Computing Characteristic Polynomials of *p*-Curvatures in Average Polynomial Time Journées Nationales de Calcul Formel 2022

Raphaël Pagès^{1 2}

¹INRIA - LFANT

²INRIA - SPECFUN

February 23rd 2022

Differential equations in characteristic *p*

How "many" algebraic solutions over $\mathbb{F}_p(z)$ does

$$(z+1)^2 y^{(3)} - z y' + (z^3+3)y = 0$$

have?

Differential equations in characteristic p

How "many" algebraic solutions over $\mathbb{F}_p(z)$ does

$$(z+1)^2 y^{(3)} - z y' + (z^3+3)y = 0$$

have?

Idea: Such an equation has an algebraic basis of solutions iff the *"p*-curvature" of this equation is zero.

Differential equations in characteristic p

How "many" algebraic solutions over $\mathbb{F}_p(z)$ does

$$(z+1)^2 y^{(3)} - z y' + (z^3+3)y = 0$$

have?

Theorem (Cartier)

For any such linear differential equation we have an equality between

- the dimension of the space of solutions that are algebraic over $\mathbb{F}_p(z)$
- the dimension of the kernel of the p-curvature of this differential equation.

p-curvature in characteristic 0

Conjecture (Grothendieck-Katz)

A linear differential equation in characteristic 0 admits an algebraic basis of solutions over $\mathbb{Q}(z)$ iff its reduction modulo p has an algebraic basis of solutions over $\mathbb{F}_p(z)$ for all primes p except a finite number.

p-curvature in characteristic 0

Conjecture (Grothendieck-Katz)

A linear differential equation in characteristic 0 admits an algebraic basis of solutions over $\mathbb{Q}(z)$ iff its reduction modulo p has an algebraic basis of solutions over $\mathbb{F}_p(z)$ for all primes p except a finite number.

Theorem (Chudnovsky²)

If $f \in \mathbb{Z}[[z]]$ (with non zero convergence radius) is a solution of a linear differential equation, then the minimal differential equation for f only has nilpotent p-curvatures, except for a finite number of primes..

Useful for guessing procedures.

Other applications

• Algorithms for factoring differential operators using *p*-curvatures [CLUZEAU, ISSAC 2003]

Other applications

- Algorithms for factoring differential operators using *p*-curvatures [CLUZEAU, ISSAC 2003]
- Algorithms for computing the Lie algebra of differential operators [BARKATOU, CLUZEAU, DI VIZIO, WEIL, ISSAC 2016]

Algebra of Differential operators

Definition

Let $\mathcal{A} = \mathbb{F}_p[z]$ or $\mathbb{F}_p(z)$. We define $\mathcal{A}\langle \partial \rangle$.

Algebra of Differential operators

Definition

Let $\mathcal{A} = \mathbb{F}_p[z]$ or $\mathbb{F}_p(z)$. We define $\mathcal{A}\langle \partial \rangle$.

 $\mathcal{A} \langle \partial \rangle \simeq \mathcal{A} [\partial]$ as sets

Algebra of Differential operators

Definition

Let
$$\mathcal{A} = \mathbb{F}_p[z]$$
 or $\mathbb{F}_p(z)$. We define $\mathcal{A}\langle \partial \rangle$.

 $\mathcal{A} \langle \partial \rangle \simeq \mathcal{A} [\partial]$ as sets

Example

$$(z+1)^2 y^{(3)} - zy' + (z^3+3)y = 0$$

Algebra of Differential operators

Definition

Let
$$\mathcal{A} = \mathbb{F}_p[z]$$
 or $\mathbb{F}_p(z)$. We define $\mathcal{A}\langle \partial \rangle$.

 $\mathcal{A} \langle \partial \rangle \simeq \mathcal{A} [\partial]$ as sets

Example

$$(z+1)^2 y^{(3)} - zy' + (z^3+3)y = 0$$

$$(z+1)^2\partial^3 - z\partial + (z^3+3)$$

Algebra of Differential operators

Definition

Let
$$\mathcal{A} = \mathbb{F}_p[z]$$
 or $\mathbb{F}_p(z)$. We define $\mathcal{A}\langle \partial \rangle$.

