Factoring linear differential operators in positive characteristic JNCF 2023

Raphaël Pagès¹

¹INRIA - France (Bordeaux, Paris-Saclay)

March 6, 2023

Algebra of differential operators

Object of study

Differential operators in $\mathbb{F}_p(x)\langle\partial\rangle = \{a_n(x)\partial^n + \cdots + a_1(x)\partial + a_0(x)\}.$

Algebra of differential operators

Object of study

Differential operators in $\mathbb{F}_p(x)\langle\partial\rangle = \{a_n(x)\partial^n + \cdots + a_1(x)\partial + a_0(x)\}.$

Commutation rule:

Derivation:

$$\partial f = f \partial + f'$$

$$f' = \frac{\mathrm{d}}{\mathrm{d}x}f$$

Algebra of differential operators

Object of study

Differential operators in $\mathbb{F}_p(x)\langle\partial\rangle = \{a_n(x)\partial^n + \cdots + a_1(x)\partial + a_0(x)\}.$

Commutation rule:	Derivation:
$\partial f = f\partial + f'$	$f' = \frac{\mathrm{d}}{\mathrm{d}x}f$

Goal: Factor differential operators as a product of irreducible differential operators.

Algebra of differential operators

Object of study

Differential operators in $\mathbb{F}_p(x)\langle\partial\rangle = \{a_n(x)\partial^n + \cdots + a_1(x)\partial + a_0(x)\}.$

Commutation rule:	Derivation:
$\partial f = f\partial + f'$	$f' = rac{\mathrm{d}}{\mathrm{d}x}f$

Goal: Factor differential operators as a product of irreducible differential operators.

Running example:

 $(2x^6+2)\partial^6 + (x^6+2)\partial^3 + 2x^6 + 2x^3 + 2 \in \mathbb{F}_3(x)\langle \partial \rangle$

State of the art

- M. van der Put. Modular methods for factoring differential operators. Unpublished manuscript, 1997.
- M. Giesbrecht, Y. Zhang, Factoring and decomposing Ore polynomials over $\mathbb{F}_p(t)$, ISSAC 2003.
- T. Cluzeau, factorisation of differential systems in characteristic *p*, ISSAC 2003.
- X. Caruso, J. Le Borgne. A new faster algorithm for factoring skew polynomials over finite fields. JSC 2017.
- J. Gomez-Torrecillas, F. J. Lobillo, G. Navarro, Computing the bound of an Ore polynomial. Applications to factorisation, JSC 2019.

State of the art

Problem: For reducible divisors of $Q(x^p, \partial^p)$ with $Q \in \mathbb{F}_p[u, v]$.

State of the art

Problem: For reducible divisors of $Q(x^p, \partial^p)$ with $Q \in \mathbb{F}_p[u, v]$.

Lacks a way to factor central operators e.g ∂^p

State of the art

Problem: For reducible divisors of $Q(x^p, \partial^p)$ with $Q \in \mathbb{F}_p[u, v]$.

Lacks a way to factor central operators e.g ∂^p

Notation

$$\begin{split} &C:=\mathbb{F}_p(x^p) \text{ is the field of constants of } \mathbb{F}_p(x).\\ &C[\partial^p] \text{ is the center of } \mathbb{F}_p(x)\langle\partial\rangle. \end{split}$$

Main tools

Classical (van der Put, Cluzeau)

Tool 1: *p*-curvature and first reduction

Main tools

Classical (van der Put, Cluzeau)

Tool 1: *p*-curvature and first reduction

Tool 2: Understanding the structure of the differential equations. Morita's equivalence.

Main tools

Classical (van der Put, Cluzeau)

Tool 1: *p*-curvature and first reduction

Tool 2: Understanding the structure of the differential equations. Morita's equivalence.

New! Tool 3: Algebraic geometry tools for solving *p*-Riccati equation.

