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Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Algebra of differential operators

Object of study

Differential operators in Fp(x)〈∂〉 = {an(x)∂n + · · ·+ a1(x)∂ + a0(x)}.

Commutation rule:

∂f = f∂ + f ′

Derivation:

f ′ =
d
dx f

Goal: Factor differential operators as a product of irreducible differential
operators.

Running example:

(2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2 ∈ F3(x)〈∂〉
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State of the art

M. van der Put. Modular methods for factoring differential operators.
Unpublished manuscript, 1997.

M. Giesbrecht, Y. Zhang, Factoring and decomposing Ore
polynomials over Fp(t), ISSAC 2003.

T. Cluzeau, factorisation of differential systems in characteristic p,
ISSAC 2003.

X. Caruso, J. Le Borgne. A new faster algorithm for factoring skew
polynomials over finite fields. JSC 2017.

J. Gomez-Torrecillas, F. J. Lobillo, G. Navarro, Computing the bound
of an Ore polynomial. Applications to factorisation, JSC 2019.
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State of the art

Problem: For reducible divisors of Q(xp, ∂p) with Q ∈ Fp[u, v].

Lacks a way to factor central operators e.g ∂p

Notation

C := Fp(xp) is the field of constants of Fp(x).
C[∂p] is the center of Fp(x)〈∂〉.
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Main tools

Classical (van der Put, Cluzeau)
Tool 1: p-curvature and first reduction

Tool 2: Understanding the structure of the differential equations. Morita’s
equivalence.

New! Tool 3: Algebraic geometry tools for solving p-Riccati equation.

Divisor arithmetic on algebraic curves and Riemann-Roch spaces

Group structure and p-torsion of the Jacobian.

Contribution

An algorithm able to fully factor central differential operators which will
extend to operators with coefficients in finite separable extensions of Fp(x).
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A guideline: studying the submodules of Fp(x)〈∂〉/Fp(x)〈∂〉L

Notation

DL := Fp(x)⟨∂⟩/Fp(x)⟨∂⟩L.

DLL′ is the Fp(x)〈∂〉-submodule of DL generated by L′.

Let L ∈ Fp(x)〈∂〉

Lemma

L′ 7→ DLL′

is a one-to-one decreasing bijection between

The set of right divisors of L (up to a multiplicative element in Fp(x)×)

The set of Fp(x)〈∂〉-submodules of DL.

Direct consequence of Fp(x)〈∂〉 being a left principal ideal domain.
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Setting

Setting

Trying to factor N(∂p)

N(Y) is irreducible over C.

N(∂p) = (2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2

N(Y) = (2x6 + 2)Y2 + (x6 + 2)Y+ 2x6 + 2x3 + 2

Notation

CN := C[Y]/N(Y)

Facts

DN(∂p) is a CN-algebra (Y 7→ ∂p)
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Structure results

Proposition (van der Put)

DN(∂p) is a central simple CN-algebra of dimension p2.

Theorem (Artin-Wedderburn)

Any central simple CN- algebra is isomorphic to a matrix algebra over a
division algebra.

Corollary

DN(∂p) is either a division algebra or isomorphic to Mp(CN).
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Morita’s equivalence

If DN(∂p) is a division algebra then N(∂p) has no nontrivial divisor and is
irreducible.

Suppose that DN(∂p) is isomorphic to Mp(CN).

Morita’s equivalence

The categories of CN-vector spaces and left-Mp(CN)-modules are
equivalent.

Fact

If L is a divisor of N(∂p) then L is irreducible if and only if ord(L) = deg(N).

9 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Morita’s equivalence

If DN(∂p) is a division algebra then N(∂p) has no nontrivial divisor and is
irreducible.

Suppose that DN(∂p) is isomorphic to Mp(CN).

Morita’s equivalence

The categories of CN-vector spaces and left-Mp(CN)-modules are
equivalent.

Fact

If L is a divisor of N(∂p) then L is irreducible if and only if ord(L) = deg(N).

9 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Morita’s equivalence

If DN(∂p) is a division algebra then N(∂p) has no nontrivial divisor and is
irreducible.

Suppose that DN(∂p) is isomorphic to Mp(CN).

Morita’s equivalence

The categories of CN-vector spaces and left-Mp(CN)-modules are
equivalent.

Fact

If L is a divisor of N(∂p) then L is irreducible if and only if ord(L) = deg(N).

9 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Morita’s equivalence

If DN(∂p) is a division algebra then N(∂p) has no nontrivial divisor and is
irreducible.