 $\mathcal{A} \langle \partial \rangle \simeq \mathcal{A} [\partial]$ as sets

Example

$$(z+1)^2 y^{(3)} - zy' + (z^3+3)y = 0$$

$$(z+1)^2\partial^3 - z\partial + (z^3+3)$$

$$\partial f = f\partial + f'$$

The *p*-curvature

Idea : The *p*-curvature of an operator is ∂^p modulo this operator

The *p*-curvature

Definition

The *p*-curvature of an operator $L \in \mathbb{F}_p(z)\langle \partial \rangle$ is the $\mathbb{F}_p(z)$ -linear endomorphism of $\mathbb{F}_p(z)\langle \partial \rangle/\mathbb{F}_p(z)\langle \partial \rangle L$ induced by the left multiplication by ∂^p .

The *p*-curvature

Definition

The *p*-curvature of an operator $L \in \mathbb{F}_p(z)\langle \partial \rangle$ is the $\mathbb{F}_p(z)$ -linear endomorphism of $\mathbb{F}_p(z)\langle \partial \rangle/\mathbb{F}_p(z)\langle \partial \rangle L$ induced by the left multiplication by ∂^p .

$$z+1)^{2}y^{(3)} - zy' + (z^{3}+3)y = 0$$
$$A = \begin{pmatrix} 0 & 0 & -\frac{z^{3}+3}{(z+1)^{2}} \\ 1 & 0 & \frac{z}{(z+1)^{2}} \\ 0 & 1 & 0 \end{pmatrix}$$

The *p*-curvature

Definition

The *p*-curvature of an operator $L \in \mathbb{F}_p(z)\langle \partial \rangle$ is the $\mathbb{F}_p(z)$ -linear endomorphism of $\mathbb{F}_p(z)\langle \partial \rangle/\mathbb{F}_p(z)\langle \partial \rangle L$ induced by the left multiplication by ∂^p .

$$z+1)^{2}y^{(3)} - zy' + (z^{3}+3)y = 0$$
$$A = \begin{pmatrix} 0 & 0 & -\frac{z^{3}+3}{(z+1)^{2}} \\ 1 & 0 & \frac{z}{(z+1)^{2}} \\ 0 & 1 & 0 \end{pmatrix}$$

$$A_0 = \mathrm{Id} \qquad \qquad A_{k+1} = A'_k + A A_k \qquad \qquad A_p$$

The *p*-curvature

Definition

The *p*-curvature of an operator $L \in \mathbb{F}_p(z)\langle \partial \rangle$ is the $\mathbb{F}_p(z)$ -linear endomorphism of $\mathbb{F}_p(z)\langle \partial \rangle / \mathbb{F}_p(z)\langle \partial \rangle L$ induced by the left multiplication by ∂^p .

$$z+1)^{2}y^{(3)} - zy' + (z^{3}+3)y = 0$$
$$A = \begin{pmatrix} 0 & 0 & -\frac{z^{3}+3}{(z+1)^{2}} \\ 1 & 0 & \frac{z}{(z+1)^{2}} \\ 0 & 1 & 0 \end{pmatrix}$$

 $A_0 = \mathrm{Id} \qquad \qquad A_{k+1} = A'_k + AA_k \qquad \qquad A_p$

Size: A_p is of bit size $\tilde{O}(p)$. **Cost:** $\tilde{O}(p^2)$ binary operations.

p-curvature of an operator

For $(z+1)^2 y^{(3)} - zy' + (z^3+3)y = 0$ and p = 3.

p-curvature of an operator

For
$$(z+1)^2 y^{(3)} - zy' + (z^3+3)y = 0$$
 and $p = 3$.

$$A_{p} = \begin{pmatrix} \frac{2z^{3}}{z^{2}+2z+1} & \frac{2z^{3}}{z^{3}+1} & \frac{2z^{4}}{z^{4}+z^{3}+z+1} \\ \frac{z}{z^{2}+2z+1} & \frac{2z^{4}+2z^{3}+2z+1}{z^{3}+1} & \frac{z^{4}+z^{3}+z^{2}+2z+2}{z^{4}+z^{3}+z+1} \\ 0 & \frac{z}{z^{2}+2z+1} & \frac{2z^{4}+2z^{3}+z+2}{z^{3}+1} \end{pmatrix}$$

p-curvature of an operator

For
$$(z+1)^2 y^{(3)} - zy' + (z^3+3)y = 0$$
 and $p = 3$.