- Divisor arithmetic on algebraic curves and Riemann-Roch spaces
- Group structure and *p*-torsion of the Jacobian.

Main tools

Classical (van der Put, Cluzeau)

Tool 1: *p*-curvature and first reduction

Tool 2: Understanding the structure of the differential equations. Morita's equivalence.

New! Tool 3: Algebraic geometry tools for solving *p*-Riccati equation.

- Divisor arithmetic on algebraic curves and Riemann-Roch spaces
- Group structure and *p*-torsion of the Jacobian.

Contribution

An algorithm able to fully factor central differential operators which will extend to operators with coefficients in finite separable extensions of $\mathbb{F}_p(x)$.

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle/\mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_L := \mathbb{F}_p(x) \langle \partial \rangle / \mathbb{F}_p(x) \langle \partial \rangle L.$
- $\mathcal{D}_L L'$ is the $\mathbb{F}_p(x)\langle \partial \rangle$ -submodule of \mathcal{D}_L generated by L'.

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle/\mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_L := \mathbb{F}_p(x) \langle \partial \rangle / \mathbb{F}_p(x) \langle \partial \rangle L.$
- $\mathcal{D}_L L'$ is the $\mathbb{F}_p(x) \langle \partial \rangle$ -submodule of \mathcal{D}_L generated by L'.

Let $L \in \mathbb{F}_p(x) \langle \partial \rangle$

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle/\mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_L := \mathbb{F}_p(x) \langle \partial \rangle / \mathbb{F}_p(x) \langle \partial \rangle L.$
- $\mathcal{D}_L L'$ is the $\mathbb{F}_p(x)\langle \partial \rangle$ -submodule of \mathcal{D}_L generated by L'.

Let $L \in \mathbb{F}_p(x) \langle \partial \rangle$

Lemma

$$L'\mapsto \mathcal{D}_L L'$$

is a one-to-one **decreasing** bijection between

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle/\mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_L := \mathbb{F}_p(x) \langle \partial \rangle / \mathbb{F}_p(x) \langle \partial \rangle L.$
- $\mathcal{D}_L L'$ is the $\mathbb{F}_p(x)\langle \partial \rangle$ -submodule of \mathcal{D}_L generated by L'.

Let $L \in \mathbb{F}_p(x) \langle \partial \rangle$

Lemma

$$L'\mapsto \mathcal{D}_L L'$$

is a one-to-one *decreasing* bijection between

• The set of right divisors of L (up to a multiplicative element in $\mathbb{F}_p(x)^{\times}$)

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle/\mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_L := \mathbb{F}_p(x) \langle \partial \rangle / \mathbb{F}_p(x) \langle \partial \rangle L.$
- $\mathcal{D}_L L'$ is the $\mathbb{F}_p(x)\langle \partial \rangle$ -submodule of \mathcal{D}_L generated by L'.

Let $L \in \mathbb{F}_p(x) \langle \partial \rangle$

Lemma

$$L'\mapsto \mathcal{D}_L L'$$

is a one-to-one decreasing bijection between

- The set of right divisors of L (up to a multiplicative element in $\mathbb{F}_p(x)^{\times}$)
- The set of $\mathbb{F}_p(x)\langle \partial \rangle$ -submodules of \mathcal{D}_L .

A guideline: studying the submodules of $\mathbb{F}_{p}(x)\langle\partial\rangle/\mathbb{F}_{p}(x)\langle\partial\rangle L$

Notation

- $\mathcal{D}_L := \mathbb{F}_p(x) \langle \partial \rangle / \mathbb{F}_p(x) \langle \partial \rangle L.$
- $\mathcal{D}_L L'$ is the $\mathbb{F}_p(x)\langle \partial \rangle$ -submodule of \mathcal{D}_L generated by L'.

