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Contextualisation

Differential equations in characteristic p

How “many” algebraic solutions over F,(z) does
(z+1)%y® — 2/ +(Z +3)y =0

have?
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Differential equations in characteristic p

How “many” algebraic solutions over F,(z) does
(z+1)2y®) —z/ + (£ +3)y=0

have?

Idea: Such an equation has an algebraic basis of solutions iff the
”p-curvature” of this equation is zero.
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Contextualisation

Differential equations in characteristic p

How “many” algebraic solutions over F,(z) does
(z4+1)%y® —zy + (2 +3)y=0

have?

Theorem (Cartier)

For any such linear differential equation we have an equality between
@ the dimension of the space of solutions that are algebraic over F,(z)

@ the dimension of the kernel of the p-curvature of this differential
equation.
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Contextualisation

p-curvature in characteristic 0

Conjecture (Grothendieck-Katz)

A linear differential equation in characteristic 0 admits an algebraic basis
of solutions over Q(z) iff its reduction modulo p has an algebraic basis of
solutions over IF,(z) for all primes p except a finite number.
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Contextualisation

p-curvature in characteristic 0

Conjecture (Grothendieck-Katz)

A linear differential equation in characteristic 0 admits an algebraic basis
of solutions over Q(z) iff its reduction modulo p has an algebraic basis of
solutions over IF,(z) for all primes p except a finite number.

Theorem (Chudnovsky?)

If f € Z[[2]] (with non zero convergence radius) is a solution of a linear
differential equation, then the minimal differential equation for f only has
nilpotent p-curvatures, except for a finite number of primes..

Useful for guessing procedures.
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Contextualisation

Other applications

o Algorithms for factoring differential operators using p-curvatures
[CLuzEAU, ISSAC 2003]
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Contextualisation

Other applications

o Algorithms for factoring differential operators using p-curvatures
[CLuzEAU, ISSAC 2003]

@ Algorithms for computing the Lie algebra of differential operators
[BArkATOU, CLUZEAU, D1 Vizio, WEIL, ISSAC 2016]
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Contextualisation

Algebra of Differential operators

Let A =TF,[z or Fy(z). We define A(D).
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Algebra of Differential operators

Let A =TF,[z or Fy(z). We define A(D).

A(0) ~ A[0] as sets

Example

(z4+1)%y® —zy + (2 +3)y=0

(z4+1)28% — 20 + (2 + 3)

A

of =fo+f




Contextualisation

The p-curvature

Idea : The p-curvature of an operator is 9P modulo this operator
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Contextualisation

The p-curvature

Definition
The p-curvature of an operator L € IF,(2)(0) is the F,(z)-linear
endomorphism of F»(2)(9)/F,(2) ()L induced by the left multiplication by 97
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The p-curvature

Definition

The p-curvature of an operator L € IF,(2)(0) is the F,(z)-linear
endomorphism of F»(2)(9)/F,(2) ()L induced by the left multiplication by 97
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Contextualisation

The p-curvature

Definition

The p-curvature of an operator L € IF,(2)(0) is the F,(z)-linear
endomorphism of F»(2)(9)/F,(2) ()L induced by the left multiplication by 97

(z+ 1)2y(3) —zy + (2 +3)y=0

43

0 0 —%yoe
A= 0 &

0 1 0

A1 = Al + AA Ay
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Contextualisation

The p-curvature

Definition

The p-curvature of an operator L € IF,(2)(0) is the F,(z)-linear
endomorphism of F»(2)(9)/F,(2) ()L induced by the left multiplication by 97

(z+ 1)2y(3) —zy + (2 +3)y=0

243
0 0 —&5%
A= 0
0 1 0
Ap=1d Akr1 = Aj + AA, Ay

Size: A, is of bit size O(p).
Cost: O(p?) binary operations.
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Contextualisation

p-curvature of an operator

For (z+1)2y®) —zy/ 4+ (£ +3)y=0and p = 3.
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Contextualisation

p-curvature of an operator

For (z+1)2y®) —zy/ 4+ (£ +3)y=0and p = 3.

Ap =

27 27 274
2242741 34+1 z4§-z3 z+1
z 2z4+223+22+1 Z4+z +z°+27z42
22427+1 341 A48 4241
0 z 224+223+z+2
224274+1 41
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Contextualisation

p-curvature of an operator

For (z+1)2y®) —zy/ 4+ (£ +3)y=0and p = 3.

27° 273 274
2242741 34+1 z4§-z3 z+1
A = z 2z4+223+22+1 Z4+z +z°+27z42
P 22+42z+1 41 AtB4z+1
0 z 224+223+z+2
224274+1 41
(A) =%+ 2 N £ +27
=X X
XA #+1 #+1
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Contextualisation

p-curvature of an operator

For (z+1)2y®) —zy/ 4+ (£ +3)y=0and p = 3.