$$A_{p} = \begin{pmatrix} \frac{2z^{3}}{z^{2}+2z+1} & \frac{2z^{3}}{z^{3}+1} & \frac{2z^{4}}{z^{4}+z^{3}+z+1} \\ \frac{z}{z^{2}+2z+1} & \frac{2z^{4}+2z^{3}+2z+1}{z^{3}+1} & \frac{z^{4}+z^{3}+z^{2}+2z+2}{z^{4}+z^{3}+z+1} \\ 0 & \frac{z}{z^{2}+2z+1} & \frac{2z^{4}+2z^{3}+z+1}{z^{3}+1} \end{pmatrix}$$

$$\chi(A_p) = x^3 + \frac{2}{z^3 + 1}x + \frac{z^6 + 2z^3}{z^3 + 1}$$

p-curvature of an operator

For
$$(z+1)^2 y^{(3)} - zy' + (z^3+3)y = 0$$
 and $p = 3$.

$$A_{p} = \begin{pmatrix} \frac{2z^{3}}{z^{2}+2z+1} & \frac{2z^{3}}{z^{3}+1} & \frac{2z^{4}}{z^{4}+z^{3}+z+1} \\ \frac{z}{z^{2}+2z+1} & \frac{2z^{4}+2z^{3}+2z+1}{z^{3}+1} & \frac{z^{4}+z^{3}+z^{2}+2z+2}{z^{4}+z^{3}+z+1} \\ 0 & \frac{z}{z^{2}+2z+1} & \frac{2z^{4}+2z^{3}+z+1}{z^{3}+1} \end{pmatrix}$$

$$\chi(A_p) = x^3 + \frac{2}{z^3 + 1}x + \frac{z^6 + 2z^3}{z^3 + 1}$$

Fact: $\chi(A_p(L)) \in \mathbb{F}_p(z^p)[x].$

p-curvature of an operator

For
$$(z+1)^2 y^{(3)} - zy' + (z^3+3)y = 0$$
 and $p = 3$.

$$A_{p} = \begin{pmatrix} \frac{2z^{3}}{z^{2}+2z+1} & \frac{2z^{3}}{z^{3}+1} & \frac{2z^{4}}{z^{4}+z^{3}+z+1} \\ \frac{z}{z^{2}+2z+1} & \frac{2z^{4}+2z^{3}+2z+1}{z^{3}+1} & \frac{z^{4}+z^{3}+z^{2}+2z+2}{z^{4}+z^{3}+z+1} \\ 0 & \frac{z}{z^{2}+2z+1} & \frac{2z^{4}+2z^{3}+z+1}{z^{3}+1} \end{pmatrix}$$

$$\chi(A_p) = x^3 + \frac{2}{z^3 + 1}x + \frac{z^6 + 2z^3}{z^3 + 1}$$

Fact: $\chi(A_p(L)) \in \mathbb{F}_p(z^p)[x]$. Size: $\chi(A_p(L))$ is of bit size $O(\log(p))$.

• First subquadratic time algorithm for computing the *p*-curvature [BOSTAN, SCHOST, ISSAC 2009].

- First subquadratic time algorithm for computing the *p*-curvature [BOSTAN, SCHOST, ISSAC 2009].
- Computing the *p*-curvature of an operator in $\tilde{O}(p)$ binary operations [BOSTAN, CARUSO, SCHOST, ISSAC 2015].

- First subquadratic time algorithm for computing the *p*-curvature [BOSTAN, SCHOST, ISSAC 2009].
- Computing the *p*-curvature of an operator in $\tilde{O}(p)$ binary operations [BOSTAN, CARUSO, SCHOST, ISSAC 2015].
- Computing the characteristic polynomial of the *p*-curvature of an operator in $\tilde{O}(\sqrt{p})$ binary operations [BOSTAN, CARUSO, SCHOST, ISSAC 2014].

- First subquadratic time algorithm for computing the *p*-curvature [BOSTAN, SCHOST, ISSAC 2009].
- Computing the *p*-curvature of an operator in $\tilde{O}(p)$ binary operations [BOSTAN, CARUSO, SCHOST, ISSAC 2015].
- Computing the characteristic polynomial of the *p*-curvature of an operator in $\tilde{O}(\sqrt{p})$ binary operations [BOSTAN, CARUSO, SCHOST, ISSAC 2014].
- Computing the Invariant factors of the *p*-curvature of an operator in $\tilde{O}(\sqrt{p})$ binary operations [BOSTAN, CARUSO, SCHOST, ISSAC 2016].