Let $L \in \mathbb{F}_p(x) \langle \partial \rangle$

Lemma

$$L'\mapsto \mathcal{D}_L L'$$

is a one-to-one decreasing bijection between

- The set of right divisors of L (up to a multiplicative element in $\mathbb{F}_p(x)^{\times}$)
- The set of $\mathbb{F}_p(x)\langle \partial \rangle$ -submodules of \mathcal{D}_L .

Direct consequence of $\mathbb{F}_p(x)\langle\partial\rangle$ being a left principal ideal domain.

Setting

Setting

Trying to factor $N(\partial^p)$

Setting

Setting

Trying to factor $N(\partial^p)$ N(Y) is irreducible over *C*.

Setting

Setting

Trying to factor $N(\partial^p)$ N(Y) is irreducible over *C*.

$$N(\partial^{p}) = (2x^{6} + 2)\partial^{6} + (x^{6} + 2)\partial^{3} + 2x^{6} + 2x^{3} + 2$$
$$N(Y) = (2x^{6} + 2)Y^{2} + (x^{6} + 2)Y + 2x^{6} + 2x^{3} + 2$$

Setting

Setting

Trying to factor $N(\partial^p)$ N(Y) is irreducible over *C*.

$$N(\partial^{p}) = (2x^{6} + 2)\partial^{6} + (x^{6} + 2)\partial^{3} + 2x^{6} + 2x^{3} + 2$$
$$N(Y) = (2x^{6} + 2)Y^{2} + (x^{6} + 2)Y + 2x^{6} + 2x^{3} + 2$$

Notation

 $C_N := C[Y] /_{N(Y)}$

Setting

Setting

Trying to factor $N(\partial^p)$ N(Y) is irreducible over *C*.

$$N(\partial^{p}) = (2x^{6} + 2)\partial^{6} + (x^{6} + 2)\partial^{3} + 2x^{6} + 2x^{3} + 2$$
$$N(Y) = (2x^{6} + 2)Y^{2} + (x^{6} + 2)Y + 2x^{6} + 2x^{3} + 2$$

Notation

 $C_N := C[Y] /_{N(Y)}$

Facts

 $\mathcal{D}_{N(\partial^p)}$ is a C_N -algebra $(Y \mapsto \partial^p)$

Structure results

Proposition (van der Put)

 $\mathcal{D}_{N(\partial^p)}$ is a central simple C_N -algebra of dimension p^2 .

Structure results

Proposition (van der Put)

 $\mathcal{D}_{N(\partial^p)}$ is a central simple C_N -algebra of dimension p^2 .

Theorem (Artin-Wedderburn)

Any central simple C_N - algebra is isomorphic to a matrix algebra over a division algebra.

Structure results

Proposition (van der Put)

 $\mathcal{D}_{N(\partial^p)}$ is a central simple C_N -algebra of dimension p^2 .

Theorem (Artin-Wedderburn)

Any central simple C_N - algebra is isomorphic to a matrix algebra over a division algebra.

Corollary

 $\mathcal{D}_{N(\partial^p)}$ is either a division algebra or isomorphic to $\mathcal{M}_p(C_N)$.

Morita's equivalence

If $\mathcal{D}_{N(\partial^p)}$ is a division algebra then $N(\partial^p)$ has no nontrivial divisor and is irreducible.

Morita's equivalence

If $\mathcal{D}_{N(\partial^p)}$ is a division algebra then $N(\partial^p)$ has no nontrivial divisor and is irreducible.

Suppose that $\mathcal{D}_{N(\partial^p)}$ is isomorphic to $M_p(C_N)$.

Morita's equivalence

If $\mathcal{D}_{N(\partial^p)}$ is a division algebra then $N(\partial^p)$ has no nontrivial divisor and is irreducible.

Suppose that $\mathcal{D}_{N(\partial^p)}$ is isomorphic to $M_p(C_N)$.

Morita's equivalence

The categories of C_N -vector spaces and left- $M_p(C_N)$ -modules are equivalent.

