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Differential equations in characteristic p

How “many” algebraic solutions over F,(z) does
(z+1)%y® —zy + (2 +3)y=0

have?
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Differential equations in characteristic p

How “many” algebraic solutions over F,(z) does
(z4+1)%y® —zy + (2 +3)y=0

have?

Idea: Such an equation has an algebraic basis of solutions iff the
”p-curvature” of this equation is zero.
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Differential equations in characteristic p

How “many” algebraic solutions over F,(z) does
(z+1)%y® —z/ + (2 +3)y=0

have?

Theorem (Cartier)
For any such linear differential equation we have an equality between
@ the dimension of the space of solutions that are algebraic over F,(z)

@ the dimension of the kernel of the p-curvature of this differential
equation.




p-curvature in characteristic 0

Conjecture (Grothendieck-Katz)

A linear differential equation in characteristic 0 admits an algebraic basis
of solutions over Q(2) iff its reduction modulo p has an algebraic basis of
solutions over [F,(z) for all primes p except a finite number.
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p-curvature in characteristic 0

Conjecture (Grothendieck-Katz)

A linear differential equation in characteristic 0 admits an algebraic basis
of solutions over Q(2) iff its reduction modulo p has an algebraic basis of
solutions over [F,(z) for all primes p except a finite number.

Theorem (Chudnovsky?)

| \

If f € Z[[2]] (with non zero convergence radius) is a solution of a linear
differential equation, then the minimal differential equation for f only has
nilpotent p-curvatures, except for a finite number of primes..

Useful for guessing procedures.



Other applications

@ Algorithms for factoring differential operators using p-curvatures
[CLuzEAu, ISSAC 2003]
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Other applications

@ Algorithms for factoring differential operators using p-curvatures
[CLuzEAu, ISSAC 2003]

@ Algorithms for computing the Lie algebra of differential operators
[BArRkATOU, CLUZEAU, D1 Vizio, WEIL, ISSAC 2016]
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Algebra of Differential operators

Let A = F,[z or Fp(z). We define A(D).
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Algebra of Differential operators

Let A = F,[z or Fp(z). We define A(D).

(z+1)%® —z/ + (2 +3)y=0

(z+1)20° — 20+ (22 + 3)

\

f=fo+f




The p-curvature

Idea : The p-curvature of an operator is 9 modulo this operator



The p-curvature

Definition

The p-curvature of an operator L € F,(z)(0) is the F,(z)-linear
endomorphism of F»(2(9)/F,(z)(d)L induced by the left multiplication by &”.
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The p-curvature

Definition

The p-curvature of an operator L € F,(z)(0) is the F,(z)-linear
endomorphism of F»(2(9)/F,(z)(d)L induced by the left multiplication by &”.

(z+1)%y® — 2y + (2 +3)y=0
_ z3+3
(zj—l)2
@02
0

0 0
A=11 0
0 1
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The p-curvature

Definition

The p-curvature of an operator L € F,(z)(0) is the F,(z)-linear
endomorphism of F»(2(9)/F,(z)(d)L induced by the left multiplication by &”.

(z+1)%y® —zy + (£ +3)y=0

z3+3
Lo &
A=1 0 e
01 0

Ap=1d Aip1 = A;( + AAg Ap
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The p-curvature

Definition

The p-curvature of an operator L € F,(z)(0) is the F,(z)-linear
endomorphism of F»(2(9)/F,(z)(d)L induced by the left multiplication by &”.

(z+1)%y® —zy + (£ +3)y=0

z3+3
0 0 —%rpe
A= 0 e
01 0
Ao =1d Ak+1:A2+AAk Ap

Size: A, is of bit size O(p).
Cost: b(pQ) binary operations.
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p-curvature of an operator

For (z4+1)%2y®) —zy + (£ +3)y=0and p = 3.



p-curvature of an operator

For (z4+1)%2y®) —zy + (£ +3)y=0and p = 3.

