\right) Y+2 X^{2}+2 X+2=0
$$

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

$$
\left(2 X^{2}+2\right) Y^{2}+\left(X^{2}+2\right) Y+2 X^{2}+2 X+2=0
$$

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

Theorem (P., 2022)
If the p-Riccati has a solution in K_{N} then one of its solution has its poles located in

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

Theorem (P., 2022)
If the p-Riccati has a solution in K_{N} then one of its solution has its poles located in the poles of y_{N},

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

Theorem (P., 2022)
If the p-Riccati has a solution in K_{N} then one of its solution has its poles located in the poles of y_{N}, in ramified places of K_{N},

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

Theorem (P., 2022)
If the p-Riccati has a solution in K_{N} then one of its solution has its poles located in the poles of y_{N}, in ramified places of K_{N}, a chosen place of degree 1

Factoring $N\left(\partial^{P}\right)$: general case

$$
N\left(\partial^{3}\right)=\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

Theorem (P., 2022)

If the p-Riccati has a solution in K_{N} then one of its solution has its poles located in the poles of y_{N}, in ramified places of K_{N}, a chosen place of degree 1 and in a set of places generating the cokernel of the multiplication by p on the Jacobian.

Algorithm

- Compute $f \in K_{N}$ such that $f^{(p-1)}+f^{p}=y_{N}$.
- Compute $L=\operatorname{gcrd}\left(\varphi_{N}^{-1}(\partial-f), N\left(\partial^{\rho}\right)\right)$.

Algorithm

- Compute $f \in K_{N}$ such that $f^{(p-1)}+f^{p}=y_{N}$.
- Construct a divisor A_{N} such that we know that a solution lives in $\mathcal{L}\left(A_{N}\right)$.
- Compute $L=\operatorname{gcrd}\left(\varphi_{N}^{-1}(\partial-f), N\left(\partial^{p}\right)\right)$.

Algorithm

- Compute $f \in K_{N}$ such that $f^{(p-1)}+f^{p}=y_{N}$.
- Construct a divisor A_{N} such that we know that a solution lives in $\mathcal{L}\left(A_{N}\right)$.
- Computes the Riemann-Roch space $\mathcal{L}\left(A_{N}\right)$.
- Compute $L=\operatorname{gcrd}\left(\varphi_{N}^{-1}(\partial-f), N\left(\partial^{p}\right)\right)$.

Algorithm

- Compute $f \in K_{N}$ such that $f^{(p-1)}+f^{p}=y_{N}$.
- Construct a divisor A_{N} such that we know that a solution lives in $\mathcal{L}\left(A_{N}\right)$.
- Computes the Riemann-Roch space $\mathcal{L}\left(A_{N}\right)$.
- Solve a \mathbb{F}_{p}-linear system over $\mathcal{L}\left(A_{N}\right)$
- Compute $L=\operatorname{gcrd}\left(\varphi_{N}^{-1}(\partial-f), N\left(\partial^{p}\right)\right)$.

Running example

$$
L_{1}=\partial^{2}+\left(\frac{2 x^{5}+x^{4}+x^{3}+2 x^{2}+x+1}{x^{5}+x^{4}+x^{2}+2 x}\right) \partial+\frac{x^{3}+x^{2}+2}{x^{3}+x^{2}+2 x}
$$

Running example

$$
\left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2
$$

Running example

$$
\begin{aligned}
& \left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2 \\
= & \partial^{2}+\left(\frac{2 x^{5}+x^{4}+x^{3}+2 x^{2}+x+1}{x^{5}+x^{4}+x^{2}+2 x}\right) \partial+\frac{x^{3}+x^{2}+2}{x^{3}+x^{2}+2 x}
\end{aligned}
$$