My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with coefficients in $\mathbb{Z}[z]$, the characteristic polynomials of its p-curvatures for all primes p < N in $\tilde{O}(N)$ binary operations.

My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with coefficients in $\mathbb{Z}[z]$ of order r, with polynomial coefficients of degree at most d and integer coefficients of bit size at most B, all the characteristic polynomials of its p-curvatures for all primes p < N in

$$\tilde{O}(Nd((B+d)(r+d)^{\omega}+(r+d)^{\Omega}))$$

binary operations.

My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with coefficients in $\mathbb{Z}[z]$ of order r, with polynomial coefficients of degree at most d and integer coefficients of bit size at most B, all the characteristic polynomials of its p-curvatures for all primes p < N in

$$\tilde{O}(Nd((B+d)(r+d)^{\omega}+(r+d)^{\Omega}))$$

binary operations.

 $\omega < 2,373$ is an exponent of matrix multiplication in any ring. $\Omega < 2,698$ is an exponent for the computation of the characteristic polynomial in any ring.

My Contribution: Practical part

Implementation of the algorithm in Sagemath

Computation of *p*-curvatures

Goal: Computing all the characteristic polynomials of the *p*-curvatures of an operator in $\mathbb{Q}(z)\langle\partial\rangle$ for $p \leq N$.

Computation of *p*-curvatures

Goal: Computing all the characteristic polynomials of the *p*-curvatures of an operator in $\mathbb{Q}(z)\langle\partial\rangle$ for $p \leq N$.

Step 1: Reduce the computation of the *p*-curvature to that of a *matrix factorial* as in [BOSTAN, CARUSO, SCHOST, ISSAC 2014].

 $\mathcal{M}(\theta) \in \mathcal{M}_n(\mathbb{F}_p[\theta])$

Computation of *p*-curvatures

Goal: Computing all the characteristic polynomials of the *p*-curvatures of an operator in $\mathbb{Q}(z)\langle\partial\rangle$ for $p \leq N$.

Step 1: Reduce the computation of the *p*-curvature to that of a *matrix factorial* as in [BOSTAN, CARUSO, SCHOST, ISSAC 2014].

$$M(\theta) \in \mathcal{M}_n(\mathbb{F}_p[\theta]) \longrightarrow M(\theta)M(\theta+1)\cdots M(\theta+p-1)$$

Computation of *p*-curvatures

Goal: Computing all the characteristic polynomials of the *p*-curvatures of an operator in $\mathbb{Q}(z)\langle\partial\rangle$ for $p \leq N$.

Step 1: Reduce the computation of the *p*-curvature to that of a *matrix factorial* as in [BOSTAN, CARUSO, SCHOST, ISSAC 2014].

$$\mathcal{M}(\theta) \in \mathcal{M}_n(\mathbb{F}_p[\theta]) \longrightarrow \mathcal{M}(\theta)\mathcal{M}(\theta+1)\cdots\mathcal{M}(\theta+p-1)$$

Step 2: Use the factorial computation method of [COSTA, GERBICZ, HARVEY, Math. Comp. 2014]

Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of $\mathbb{F}_p[z]\langle\partial\rangle$ as operators in the variables ∂ and $\theta = z\partial$.
Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of $\mathbb{F}_p[z]\langle\partial\rangle$ as operators in the variables ∂ and $\theta = z\partial$.

$$\partial \theta = \partial z \partial = (z \partial + 1) \partial = (\theta + 1) \partial$$

Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of $\mathbb{F}_p[z]\langle\partial\rangle$ as operators in the variables ∂ and $\theta = z\partial$.

$$\partial \theta = \partial z \partial = (z \partial + 1) \partial = (\theta + 1) \partial$$

$$\partial^{-1}$$

1

Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of $\mathbb{F}_p[z]\langle\partial\rangle$ as operators in the variables ∂ and $\theta = z\partial$.

$$\partial \theta = \partial z \partial = (z \partial + 1) \partial = (\theta + 1) \partial$$

$$\partial^{-1}$$

$$\Phi_p: \mathbb{F}_p[z]\langle \partial^{\pm 1} \rangle \xrightarrow{\sim} \mathbb{F}_p[\theta]\langle \partial^{\pm 1} \rangle$$

Another *p*-curvature

Definition

Let $L_{\theta} \in \mathbb{F}_{p}(\theta)\langle \partial \rangle$. Its *p*-curvature $B_{p}(L_{\theta})(\theta)$ is the $\mathbb{F}_{p}(\theta)$ -linear endomorphism of $\mathbb{F}_{p}(\theta)\langle \partial \rangle / \mathbb{F}_{p}(\theta)\langle \partial \rangle L_{\theta}$ induced by the left multiplication by ∂^{p} .