273 27 274
2427+1 41 24;23 z+1
A — z 224+2z3+22+1 z4+z+ +2z+42
p 242z+1 +1 A4 47+1
0 z 224+223+z+2
z24274+1 541




p-curvature of an operator

For (z4+1)%2y®) —zy + (£ +3)y=0and p = 3.

27° 27 27
7242741 2241 24;23 z+1
A — z 224+2z3+22+1 z4+z +77 42742
P 7242z+1 z22+1 A+B 4741
0 z 224+223+z+2
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p-curvature of an operator

For (z4+1)%2y®) —zy + (£ +3)y=0and p = 3.

27° 27 27
7242741 2241 24;23 z+1
A — z 224+2z3+22+1 z4+z +77 42742
P 7242z+1 z22+1 A+B 4741
0 z 224+223+z+2
z24274+1 541
2 £ +27
A) = x> + X+
X(4) 2+1 0 A+l

Fact: x(Ap(L)) € Fp(2°)[x].



p-curvature of an operator

For (z4+1)%2y®) —zy + (£ +3)y=0and p = 3.

27° 27 27
7242741 2241 24;23 z+1
A — z 224+2z3+22+1 z4+z +77 42742
P 7242z+1 z22+1 A+B 4741
0 z 224+223+z+2
z24274+1 541
2 £ +27
A) = x> + X+
X(4) 2+1 0 A+l

Fact: x(Ap(L)) € Fp(2°)[x].
Size: x(A,(L)) is of bit size O(log(p)).
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@ First subquadratic time algorithm for computing the p-curvature
[BosTAN, ScHosT, ISSAC 2009].
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Previous works around the computation of p-curvatures

@ First subquadratic time algorithm for computing the p-curvature
[BosTAN, ScHosT, ISSAC 2009].

@ Computing the p-curvature of an operator in O(p) binary operations
[BosTAN, CARUSO, ScHosT, ISSAC 2015].

o Computing the characteristic polynomial of the p-curvature of an
operator in O(,/p) binary operations [BosTAN, CARUSO, SCHOST,
ISSAC 2014].



Previous works around the computation of p-curvatures

First subquadratic time algorithm for computing the p-curvature
[BosTAN, ScHosT, ISSAC 2009].

Computing the p-curvature of an operator in é(p) binary operations
[BosTAN, CARUSO, ScHosT, ISSAC 2015].

Computing the characteristic polynomial of the p-curvature of an
operator in O(,/p) binary operations [BosTAN, CARUSO, SCHOST,
ISSAC 2014].

Computing the Invariant factors of the p-curvature of an operator in
O(\/f)) binary operations [BosTaN, CARUSO, ScHosT, ISSAC 2016].



My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[z] , the characteristic polynomials of its p-curvatures for all
primes p < N in O(N) binary operations.
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My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[z] of order r, with polynomial coefficients of degree at most
d and integer coefficients of bit size at most B, all the characteristic
polynomials of its p-curvatures for all primes p < N in

ONd(B+ d)(r+d)“ + (r+ d) )

binary operations.




My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[z] of order r, with polynomial coefficients of degree at most
d and integer coefficients of bit size at most B, all the characteristic
polynomials of its p-curvatures for all primes p < N in

ONd(B+ d)(r+d)“ + (r+ d) )

binary operations.

w < 2,373 is an exponent of matrix multiplication in any ring.
Q < 2,698 is an exponent for the computation of the characteristic
polynomial in any ring,.



My Contribution: Pr

Implementation of the algorithm in Sagemath

Time (in seconds)

102 4
ol
101 4 '
)
10° 4 g
- -
~y=N/T0

- operators of order 3, degree 2

- operators of order 7, degree 5

- operators of order 15, degree 12
101 5 - operators of order 20, degree 2

N

10! 10? 10° 10*
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Computation of p-curvatures

Goal: Computing all the characteristic polynomials of the p-curvatures of
an operator in Q(z2)(9) for p < N.



Computation of p-curvatures

Goal: Computing all the characteristic polynomials of the p-curvatures of
an operator in Q(z2)(9) for p < N.

Step 1: Reduce the computation of the p-curvature to that of a matrix
factorial as in [BosTAaN, CARUSO, ScHosT, ISSAC 2014].