Suppose that DN(∂p) is isomorphic to Mp(CN).

Morita’s equivalence

The categories of CN-vector spaces and left-Mp(CN)-modules are
equivalent.

Fact

If L is a divisor of N(∂p) then L is irreducible if and only if ord(L) = deg(N).

9 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Extending the field of constants

Hypothesis: N is separable over C.

Notation

yN is the image of Y in CN = C[Y]/N(Y).
KN = Fp(x) · CN

Recall: DN(∂p) = Fp(x)⟨∂⟩/N(∂p)

Fp(x)〈∂〉 KN〈∂〉

Fp(x)⟨∂⟩/N(∂p) KN⟨∂⟩/∂p−yN
φN
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‘’p-Riccati” equation

Lemma (Jacobson, van der Put)

L′ ∈ KN〈∂〉 is an irreducible divisor of ∂p − yN iff L′ = ∂ − f

with

f (p−1) + f p = yN

Lemma (P., 2022)

Let f ∈ KN be such that f (p−1) + f p = yN. Then

∂p − yN = lclmp
i=1

(
∂ − f− i

x

)
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Algorithm

Compute f ∈ KN such that f (p−1) + f p = yN.

Construct a divisor A such that we know that a solution lives in
L(A).

Computes the Riemann-Roch space L(A).
Solve a Fp-linear system over L(A)

Compute L = gcrd(φ−1
N (∂ − f ),N(∂p)).

12 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Algorithm

Compute f ∈ KN such that f (p−1) + f p = yN.

Construct a divisor A such that we know that a solution lives in
L(A).

Computes the Riemann-Roch space L(A).
Solve a Fp-linear system over L(A)

Compute L = gcrd(φ−1
N (∂ − f ),N(∂p)).

12 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

The case when L 6= N(∂p) (after van der Put)

LN := gcrd(φN(L), ∂p − yN)

is a non trivial divisor of ∂p − yN.

Fact

If LN = ∂m + am−1∂
m−1 + · · ·+ a0 then − am−1

m is a solution of the
p-Riccati equation.

proof:
LN = (∂ − f1) · · · (∂ − fm).

− am−1

m = 1
m (f1 + · · ·+ fm)

The space of solutions of p-Riccati is an affine space

13 / 22
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Factoring N(∂p): when KN = Fp(x)

Suppose that KN = Fp(x), yN = gp ∈ Fp(xp)
and that f (p−1) + f p = gp has a solution in Fp(x).

Step 1: Show that there is a solution whose denominator divides that of g.

Step 2: Deduce that the degree of the numerator of this solution is at
most deg(g).

Step 3: Solve an Fp-linear system.

14 / 22
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Step 3: Solve an Fp-linear system.
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Factoring N(∂p): general case

N(∂3) = (2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2.

group structure−−−−−−−−→ multiple of p−−−−−−→

(2X2 + 2)Y2 + (X2 + 2)Y+ 2X2 + 2X+ 2 = 0

Theorem (P., 2022)

If the p-Riccati has a solution in KN then one of its solution has its poles
located in

the poles of yN, in ramified places of KN, a chosen place of degree
1 and in a set of places generating the cokernel of the multiplication by p on
the Jacobian.
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Algorithm

Compute f ∈ KN such that f (p−1) + f p = yN.

Construct a divisor AN such that we know that a solution lives in
L(AN).

Computes the Riemann-Roch space L(AN).
Solve a Fp-linear system over L(AN)

Compute L = gcrd(φ−1
N (∂ − f ),N(∂p)).
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Running example