Another *p*-curvature

Definition

Let $L_{\theta} \in \mathbb{F}_{p}(\theta)\langle \partial \rangle$. Its *p*-curvature $B_{p}(L_{\theta})(\theta)$ is the $\mathbb{F}_{p}(\theta)$ -linear endomorphism of $\mathbb{F}_{p}(\theta)\langle \partial \rangle/\mathbb{F}_{p}(\theta)\langle \partial \rangle L_{\theta}$ induced by the left multiplication by ∂^{p} .

If $B = B(L_{\theta})(\theta)$ is its companion matrix then:

$$B_p(L_{\theta}) = B(\theta)B(\theta+1)\cdots B(\theta+p-1)$$

Two crucial maps: $\Xi_{z,\partial}$ and $\Xi_{\theta,\partial}$

Let $L_z \in \mathbb{F}_p(z)\langle \partial \rangle$ (resp. $L_\theta \in \mathbb{F}_p(\theta)\langle \partial \rangle$) with leading coefficient l_z (resp. l_θ).

$$\Xi_{z,\partial}(L_z) := l_z(z)^p \chi(A_p(L_z))(\partial^p)$$

$$\Xi_{\theta,\partial}(L_\theta) := \left(\prod_{i=0}^{p-1} l_\theta(\theta+i)\right) \chi(B_p(L_\theta))(\partial^p)$$

Two crucial maps: $\Xi_{z,\partial}$ and $\Xi_{\theta,\partial}$

Properties:

 Ξ.,∂ sends an operator with polynomial coefficients to an operator with polynomial coefficients.

Two crucial maps: $\Xi_{z,\partial}$ and $\Xi_{\theta,\partial}$

Properties:

- Ξ.,∂ sends an operator with polynomial coefficients to an operator with polynomial coefficients.
- Im $(\Xi_{z,\partial}) \subset \mathbb{F}_p(z^p)[\partial^p]$

Two crucial maps: $\Xi_{z,\partial}$ and $\Xi_{\theta,\partial}$

Properties:

- Ξ., ∂ sends an operator with polynomial coefficients to an operator with polynomial coefficients.
- Im $(\Xi_{z,\partial}) \subset \mathbb{F}_p(z^p)[\partial^p]$ and Im $(\Xi_{\theta,\partial}) \subset \mathbb{F}_p(\theta^p \theta)[\partial^p]$

Two crucial maps: $\Xi_{z,\partial}$ and $\Xi_{\theta,\partial}$

Properties:

- Ξ., ∂ sends an operator with polynomial coefficients to an operator with polynomial coefficients.
- Im $(\Xi_{z,\partial}) \subset \mathbb{F}_p(z^p)[\partial^p]$ and Im $(\Xi_{\theta,\partial}) \subset \mathbb{F}_p(\theta^p \theta)[\partial^p]$
- Multiplicativity: $\Xi_{\cdot,\partial} : \mathbb{F}_p(\cdot) \langle \partial^{\pm 1} \rangle \to \mathbb{F}_p(\cdot) \langle \partial^{\pm p} \rangle.$

Two crucial maps: $\Xi_{z,\partial}$ and $\Xi_{\theta,\partial}$

Properties:

- Ξ., ∂ sends an operator with polynomial coefficients to an operator with polynomial coefficients.
- Im $(\Xi_{z,\partial}) \subset \mathbb{F}_p(z^p)[\partial^p]$ and Im $(\Xi_{\theta,\partial}) \subset \mathbb{F}_p(\theta^p \theta)[\partial^p]$
- Multiplicativity: $\Xi_{\cdot,\partial} : \mathbb{F}_p(\cdot) \langle \partial^{\pm 1} \rangle \to \mathbb{F}_p(\cdot) \langle \partial^{\pm p} \rangle.$