M(0) € My (F,[0])



Computation of p-curvatures

Goal: Computing all the characteristic polynomials of the p-curvatures of
an operator in Q(z2)(9) for p < N.

Step 1: Reduce the computation of the p-curvature to that of a matrix
factorial as in [BosTAaN, CARUSO, ScHosT, ISSAC 2014].

M(8) € M(E,[6]) — M(B)M(O +1)--- M(9 + p — 1)



Computation of p-curvatures

Goal: Computing all the characteristic polynomials of the p-curvatures of
an operator in Q(z2)(9) for p < N.

Step 1: Reduce the computation of the p-curvature to that of a matrix
factorial as in [BosTAaN, CARUSO, ScHosT, ISSAC 2014].

M(8) € M(E,[6]) — M(B)M(O +1)--- M(9 + p — 1)

Step 2: Use the factorial computation method of [CosTA, GErsicz,
HARVEY, Math. Comp. 2014]



Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of (2] () as operators in the variables 0 and
0 = z0.



Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of (2] () as operators in the variables 0 and
0 = z0.
00 = 020 = (z0+1)0 = (6 + 1)0
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Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of (2] () as operators in the variables 0 and
0 = z0.
00 = 020 = (z0+1)0 = (6 + 1)0
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Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of (2] () as operators in the variables 0 and
0 = z0.
00 = 020 = (z0+1)0 = (6 + 1)0

8_1

@, Fyl7 <3i1> = FP[9]<aﬂ>
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Another p-curvature

Definition

Let Ly € F,(6)(0). Its p-curvature B,(Lg)(8) is the IF,(6)-linear
endomorphism of F»(0)(9)/F,(6)(8)Ls induced by the left multiplication by

oP.
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Another p-curvature

Definition

Let Ly € F,(6)(0). Its p-curvature B,(Lg)(8) is the IF,(6)-linear
endomorphism of F»(0)(9)/F,(6)(8)Ls induced by the left multiplication by

oP.

If B= B(Lg)(0) is its companion matrix then:

B,(Lp) = B(0)B(O0+1)---B(0+p—1)
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Two crucial maps: =, 5 and Zy 5

Let L, € Fp(2)(0) (resp. Ly € F,(0)(0)) with leading coefficient L, (resp. ly).

Ez0(Lz) = L(2)Px(Ap(L)) (")

Z¢,0(Ls) <H lo(0 + i) ) B,(Lp))(0")



Two crucial maps: =, 5 and Zy 5

Properties:

@ =. 5 sends an operator with polynomial coefficients to an operator
with polynomial coefficients.
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Two crucial maps: =, 5 and Zy 5

Properties:

@ =. 5 sends an operator with polynomial coefficients to an operator
with polynomial coefficients.

@ Im(=,5) C Fy(2)[0P] and Im (Eg,5) C F, (6P — 0)[0F]
o Multiplicativity: Z. 5 : F,(-)(0%) — F,(-)(0%F).



Two crucial maps: =, 5 and Zy 5

Properties:

@ =. 5 sends an operator with polynomial coefficients to an operator
with polynomial coefficients.

@ Im(=,5) C Fy(2)[0P] and Im (Eg,5) C F, (6P — 0)[0F]
o Multiplicativity: Z. 5 : F,(-)(0%) — F,(-)(0%F).

Theorem (Bostan, Caruso, Schost, ISSAC 2014)

The applications E. 5 commute with the isomorphism ®,:

KX (0F1) —22 s K[9)(5+L)

lax,a lEe,a

K| [0P] —2s K9P — 6][0*7]




Two crucial maps: =, 5 and Zy 5

(z+1)20°—20+ 2 +3



Two crucial maps: =, 5 and Zy 5

(z+1)20° —20+ 22 +3 = 854+200°+(02—0)0—(0+3)+(0>—302+20)03



Two crucial maps: =, 5 and Zy 5

(z+1)20° —20+ 22 +3 = 854+200°+(02—0)0—(0+3)+(0>—302+20)03

o 23+3
2242741
z

z224+27+1




Two crucial maps: =, 5 and Zy 5

(z+1)20° —20+ 22 +3 = 854+200°+(02—0)0—(0+3)+(0>—302+20)03

—(03 — 362 + 20)