Morita's equivalence

If $\mathcal{D}_{N(\partial^p)}$ is a division algebra then $N(\partial^p)$ has no nontrivial divisor and is irreducible.

Suppose that $\mathcal{D}_{N(\partial^p)}$ is isomorphic to $M_p(C_N)$.

Morita's equivalence

The categories of C_N -vector spaces and left- $M_p(C_N)$ -modules are equivalent.

Fact

If *L* is a divisor of $N(\partial^p)$ then *L* is irreducible if and only if ord(L) = deg(N).

Extending the field of constants

Hypothesis: *N* is separable over *C*.

Extending the field of constants

Hypothesis: *N* is separable over *C*.

Notation

 y_N is the image of Y in $C_N = \frac{C[Y]}{N(Y)}$.

Extending the field of constants

Hypothesis: *N* is separable over *C*.

Notation

 y_N is the image of Y in $C_N = C[Y]/N(Y)$. $K_N = \mathbb{F}_p(x) \cdot C_N$

Extending the field of constants

Hypothesis: *N* is separable over *C*.

Notation

 y_N is the image of Y in $C_N = C[Y]/N(Y)$. $K_N = \mathbb{F}_p(x) \cdot C_N$

Recall: $\mathcal{D}_{N(\partial^p)} = \mathbb{F}_p(\mathbf{x}) \langle \partial \rangle / N(\partial^p)$

$$\mathbb{F}_{p}(x)\langle\partial\rangle \longleftrightarrow K_{N}\langle\partial\rangle$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{F}_{p}(x)\langle\partial\rangle/N(\partial^{p}) \xrightarrow{-\varphi_{N}} K_{N}\langle\partial\rangle/\partial^{p}-y_{N}$$

"p-Riccati" equation

Lemma (Jacobson, van der Put)

 $L' \in K_N \langle \partial \rangle$ is an irreducible divisor of $\partial^p - y_N$ iff $L' = \partial - f$

"p-Riccati" equation

Lemma (Jacobson, van der Put)

 $L' \in K_N \langle \partial \rangle$ is an irreducible divisor of $\partial^p - y_N$ iff $L' = \partial - f$ with

$$f^{(p-1)} + f^p = y_N$$

"p-Riccati" equation

Lemma (Jacobson, van der Put)

 $L' \in K_N \langle \partial \rangle$ is an irreducible divisor of $\partial^p - y_N$ iff $L' = \partial - f$ with

$$f^{(p-1)} + f^p = y_N$$

Lemma (P., 2022)

Let $f \in K_N$ be such that $f^{(p-1)} + f^p = y_N$. Then

$$\partial^p - y_N = \operatorname{lclm}_{i=1}^p \left(\partial - f - \frac{i}{x}\right)$$

Algorithm

• Compute $f \in K_N$ such that $f^{(p-1)} + f^p = y_N$.

Algorithm

• Compute $f \in K_N$ such that $f^{(p-1)} + f^p = y_N$.

• Compute
$$L = \operatorname{gcrd}(\varphi_N^{-1}(\partial - f), N(\partial^p)).$$

The case when $L \neq N(\partial^p)$ (after van der Put)

$$L_N := \operatorname{gcrd}(\varphi_N(L), \partial^p - y_N)$$

is a non trivial divisor of $\partial^p - y_N$.

The case when $L \neq N(\partial^p)$ (after van der Put)

$$L_N := \operatorname{gcrd}(\varphi_N(L), \partial^p - y_N)$$

is a non trivial divisor of $\partial^p - y_N$.

Fact If $L_N = \partial^m + a_{m-1}\partial^{m-1} + \dots + a_0$ then $-\frac{a_{m-1}}{m}$ is a solution of the *p*-Riccati equation.

The case when $L \neq N(\partial^p)$ (after van der Put)

$$L_N := \operatorname{gcrd}(\varphi_N(L), \partial^p - y_N)$$

is a non trivial divisor of $\partial^p - y_N$.