Theorem (Bostan, Caruso, Schost, ISSAC 2014)

The applications $\Xi_{\cdot,\partial}$ commute with the isomorphism Φ_p :

$$\begin{array}{ccc} k[x]\langle\partial^{\pm 1}\rangle & \stackrel{\Phi_p}{\longrightarrow} & k[\theta]\langle\partial^{\pm 1}\rangle \\ & & \downarrow^{\Xi_{x,\partial}} & & \downarrow^{\Xi_{\theta,\partial}} \\ k[x^p][\partial^{\pm p}] & \stackrel{\Phi_p}{\longrightarrow} & k[\theta^p - \theta][\partial^{\pm p}] \end{array}$$

$$(z+1)^2\partial^3 - z\partial + z^3 + 3$$

Two crucial maps: $\Xi_{z,\partial}$ and $\Xi_{\theta,\partial}$

$(z+1)^2\partial^3 - z\partial + z^3 + 3 \quad \mapsto \quad \partial^3 + 2\theta\partial^2 + (\theta^2 - \theta)\partial - (\theta + 3) + (\theta^3 - 3\theta^2 + 2\theta)\partial^{-3}$

$$(z+1)^2\partial^3 - z\partial + z^3 + 3 \quad \mapsto \quad \partial^3 + 2\theta\partial^2 + (\theta^2 - \theta)\partial - (\theta + 3) + (\theta^3 - 3\theta^2 + 2\theta)\partial^{-3}$$

$$\begin{pmatrix} & -\frac{z^3+3}{z^2+2z+1}\\ 1 & \frac{z}{z^2+2z+1}\\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} (z+1)^2 \partial^3 - z\partial + z^3 + 3 & \mapsto & \partial^3 + 2\theta \partial^2 + (\theta^2 - \theta) \partial - (\theta + 3) + (\theta^3 - 3\theta^2 + 2\theta) \partial^{-3} \\ \begin{pmatrix} & -\frac{z^3 + 3}{z^2 + 2z + 1} \\ 1 & \frac{z}{z^2 + 2z + 1} \end{pmatrix} & \begin{pmatrix} & -(\theta^3 - 3\theta^2 + 2\theta) \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & -(\theta^2 - \theta) \\ 1 & -2\theta \end{pmatrix}$$

Extension to integral coefficients

$$\Phi: \mathbb{Z}[z]\langle \partial^{\pm 1} \rangle \xrightarrow{\sim} \mathbb{Z}[\theta]\langle \partial^{\pm 1} \rangle$$

Extension to integral coefficients

$$\Phi: \mathbb{Z}[\mathbf{z}] \langle \partial^{\pm 1} \rangle \xrightarrow{\sim} \mathbb{Z}[\theta] \langle \partial^{\pm 1} \rangle$$

Extension to integral coefficients

$$\Phi: \mathbb{Z}[\mathbf{z}] \langle \partial^{\pm 1} \rangle \xrightarrow{\sim} \mathbb{Z}[\theta] \langle \partial^{\pm 1} \rangle$$

$$\begin{split} \mathbb{Z}[z]\langle\partial^{\pm 1}\rangle & \xrightarrow{\mod p} \mathbb{F}_p[z]\langle\partial^{\pm 1}\rangle \\ \Phi \downarrow \wr & \Phi_p \downarrow \wr \\ \mathbb{Z}[\theta]\langle\partial^{\pm 1}\rangle & \xrightarrow{\mod p} \mathbb{F}_p[\theta]\langle\partial^{\pm 1}\rangle \end{split}$$

 $B(\theta)$ is the companion matrix of $\Phi(L)$.

 $\textit{B}(\theta)\textit{B}(\theta+1)\cdots\textit{B}(\theta+p-1) \mod p \text{ for all } p < \textit{N}.$

A first simplification

If $L \in \mathbb{F}_p[z]\langle \partial \rangle$ has coefficients of degree at most d, then $\Xi_{\theta,\partial}(\Phi_p(L))$ has coefficients of degree at most d in $\theta^p - \theta$.

A first simplification

If $L \in \mathbb{F}_p[z]\langle \partial \rangle$ has coefficients of degree at most d, then $\Xi_{\theta,\partial}(\Phi_p(L))$ has coefficients of degree at most d in $\theta^p - \theta$.