P43 1 0
22t2z+1 ]_ O
1 z224+27+1 1 (0 + 3)
1 0 1 _(92 —0)

1 —20



Two crucial maps: =, 5 and Zy 5

(z+1)20° —20+ 22 +3 = 854+200°+(02—0)0—(0+3)+(0>—302+20)03

—(03 — 362 + 20)

o 23+3 1 O
22t2z+1 ]_ O
1 Feas Fn ) 1 (0 +3)
1 0 1 _(92 —0)
1 —20
9P 42(0°—0)91°

(042 41)015 +

5 2 5
(157 42)85 4715425 +((0°—0)"42)0°+

+2(0°—0)0~°4+(0°—0)20~1°
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Extension to integral coefficients

@ - Z[Z(0FY) = Z[9](0FY)

mod p

Z[7(6%+) F,[4(0%")
o: ol
Z[9)(0+1) —2E s F,[0](0+1)

B(0) is the companion matrix of ®(L).

B(6)B(@+1)---B(@+p—1) mod pforall p< .



A first simplification

If L € Fp[2](0) has coefficients of degree at most d, then Zg 5(®,(L)) has
coefficients of degree at most din 67 — 6.



A first simplification

If L € Fp[2](0) has coefficients of degree at most d, then Zg 5(®,(L)) has
coefficients of degree at most din 67 — 6.

It is possible to determine entirely P € F,[0P — 0] of degree dp in 6 from its
first d coefficients.
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A first simplification

If L € Fp[2](0) has coefficients of degree at most d, then Zg 5(®,(L)) has
coefficients of degree at most din 67 — 6.

It is possible to determine entirely P € F,[0P — 0] of degree dp in 6 from its
first d coefficients.

Conclusion: All computations can be done modulo #¢+1.
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Computation of (p — 1)! mod p* [CosTA, GERBICZ,

HARVEY, 2014]
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Computation of (p — 1)! mod p* [CosTA, GERBICZ,

HARVEY, 2014]

3-1) (5-1)! (7—-1)
mod 3°5°7° mod 5°7° mod 7°

((3—1)! mod 3°5°7°) x (3 x 4)
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Computation of (p — 1)! mod p* [CosTA, GERBICZ,

HARVEY, 2014]

3-1) (5-1)! (7—-1)
mod 3°5°7° mod 5°7° mod 7°

(3—=1)!' mod 3°5°7°) x (3 x4) mod 5°7°
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Computation of (p — 1)! mod p* [CosTA, GERBICZ,

HARVEY, 2014]

3-1) (5-1)! (7—-1)
mod 3°5°7° mod 5°7° mod 7°

(3—=1)!' mod 3°5°7°) x (3 x4) mod 5°7°

((6—=1)! mod 5°7°) x (5 x6) mod 7°



Computation of B(f)---B(6 +p—1) mod p

N=T.

B(0)B(60+1)B(0+2) B(#)---B(O@+4) B(#)---B(f+6)
mod 3 x5 x7 mod 5 x 7 mod 7

(B(6)B(O+1)B(0+2) mod3x5x7)xB(6+3)B6+4) modbx7

(B(#)---B(0+4) modb5xT7)x B(l~+5)B0+6) mod?7

Remainder tree.



Computation of (p — 1)! mod p° [CosTA, GERBICZ,

HARVEY, 2014]

[1;7]

[ (B[] (B[] |7




@ [BosTaN, CARUSO, ScHOST, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial

22/1



@ [BosTaN, CARUSO, ScHOST, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial = can a similar
method be applied?

22/1



@ [BosTaN, CARUSO, ScHOST, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial = can a similar
method be applied?

@ Extension to operators with coefficients in a number field.

22/1



@ [BosTaN, CARUSO, ScHOST, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial = can a similar
method be applied?

@ Extension to operators with coefficients in a number field.

THANK YOU FOR YOUR ATTENTION



