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Differential equations in characteristic p

How “many” algebraic solutions over Fp(z) does

(z+ 1)2y (3) − zy′ + (z3 + 3)y = 0

have?
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Differential equations in characteristic p

How “many” algebraic solutions over Fp(z) does

(z+ 1)2y (3) − zy′ + (z3 + 3)y = 0

have?

Idea: Such an equation has an algebraic basis of solutions iff the
”p-curvature” of this equation is zero.
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Differential equations in characteristic p

How “many” algebraic solutions over Fp(z) does

(z+ 1)2y (3) − zy′ + (z3 + 3)y = 0

have?

Theorem (Cartier)

For any such linear differential equation we have an equality between

the dimension of the space of solutions that are algebraic over Fp(z)

the dimension of the kernel of the p-curvature of this differential
equation.
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p-curvature in characteristic 0

Conjecture (Grothendieck-Katz)

A linear differential equation in characteristic 0 admits an algebraic basis
of solutions over Q(z) iff its reduction modulo p has an algebraic basis of
solutions over Fp(z) for all primes p except a finite number.

Theorem (Chudnovsky2)

If f ∈ Z[[z]] (with non zero convergence radius) is a solution of a linear
differential equation, then the minimal differential equation for f only has
nilpotent p-curvatures, except for a finite number of primes..

Useful for guessing procedures.
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Other applications

Algorithms for factoring differential operators using p-curvatures
[Cluzeau, ISSAC 2003]

Algorithms for computing the Lie algebra of differential operators
[BaRKatou, Cluzeau, Di Vizio, Weil, ISSAC 2016]
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Algebra of Differential operators

Definition

Let A = Fp[z] or Fp(z). We define A〈∂〉.

A〈∂〉 ' A[∂] as sets

Example

(z+ 1)2y(3) − zy′ + (z3 + 3)y = 0

(z+ 1)2∂3 − z∂ + (z3 + 3)

∂f = f∂ + f ′
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The p-curvature

Idea : The p-curvature of an operator is ∂p modulo this operator

(z+ 1)2y (3) − zy′ + (z3 + 3)y = 0

A =

0 0 − z3+3
(z+1)2

1 0 z
(z+1)2

0 1 0


A0 = Id Ak+1 = A′

k + AAk Ap

Size: Ap is of bit size Õ(p).
Cost: Õ(p2) binary operations.
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The p-curvature

Definition

The p-curvature of an operator L ∈ Fp(z)〈∂〉 is the Fp(z)-linear
endomorphism of Fp(z)⟨∂⟩/Fp(z)⟨∂⟩L induced by the left multiplication by ∂p.
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p-curvature of an operator

For (z+ 1)2y (3) − zy′ + (z3 + 3)y = 0 and p = 3.

Ap =


2z3

z2+2z+1
2z3

z3+1
2z4

z4+z3+z+1
z

z2+2z+1
2z4+2z3+2z+1

z3+1
z4+z3+z2+2z+2

z4+z3+z+1

0 z
z2+2z+1

2z4+2z3+z+2
z3+1



χ(Ap) = x3 +
2

z3 + 1
x+

z6 + 2z3

z3 + 1

Fact: χ(Ap(L)) ∈ Fp(zp)[x].
Size: χ(Ap(L)) is of bit size O(log(p)).
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Previous works around the computation of p-curvatures

First subquadratic time algorithm for computing the p-curvature
[Bostan, Schost, ISSAC 2009].

Computing the p-curvature of an operator in Õ(p) binary operations
[Bostan, CaRuso, Schost, ISSAC 2015].

Computing the characteristic polynomial of the p-curvature of an
operator in Õ(

√
p) binary operations [Bostan, CaRuso, Schost,

ISSAC 2014].

Computing the Invariant factors of the p-curvature of an operator in
Õ(

√
p) binary operations [Bostan, CaRuso, Schost, ISSAC 2016].
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My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[z] , the characteristic polynomials of its p-curvatures for all
primes p < N in Õ(N) binary operations.

ω < 2, 373 is an exponent of matrix multiplication in any ring.
Ω < 2, 698 is an exponent for the computation of the characteristic
polynomial in any ring.
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My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[z] of order r, with polynomial coefficients of degree at most
d and integer coefficients of bit size at most B, all the characteristic
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Õ(Nd((B+ d)(r+ d) ω + (r+ d) Ω))
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My Contribution: Practical part

Implementation of the algorithm in Sagemath
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Computation of p-curvatures

Goal: Computing all the characteristic polynomials of the p-curvatures of
an operator in Q(z)〈∂〉 for p ⩽ N.

Step 1: Reduce the computation of the p-curvature to that of a matrix
factorial as in [Bostan, CaRuso, Schost, ISSAC 2014].

M(θ) ∈ Mn(Fp[θ]) −→ M(θ)M(θ + 1) · · ·M(θ + p− 1)

Step 2: Use the factorial computation method of [Costa, GeRbicz,
HaRvey, Math. Comp. 2014]

11 / 22
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Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of Fp[z]〈∂〉 as operators in the variables ∂ and
θ = z∂.