Lemma

It is possible to determine entirely $P \in \mathbb{F}_p[\theta^p - \theta]$ of degree dp in θ from its first d coefficients.

A first simplification

If $L \in \mathbb{F}_p[z]\langle \partial \rangle$ has coefficients of degree at most d, then $\Xi_{\theta,\partial}(\Phi_p(L))$ has coefficients of degree at most d in $\theta^p - \theta$.

Lemma

It is possible to determine entirely $P \in \mathbb{F}_p[\theta^p - \theta]$ of degree dp in θ from its first d coefficients.

Conclusion: All computations can be done modulo θ^{d+1} .

$$N = 7.$$
 (3 – 1)!

$$N = 7.$$
 (3 - 1)! (5 - 1)! (7 - 1)!

$$N = 7.$$

(3 - 1)! (5 - 1)! (7 - 1)!
mod 3^s5^s7^s

Computation of $(p-1)! \mod p^s$ [Costa, Gerbicz, Harvey, 2014]

N=7.

Computation of $(p-1)! \mod p^s$ [Costa, Gerbicz, Harvey, 2014]

N = 7.

$$((3-1)! \mod 3^s 5^s 7^s)$$

Computation of $(p-1)! \mod p^s$ [Costa, Gerbicz, Harvey, 2014]

N = 7.

$$((3-1)! \mod 3^s 5^s 7^s) \times (3\times 4)$$

Computation of $(p-1)! \mod p^s$ [Costa, Gerbicz, Harvey, 2014]

N = 7.

 $((3-1)! \mod 3^s 5^s 7^s) \times (3 \times 4) \mod 5^s 7^s$

Computation of $(p-1)! \mod p^s$ [Costa, Gerbicz, Harvey, 2014]

N = 7. $(3-1)! \qquad (5-1)! \qquad (7-1)! \\ \mod 3^{s}5^{s}7^{s} \qquad \mod 5^{s}7^{s} \qquad \mod 7^{s}$ $((3-1)! \qquad \mod 3^{s}5^{s}7^{s}) \times (3 \times 4) \qquad \mod 5^{s}7^{s}$

 $((5-1)! \mod 5^s 7^s)$

Computation of $(p-1)! \mod p^s$ [Costa, Gerbicz, Harvey, 2014]

N = 7. $(3-1)! \qquad (5-1)! \qquad (7-1)! \\ \mod 3^{s}5^{s}7^{s} \qquad \mod 5^{s}7^{s} \qquad \mod 7^{s}$ $((3-1)! \qquad \mod 3^{s}5^{s}7^{s}) \times (3 \times 4) \qquad \mod 5^{s}7^{s}$ $((5-1)! \qquad \mod 5^{s}7^{s}) \times (5 \times 6) \qquad \mod 7^{s}$

Computation of $B(\theta) \cdots B(\theta + p - 1) \mod p$

N = 7.

 $\begin{array}{cccc} B(\theta)B(\theta+1)B(\theta+2) & B(\theta)\cdots B(\theta+4) & B(\theta)\cdots B(\theta+6)\\ \mod 3\times5\times7 & \mod 5\times7 & \mod 7\\ (B(\theta)B(\theta+1)B(\theta+2) & \mod 3\times5\times7)\times B(\theta+3)B(\theta+4) & \mod 5\times7\\ (B(\theta)\cdots B(\theta+4) & \mod 5\times7)\times B(\theta+5)B(\theta+6) & \mod 7\\ \end{array}$ Remainder tree.

Future works

• [BOSTAN, CARUSO, SCHOST, 2016] brought the computation of invariant factors of the *p*-curvature to that of a *matrix factorial*

Future works

• [BOSTAN, CARUSO, SCHOST, 2016] brought the computation of invariant factors of the *p*-curvature to that of a *matrix factorial* ⇒ can a similar method be applied?

Future works

- [BOSTAN, CARUSO, SCHOST, 2016] brought the computation of invariant factors of the *p*-curvature to that of a *matrix factorial* ⇒ can a similar method be applied?
- Extension to operators with coefficients in a number field.
Future works

- [BOSTAN, CARUSO, SCHOST, 2016] brought the computation of invariant factors of the *p*-curvature to that of a *matrix factorial* ⇒ can a similar method be applied?
- Extension to operators with coefficients in a number field.

THANK YOU FOR YOUR ATTENTION