Fact

If $L_N = \partial^m + a_{m-1}\partial^{m-1} + \cdots + a_0$ then $-\frac{a_{m-1}}{m}$ is a solution of the *p*-Riccati equation.

proof:

$$L_N = (\partial - f_1) \cdots (\partial - f_m).$$

The case when $L \neq N(\partial^p)$ (after van der Put)

$$L_N := \operatorname{gcrd}(\varphi_N(L), \partial^p - y_N)$$

is a non trivial divisor of $\partial^p - y_N$.

Fact

If $L_N = \partial^m + a_{m-1}\partial^{m-1} + \cdots + a_0$ then $-\frac{a_{m-1}}{m}$ is a solution of the *p*-Riccati equation.

proof:

$$L_N = (\partial - f_1) \cdots (\partial - f_m).$$

$$-\frac{a_{m-1}}{m} = \frac{1}{m}(f_1 + \cdots + f_m)$$

The case when $L \neq N(\partial^p)$ (after van der Put)

$$L_N := \operatorname{gcrd}(\varphi_N(L), \partial^p - y_N)$$

is a non trivial divisor of $\partial^p - y_N$.

Fact

If $L_N = \partial^m + a_{m-1}\partial^{m-1} + \cdots + a_0$ then $-\frac{a_{m-1}}{m}$ is a solution of the *p*-Riccati equation.

proof:

$$L_N = (\partial - f_1) \cdots (\partial - f_m).$$

$$-\frac{a_{m-1}}{m} = \frac{1}{m}(f_1 + \cdots + f_m)$$

The space of solutions of *p*-Riccati is an affine space

Factoring $N(\partial^p)$: when $K_N = \mathbb{F}_p(x)$

Suppose that $K_N = \mathbb{F}_p(x)$, $y_N = g^p \in \mathbb{F}_p(x^p)$ and that $f^{(p-1)} + f^p = g^p$ has a solution in $\mathbb{F}_p(x)$.

Factoring $N(\partial^p)$: when $K_N = \mathbb{F}_p(x)$

Suppose that $K_N = \mathbb{F}_p(x)$, $y_N = g^p \in \mathbb{F}_p(x^p)$ and that $f^{(p-1)} + f^p = g^p$ has a solution in $\mathbb{F}_p(x)$.

Step 1: Show that there is a solution whose denominator divides that of g.

Factoring $N(\partial^p)$: when $K_N = \mathbb{F}_p(x)$

Suppose that $K_N = \mathbb{F}_p(x)$, $y_N = g^p \in \mathbb{F}_p(x^p)$ and that $f^{(p-1)} + f^p = g^p$ has a solution in $\mathbb{F}_p(x)$.

Step 1: Show that there is a solution whose denominator divides that of g.

Step 2: Deduce that the degree of the numerator of this solution is at most deg(g).

Factoring $N(\partial^p)$: when $K_N = \mathbb{F}_p(x)$

Suppose that $K_N = \mathbb{F}_p(x)$, $y_N = g^p \in \mathbb{F}_p(x^p)$ and that $f^{(p-1)} + f^p = g^p$ has a solution in $\mathbb{F}_p(x)$.

Step 1: Show that there is a solution whose denominator divides that of g.

Step 2: Deduce that the degree of the numerator of this solution is at most deg(g).

Step 3: Solve an \mathbb{F}_p -linear system.