L1 = ∂2 +

(
2x5 + x4 + x3 + 2x2 + x+ 1

x5 + x4 + x2 + 2x

)
∂ +

x3 + x2 + 2

x3 + x2 + 2x

17 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Running example

(2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2

=∂2 +

(
2x5 + x4 + x3 + 2x2 + x+ 1

x5 + x4 + x2 + 2x

)
∂ +

x3 + x2 + 2

x3 + x2 + 2x

×∂2 +

(
2x3 + x2 + 1

x3 + x

)
∂ +

x10 + x9 + x8 + x5 + x4 + 2x2 + 2

x10 + 2x9 + x8 + 2x7 + x5 + x4 + x3 + x2

×
(
2x6 + 2

)
∂2 +

(
x8 + x7 + 2x6 + x5 + 2x3 + x2 + 2x+ 2

x2 + x+ 2

)
∂

+
2x12 + 2x10 + 2x9 + 2x7 + 2x6 + x5 + 2x+ 2

x6 + 2x5 + 2x4 + x3 + x2

18 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Running example

(2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2

=∂2 +

(
2x5 + x4 + x3 + 2x2 + x+ 1

x5 + x4 + x2 + 2x

)
∂ +

x3 + x2 + 2

x3 + x2 + 2x

×∂2 +

(
2x3 + x2 + 1

x3 + x

)
∂ +

x10 + x9 + x8 + x5 + x4 + 2x2 + 2

x10 + 2x9 + x8 + 2x7 + x5 + x4 + x3 + x2

×
(
2x6 + 2

)
∂2 +

(
x8 + x7 + 2x6 + x5 + 2x3 + x2 + 2x+ 2

x2 + x+ 2

)
∂

+
2x12 + 2x10 + 2x9 + 2x7 + 2x6 + x5 + 2x+ 2

x6 + 2x5 + 2x4 + x3 + x2

18 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Running example

(2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2

=∂2 +

(
2x5 + x4 + x3 + 2x2 + x+ 1

x5 + x4 + x2 + 2x

)
∂ +

x3 + x2 + 2

x3 + x2 + 2x

×∂2 +

(
2x3 + x2 + 1

x3 + x

)
∂ +

x10 + x9 + x8 + x5 + x4 + 2x2 + 2

x10 + 2x9 + x8 + 2x7 + x5 + x4 + x3 + x2

×
(
2x6 + 2

)
∂2 +

(
x8 + x7 + 2x6 + x5 + 2x3 + x2 + 2x+ 2

x2 + x+ 2

)
∂

+
2x12 + 2x10 + 2x9 + 2x7 + 2x6 + x5 + 2x+ 2

x6 + 2x5 + 2x4 + x3 + x2

18 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Running example

(2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2

=∂2 +

(
2x5 + x4 + x3 + 2x2 + x+ 1

x5 + x4 + x2 + 2x

)
∂ +

x3 + x2 + 2

x3 + x2 + 2x

×∂2 +

(
2x3 + x2 + 1

x3 + x

)
∂ +

x10 + x9 + x8 + x5 + x4 + 2x2 + 2

x10 + 2x9 + x8 + 2x7 + x5 + x4 + x3 + x2

×
(
2x6 + 2

)
∂2 +

(
x8 + x7 + 2x6 + x5 + 2x3 + x2 + 2x+ 2

x2 + x+ 2

)
∂

+
2x12 + 2x10 + 2x9 + 2x7 + 2x6 + x5 + 2x+ 2

x6 + 2x5 + 2x4 + x3 + x2

18 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Size of the p-Riccati solution

We have shown that the solutions of the p-Riccati equation belong in the
Riemann-Roch space L(AN) with

AN := max(p−1(yN)−,Diff(KN)) +RN

whereRN is a divisor accounting for wildly ramified places, the cokernel of
the multiplication by p on the Jacobian and a place of degree 1.
(Usual case is RN = 0.)

Lemma

Let Ey =
(

d
dyN

)
(yN)1/p and Nk be the quotient of the euclidian division of N

by yk. Then for any f =
∑d−1

i=0 fiy
i/p
N ∈ KN we have

fk = Tr
(
Nk+1(yN)1/p

Ey
· f
)
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Size of the p-Riccati solution

Let degx(N) = r and degy(N) = d.

Heuristic

With the same notations as the previous slides, supposing RN = 0 (usual
case in experiments), we observe

L(AN) ⊂
Fp[x, y

1/p
N ]⩽r,<d

Ey

20 / 22



Contextualisation
Central simple algebra structure

p-Riccati equation
On complexity aspects

Complexities

Complexities

Dimension of L(AN):
O(rd) →size of the basis O((rd)2).
Computing (p− 1)-th derivatives
expected possible complexity Õ((dr)ω

√
dp).

Computing φ−1
N ⇔ changing basis from (1, y1/pN , · · · , y(d−1)/p

N ) to
(1, yN, · · · , yd−1

N ).
inverting d× d polynomial matrix with coefficients of degree
O(pr).
Computing gcrd of N(∂p) and ∂ − L(∂p) with N ∈ C[Y] and
L ∈ Fp(x)[Y].
naive approach manipulates objects of size O(p2rd)
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Future works

Implementation

lclm factorisation.

Factorisation of differential systems

Thank you for your attention
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