Running example

$$
\begin{aligned}
& \left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2 \\
= & \partial^{2}+\left(\frac{2 x^{5}+x^{4}+x^{3}+2 x^{2}+x+1}{x^{5}+x^{4}+x^{2}+2 x}\right) \partial+\frac{x^{3}+x^{2}+2}{x^{3}+x^{2}+2 x} \\
\times & \partial^{2}+\left(\frac{2 x^{3}+x^{2}+1}{x^{3}+x}\right) \partial+\frac{x^{10}+x^{9}+x^{8}+x^{5}+x^{4}+2 x^{2}+2}{x^{10}+2 x^{9}+x^{8}+2 x^{7}+x^{5}+x^{4}+x^{3}+x^{2}}
\end{aligned}
$$

Running example

$$
\begin{aligned}
& \left(2 x^{6}+2\right) \partial^{6}+\left(x^{6}+2\right) \partial^{3}+2 x^{6}+2 x^{3}+2 \\
= & \partial^{2}+\left(\frac{2 x^{5}+x^{4}+x^{3}+2 x^{2}+x+1}{x^{5}+x^{4}+x^{2}+2 x}\right) \partial+\frac{x^{3}+x^{2}+2}{x^{3}+x^{2}+2 x} \\
\times & \partial^{2}+\left(\frac{2 x^{3}+x^{2}+1}{x^{3}+x}\right) \partial+\frac{x^{10}+x^{9}+x^{8}+x^{5}+x^{4}+2 x^{2}+2}{x^{10}+2 x^{9}+x^{8}+2 x^{7}+x^{5}+x^{4}+x^{3}+x^{2}} \\
\times & \left(2 x^{6}+2\right) \partial^{2}+\left(\frac{x^{8}+x^{7}+2 x^{6}+x^{5}+2 x^{3}+x^{2}+2 x+2}{x^{2}+x+2}\right) \partial \\
& +\frac{2 x^{12}+2 x^{10}+2 x^{9}+2 x^{7}+2 x^{6}+x^{5}+2 x+2}{x^{6}+2 x^{5}+2 x^{4}+x^{3}+x^{2}}
\end{aligned}
$$

Size of the p-Riccati solution

We have shown that the solutions of the p-Riccati equation belong in the Riemann-Roch space $\mathcal{L}\left(A_{N}\right)$ with

Size of the p-Riccati solution

We have shown that the solutions of the p-Riccati equation belong in the Riemann-Roch space $\mathcal{L}\left(A_{N}\right)$ with

$$
A_{N}:=\max \left(p^{-1}\left(y_{N}\right)_{-}, \operatorname{Diff}\left(K_{N}\right)\right)+\mathcal{R}_{N}
$$

Size of the p-Riccati solution

We have shown that the solutions of the p-Riccati equation belong in the Riemann-Roch space $\mathcal{L}\left(A_{N}\right)$ with

$$
A_{N}:=\max \left(p^{-1}\left(y_{N}\right)_{-}, \operatorname{Diff}\left(K_{N}\right)\right)+\mathcal{R}_{N}
$$

where \mathcal{R}_{N} is a divisor accounting for wildly ramified places, the cokernel of the multiplication by p on the Jacobian and a place of degree 1 .

Size of the p-Riccati solution

We have shown that the solutions of the p-Riccati equation belong in the Riemann-Roch space $\mathcal{L}\left(A_{N}\right)$ with

$$
A_{N}:=\max \left(p^{-1}\left(y_{N}\right)_{-}, \operatorname{Diff}\left(K_{N}\right)\right)+\mathcal{R}_{N}
$$

where \mathcal{R}_{N} is a divisor accounting for wildly ramified places, the cokernel of the multiplication by p on the Jacobian and a place of degree 1 .
(Usual case is $\mathcal{R}_{N}=0$.)