∂θ = ∂z∂ = (z∂ + 1)∂ = (θ + 1)∂

∂−1

Φp : Fp[z]〈∂±1〉 ∼−→ Fp[θ]〈∂±1〉
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Another p-curvature

Definition

Let Lθ ∈ Fp(θ)〈∂〉. Its p-curvature Bp(Lθ)(θ) is the Fp(θ)-linear
endomorphism of Fp(θ)⟨∂⟩/Fp(θ)⟨∂⟩Lθ induced by the left multiplication by
∂p.

If B = B(Lθ)(θ) is its companion matrix then:

Bp(Lθ) = B(θ)B(θ + 1) · · ·B(θ + p− 1)
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Two crucial maps: Ξz,∂ and Ξθ,∂

Let Lz ∈ Fp(z)〈∂〉 (resp. Lθ ∈ Fp(θ)〈∂〉) with leading coefficient lz (resp. lθ).

Ξz,∂(Lz) := lz(z)pχ(Ap(Lz))(∂p)

Ξθ,∂(Lθ) :=

(p−1∏
i=0

lθ(θ + i)

)
χ(Bp(Lθ))(∂p)

14 / 22
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Two crucial maps: Ξz,∂ and Ξθ,∂

Properties:
Ξ·,∂ sends an operator with polynomial coefficients to an operator
with polynomial coefficients.

Im (Ξz,∂) ⊂ Fp(zp)[∂p]

and Im (Ξθ,∂) ⊂ Fp(θ
p − θ)[∂p]

Multiplicativity: Ξ·,∂ : Fp(·)〈∂±1〉 → Fp(·)〈∂±p〉.

Theorem (Bostan, Caruso, Schost, ISSAC 2014)

The applications Ξ·,∂ commute with the isomorphism Φp:

k[x]〈∂±1〉 k[θ]〈∂±1〉

k[xp][∂±p] k[θp − θ][∂±p]

Ξx,∂

Φp

∼

Ξθ,∂

Φp

∼

15 / 22
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Two crucial maps: Ξz,∂ and Ξθ,∂

Properties:
Ξ·,∂ sends an operator with polynomial coefficients to an operator
with polynomial coefficients.

Im (Ξz,∂) ⊂ Fp(zp)[∂p] and Im (Ξθ,∂) ⊂ Fp(θ
p − θ)[∂p]

Multiplicativity: Ξ·,∂ : Fp(·)〈∂±1〉 → Fp(·)〈∂±p〉.
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Two crucial maps: Ξz,∂ and Ξθ,∂

(z+ 1)2∂3 − z∂ + z3 + 3

7→ ∂3+2θ∂2+(θ2−θ)∂−(θ+3)+(θ3−3θ2+2θ)∂−3

 − z3+3
z2+2z+1

1 z
z2+2z+1

1 0




−(θ3 − 3θ2 + 2θ)
1 0

1 0
1 (θ + 3)

1 −(θ2 − θ)
1 −2θ


(z10+2z5+1)∂15+

(4z5+2)∂5+z15+2z5

∂15+2(θ5−θ)∂10

+((θ5−θ)2+2)∂5+4(θ5−θ)

+2(θ5−θ)∂−5+(θ5−θ)3∂−15
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Extension to integral coefficients

Φ : Z[z]〈∂±1〉 ∼−→ Z[θ]〈∂±1〉

Z[z]〈∂±1〉 Fp[z]〈∂±1〉

Z[θ]〈∂±1〉 Fp[θ]〈∂±1〉

Φ

∼

mod p

Φp

∼

mod p

B(θ) is the companion matrix of Φ(L).

B(θ)B(θ + 1) · · ·B(θ + p− 1) mod p for all p < N.
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A first simplification

If L ∈ Fp[z]〈∂〉 has coefficients of degree at most d, then Ξθ,∂(Φp(L)) has
coefficients of degree at most d in θp − θ.

Lemma

It is possible to determine entirely P ∈ Fp[θ
p − θ] of degree dp in θ from its

first d coefficients.

Conclusion: All computations can be done modulo θd+1.
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Computation of (p− 1)! mod ps [Costa, GeRbicz,
HaRvey, 2014]

N = 7.
(3− 1)!

(5− 1)! (7− 1)!
mod 3s5s7s mod 5s7s mod 7s

((3− 1)! mod 3s5s7s) × (3× 4) mod 5s7s

((5− 1)! mod 5s7s) × (5× 6) mod 7s
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Computation of B(θ) · · ·B(θ + p− 1) mod p

N = 7.

B(θ)B(θ + 1)B(θ + 2) B(θ) · · ·B(θ + 4) B(θ) · · ·B(θ + 6)
mod 3× 5× 7 mod 5× 7 mod 7

(B(θ)B(θ + 1)B(θ + 2) mod 3× 5× 7)× B(θ + 3)B(θ + 4) mod 5× 7

(B(θ) · · ·B(θ + 4) mod 5× 7)× B(θ + 5)B(θ + 6) mod 7

Remainder tree.
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Computation of (p− 1)! mod ps [Costa, GeRbicz,
HaRvey, 2014]

J1; 7K
J1, 3K

{1}

∅ {1}

{2, 3}

{2} {3}

J4; 7K
{4, 5}

{4} {5}

{6, 7}

{6} {7}
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Future works

[Bostan, CaRuso, Schost, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial

⇒ can a similar
method be applied?

Extension to operators with coefficients in a number field.

ThanK you foR youR attention
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