Factoring $N(\partial^p)$: general case

 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$

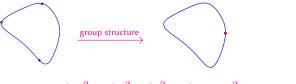
Factoring $N(\partial^p)$: general case

 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$

 $(2X^{2}+2)Y^{2} + (X^{2}+2)Y + 2X^{2} + 2X + 2 = 0$

Factoring $N(\partial^p)$: general case

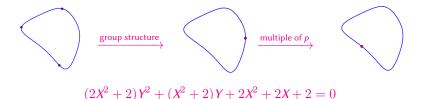
 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$



 $(2X^{2}+2)Y^{2} + (X^{2}+2)Y + 2X^{2} + 2X + 2 = 0$

Factoring $N(\partial^p)$: general case

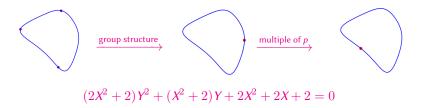
 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$



15/22

Factoring $N(\partial^p)$: general case

 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$

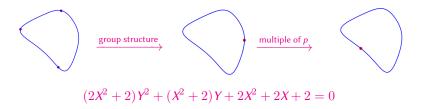


Theorem (P., 2022)

If the p-Riccati has a solution in K_N then one of its solution has its poles located in

Factoring $N(\partial^p)$: general case

 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$

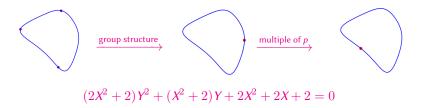


Theorem (P., 2022)

If the p-Riccati has a solution in K_N then one of its solution has its poles located in the poles of y_N ,

Factoring $N(\partial^p)$: general case

 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$

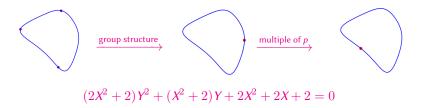


Theorem (P., 2022)

If the p-Riccati has a solution in K_N then one of its solution has its poles located in the poles of y_N , in ramified places of K_N ,

Factoring $N(\partial^p)$: general case

 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$

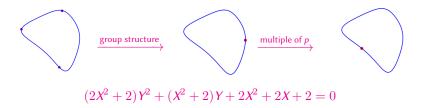


Theorem (P., 2022)

If the p-Riccati has a solution in K_N then one of its solution has its poles located in the poles of y_N , in ramified places of K_N , a chosen place of degree 1

Factoring $N(\partial^p)$: general case

 $N(\partial^3) = (2x^6 + 2)\partial^6 + (x^6 + 2)\partial^3 + 2x^6 + 2x^3 + 2.$



Theorem (P., 2022)

If the p-Riccati has a solution in K_N then one of its solution has its poles located in the poles of y_N , in ramified places of K_N , a chosen place of degree 1 and in a set of places generating the cokernel of the multiplication by p on the Jacobian.

Algorithm

• Compute $f \in K_N$ such that $f^{(p-1)} + f^p = y_N$.

• Compute
$$L = \operatorname{gcrd}(\varphi_N^{-1}(\partial - f), N(\partial^p)).$$

Algorithm

- Compute $f \in K_N$ such that $f^{(p-1)} + f^p = y_N$.
 - Construct a divisor A_N such that we know that a solution lives in $\mathcal{L}(A_N)$.

• Compute
$$L = \operatorname{gcrd}(\varphi_N^{-1}(\partial - f), N(\partial^p)).$$

Algorithm

- Compute $f \in K_N$ such that $f^{(p-1)} + f^p = y_N$.
 - Construct a divisor A_N such that we know that a solution lives in $\mathcal{L}(A_N)$.
 - Computes the Riemann-Roch space $\mathcal{L}(A_N)$.

• Compute
$$L = \operatorname{gcrd}(\varphi_N^{-1}(\partial - f), N(\partial^p)).$$

Algorithm

- Compute $f \in K_N$ such that $f^{(p-1)} + f^p = y_N$.
 - Construct a divisor A_N such that we know that a solution lives in $\mathcal{L}(A_N)$.
 - Computes the Riemann-Roch space $\mathcal{L}(A_N)$.
 - Solve a \mathbb{F}_p -linear system over $\mathcal{L}(A_N)$
- Compute $L = \operatorname{gcrd}(\varphi_N^{-1}(\partial f), N(\partial^p)).$

$$L_1 = \partial^2 + \left(\frac{2x^5 + x^4 + x^3 + 2x^2 + x + 1}{x^5 + x^4 + x^2 + 2x}\right)\partial + \frac{x^3 + x^2 + 2}{x^3 + x^2 + 2x}$$