Size of the p-Riccati solution

We have shown that the solutions of the p-Riccati equation belong in the Riemann-Roch space $\mathcal{L}\left(A_{N}\right)$ with

$$
A_{N}:=\max \left(p^{-1}\left(y_{N}\right)_{-}, \operatorname{Diff}\left(K_{N}\right)\right)+\mathcal{R}_{N}
$$

where \mathcal{R}_{N} is a divisor accounting for wildly ramified places, the cokernel of the multiplication by p on the Jacobian and a place of degree 1 .
(Usual case is $\mathcal{R}_{N}=0$.)

Lemma

Let $E_{y}=\left(\frac{d}{d y} N\right)\left(y_{N}\right)^{1 / p}$ and N_{k} be the quotient of the euclidian division of N by y^{k}. Then for any $f=\sum_{i=0}^{d-1} f_{i} y_{N}^{i / p} \in K_{N}$ we have

$$
f_{k}=\operatorname{Tr}\left(\frac{N_{k+1}\left(y_{N}\right)^{1 / p}}{E_{y}} \cdot f\right)
$$

Size of the p-Riccati solution

Let $\operatorname{deg}_{x}(N)=r$ and $\operatorname{deg}_{y}(N)=d$.

Heuristic

With the same notations as the previous slides, supposing $\mathcal{R}_{N}=0$ (usual case in experiments), we observe

$$
\mathcal{L}\left(A_{N}\right) \subset \frac{\mathbb{F}_{p}\left[x, y_{N}^{1 / p}\right]_{\leqslant r,<d}}{E_{y}}
$$

Complexities

Complexities

Complexities

Complexities

- Dimension of $\mathcal{L}\left(A_{N}\right)$: $O(r d) \rightarrow$ size of the basis $O\left((r d)^{2}\right)$.

Complexities

Complexities

- Dimension of $\mathcal{L}\left(A_{N}\right)$: $O(r d) \rightarrow$ size of the basis $O\left((r d)^{2}\right)$.
- Computing $(p-1)$-th derivatives expected possible complexity $\tilde{O}\left((d r)^{\omega} \sqrt{d p}\right)$.

Complexities

Complexities

- Dimension of $\mathcal{L}\left(A_{N}\right)$: $O(r d) \rightarrow$ size of the basis $O\left((r d)^{2}\right)$.
- Computing $(p-1)$-th derivatives expected possible complexity $\tilde{O}\left((d r)^{\omega} \sqrt{d p}\right)$.
- Computing $\varphi_{N}^{-1} \Leftrightarrow$ changing basis from $\left(1, y_{N}^{1 / p}, \cdots, y_{N}^{(d-1) / p}\right)$ to $\left(1, y_{N}, \cdots, y_{N}^{d-1}\right)$.
inverting $d \times d$ polynomial matrix with coefficients of degree $O(p r)$.

Complexities

Complexities

- Dimension of $\mathcal{L}\left(A_{N}\right)$: $O(r d) \rightarrow$ size of the basis $O\left((r d)^{2}\right)$.
- Computing $(p-1)$-th derivatives expected possible complexity $\tilde{O}\left((d r)^{\omega} \sqrt{d p}\right)$.
- Computing $\varphi_{N}^{-1} \Leftrightarrow$ changing basis from $\left(1, y_{N}^{1 / p}, \cdots, y_{N}^{(d-1) / p}\right)$ to $\left(1, y_{N}, \cdots, y_{N}^{d-1}\right)$.
inverting $d \times d$ polynomial matrix with coefficients of degree $O(p r)$.
- Computing gcrd of $N\left(\partial^{p}\right)$ and $\partial-L\left(\partial^{p}\right)$ with $N \in C[Y]$ and $L \in \mathbb{F}_{p}(x)[Y]$.
naive approach manipulates objects of size $O\left(p^{2} r d\right)$

Future works

- Implementation

Future works

- Implementation
- lclm factorisation.

Future works

- Implementation
- lclm factorisation.
- Factorisation of differential systems

Future works

- Implementation
- lclm factorisation.
- Factorisation of differential systems

Thank you for your attention