Running example

$(2x^6+2)\partial^6 + (x^6+2)\partial^3 + 2x^6 + 2x^3 + 2$

$$(2x^{6}+2)\partial^{6} + (x^{6}+2)\partial^{3} + 2x^{6} + 2x^{3} + 2$$
$$= \partial^{2} + \left(\frac{2x^{5}+x^{4}+x^{3}+2x^{2}+x+1}{x^{5}+x^{4}+x^{2}+2x}\right)\partial + \frac{x^{3}+x^{2}+2}{x^{3}+x^{2}+2x}$$

$$\begin{aligned} &(2x^{6}+2)\partial^{6}+(x^{6}+2)\partial^{3}+2x^{6}+2x^{3}+2\\ &=\partial^{2}+\left(\frac{2x^{5}+x^{4}+x^{3}+2x^{2}+x+1}{x^{5}+x^{4}+x^{2}+2x}\right)\partial+\frac{x^{3}+x^{2}+2}{x^{3}+x^{2}+2x}\\ &\times\partial^{2}+\left(\frac{2x^{3}+x^{2}+1}{x^{3}+x}\right)\partial+\frac{x^{10}+x^{9}+x^{8}+x^{5}+x^{4}+2x^{2}+2}{x^{10}+2x^{9}+x^{8}+2x^{7}+x^{5}+x^{4}+x^{3}+x^{2}}\end{aligned}$$

$$\begin{aligned} &(2x^{6}+2)\partial^{6}+(x^{6}+2)\partial^{3}+2x^{6}+2x^{3}+2\\ =&\partial^{2}+\left(\frac{2x^{5}+x^{4}+x^{3}+2x^{2}+x+1}{x^{5}+x^{4}+x^{2}+2x}\right)\partial+\frac{x^{3}+x^{2}+2}{x^{3}+x^{2}+2x}\\ &\times\partial^{2}+\left(\frac{2x^{3}+x^{2}+1}{x^{3}+x}\right)\partial+\frac{x^{10}+x^{9}+x^{8}+x^{5}+x^{4}+2x^{2}+2}{x^{10}+2x^{9}+x^{8}+2x^{7}+x^{5}+x^{4}+x^{3}+x^{2}}\\ &\times\left(2x^{6}+2\right)\partial^{2}+\left(\frac{x^{8}+x^{7}+2x^{6}+x^{5}+2x^{3}+x^{2}+2x+2}{x^{2}+x+2}\right)\partial\\ &+\frac{2x^{12}+2x^{10}+2x^{9}+2x^{7}+2x^{6}+x^{5}+2x+2}{x^{6}+2x^{5}+2x+2}\end{aligned}$$

Size of the *p*-Riccati solution

We have shown that the solutions of the *p*-Riccati equation belong in the Riemann-Roch space $\mathcal{L}(A_N)$ with

Size of the *p*-Riccati solution

We have shown that the solutions of the *p*-Riccati equation belong in the Riemann-Roch space $\mathcal{L}(A_N)$ with

$$A_N := \max(p^{-1}(y_N)_-, \operatorname{Diff}(K_N)) + \mathcal{R}_N$$

Size of the *p*-Riccati solution

We have shown that the solutions of the *p*-Riccati equation belong in the Riemann-Roch space $\mathcal{L}(A_N)$ with

$$A_N := \max(p^{-1}(y_N)_-, \operatorname{Diff}(K_N)) + \mathcal{R}_N$$

where \mathcal{R}_N is a divisor accounting for wildly ramified places, the cokernel of the multiplication by p on the Jacobian and a place of degree 1.

Size of the *p*-Riccati solution

We have shown that the solutions of the *p*-Riccati equation belong in the Riemann-Roch space $\mathcal{L}(A_N)$ with

$$A_N := \max(p^{-1}(y_N)_-, \operatorname{Diff}(K_N)) + \mathcal{R}_N$$

where \mathcal{R}_N is a divisor accounting for wildly ramified places, the cokernel of the multiplication by *p* on the Jacobian and a place of degree 1. (Usual case is $\mathcal{R}_N = 0$.)

Size of the *p*-Riccati solution

We have shown that the solutions of the *p*-Riccati equation belong in the Riemann-Roch space $\mathcal{L}(A_N)$ with

$$A_N := \max(p^{-1}(y_N)_-, \operatorname{Diff}(K_N)) + \mathcal{R}_N$$

where \mathcal{R}_N is a divisor accounting for wildly ramified places, the cokernel of the multiplication by p on the Jacobian and a place of degree 1. (Usual case is $\mathcal{R}_N = 0$.)

Lemma

Let $E_y = \left(\frac{d}{dy}N\right)(y_N)^{1/p}$ and N_k be the quotient of the euclidian division of N by y^k . Then for any $f = \sum_{i=0}^{d-1} f_i y_N^{i/p} \in K_N$ we have

$$f_k = \operatorname{Tr}\left(\frac{N_{k+1}(y_N)^{1/p}}{E_y} \cdot f\right)$$

Size of the *p*-Riccati solution

Let
$$\deg_x(N) = r$$
 and $\deg_v(N) = d$.

Heuristic

With the same notations as the previous slides, supposing $\mathcal{R}_N = 0$ (usual case in experiments), we observe

$$\mathcal{L}(A_N) \subset \frac{\mathbb{F}_p[x, y_N^{1/p}]_{\leqslant r, < d}}{E_y}$$

Complexities

Complexities

Complexities

Complexities

• Dimension of $\mathcal{L}(A_N)$: $O(rd) \rightarrow$ **size of the basis** $O((rd)^2)$.

Complexities

Complexities

- Dimension of $\mathcal{L}(A_N)$: $O(rd) \rightarrow$ **size of the basis** $O((rd)^2)$.
- Computing (p-1)-th derivatives expected possible complexity $\tilde{O}((dr)^{\omega}\sqrt{dp})$.

Complexities

Complexities

- Dimension of $\mathcal{L}(A_N)$: $O(rd) \rightarrow$ **size of the basis** $O((rd)^2)$.
- Computing (p-1)-th derivatives expected possible complexity $\tilde{O}((dr)^{\omega}\sqrt{dp})$.
- Computing $\varphi_N^{-1} \Leftrightarrow$ changing basis from $(1, y_N^{1/p}, \cdots, y_N^{(d-1)/p})$ to $(1, y_N, \cdots, y_N^{d-1})$. inverting $d \times d$ polynomial matrix with coefficients of degree O(pr).

Complexities

Complexities

- Dimension of $\mathcal{L}(A_N)$: $O(rd) \rightarrow$ **size of the basis** $O((rd)^2)$.
- Computing (p-1)-th derivatives expected possible complexity $\tilde{O}((dr)^{\omega}\sqrt{dp})$.
- Computing $\varphi_N^{-1} \Leftrightarrow$ changing basis from $(1, y_N^{1/p}, \cdots, y_N^{(d-1)/p})$ to $(1, y_N, \cdots, y_N^{d-1})$. inverting $d \times d$ polynomial matrix with coefficients of degree O(pr).
- Computing gcrd of $N(\partial^p)$ and $\partial L(\partial^p)$ with $N \in C[Y]$ and $L \in \mathbb{F}_p(x)[Y]$.

naive approach manipulates objects of size $O(p^2 rd)$

Future works

Implementation

Future works

- Implementation
- lclm factorisation.

Future works

- Implementation
- lclm factorisation.
- Factorisation of differential systems

Future works

- Implementation
- lclm factorisation.
- Factorisation of differential systems

Thank you for your attention