27° 273 274
2242741 34+1 z4§-z3 z+1
A = z 2z4+223+22+1 Z4+z +z°+27z42
P 22+42z+1 41 AtB4z+1
0 z 224+223+z+2
224274+1 41
(A) =%+ 2 N £ +27
=X X
XA #+1 #+1

Fact: x(Ay(L)) € Fp(2°)[x].
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Contextualisation

p-curvature of an operator

For (z+1)2y®) —zy/ 4+ (£ +3)y=0and p = 3.

27° 273 274
2242741 34+1 z4§-z3 z+1
A = z 2z4+223+22+1 Z4+z +z°+27z42
P 22+42z+1 41 AtB4z+1
0 z 224+223+z+2
224274+1 41
(A) =%+ 2 N £ +27
=X X
XA #+1 #+1

Fact: x(Ay(L)) € Fp(2°)[x].
Size: x(A,(L)) is of bit size O(log(p)).
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Contextualisation

Previous works around the computation of p-curvatures

@ First subquadratic time algorithm for computing the p-curvature
[BosTAN, ScHosT, ISSAC 2009].
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operator in O(,/p) binary operations [BosTAN, CARUSO, SCHOST,
ISSAC 2014].

8/22



Contextualisation

Previous works around the computation of p-curvatures

@ First subquadratic time algorithm for computing the p-curvature
[BosTAN, ScHosT, ISSAC 2009].

@ Computing the p-curvature of an operator in b(p) binary operations
[BosTaN, CARUSO, ScHosT, ISSAC 2015].

o Computing the characteristic polynomial of the p-curvature of an
operator in O(,/p) binary operations [BosTAN, CARUSO, SCHOST,
ISSAC 2014].

o Computing the Invariant factors of the p-curvature of an operator in
O(/p) binary operations [BosTAN, CARUSO, ScHOST, ISSAC 2016].
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Contextualisation

My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[Z] , the characteristic polynomials of its p-curvatures for all
primes p < N in O(N) binary operations.
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Contextualisation

My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[z] of order r, with polynomial coefficients of degree at most
d and integer coefficients of bit size at most B, all the characteristic
polynomials of its p-curvatures for all primes p < N in

ONd((B+ d)(r+d)“ + (r+ d) )

binary operations.
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Contextualisation

My Contribution: Theoretical part

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[z] of order r, with polynomial coefficients of degree at most
d and integer coefficients of bit size at most B, all the characteristic
polynomials of its p-curvatures for all primes p < N in

ONd((B+ d)(r+d)“ + (r+ d) )

binary operations.

w < 2,373 is an exponent of matrix multiplication in any ring.
Q < 2,698 is an exponent for the computation of the characteristic
polynomial in any ring.
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Contextualisation

My Contribution: Practical pa

Implementation of the algorithm in Sagemath

Time (in seconds)

102 § .

101 4

10! 3

-~y =N/T0

- operators of order 3, degree 2

- operators of order 7, degree 5

+ operators of order 15, degree 12
- operators of order 20, degree 2

T T
10t 10?

T
10? 104
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Mathematical theory

Computation of p-curvatures

Goal: Computing all the characteristic polynomials of the p-curvatures of
an operator in Q(z)(0) for p < N.
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Step 1: Reduce the computation of the p-curvature to that of a matrix
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Mathematical theory

Computation of p-curvatures

Goal: Computing all the characteristic polynomials of the p-curvatures of
an operator in Q(z)(0) for p < N.

Step 1: Reduce the computation of the p-curvature to that of a matrix
factorial as in [BosTaN, CARUSO, ScHosT, ISSAC 2014].

M(0) € M, (F,[0]) — MOIM(O +1)--- MO + p— 1)

Step 2: Use the factorial computation method of [CosTA, GErsicz,
HARVEY, Math. Comp. 2014]
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Mathematical theory

Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of F,[2](0) as operators in the variables 0 and

0 = z0.
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Mathematical theory

Step 1: Reduction to the computation of a matrix factorial

Idea: Rewrite operators of F,[2](0) as operators in the variables 0 and
0 = z0.
00 = 020 = (z0+1)0 = (6 +1)0

a—l

D, : Fpl7] () = FP[9]<8i1>

12/22



Mathematical theory

Another p-curvature

Definition
Let Ly € F,(6)(0). Its p-curvature By(Lg)(0) is the F,(60)-linear

endomorphism of F,(6)(9)/F,(0)(d)Ls induced by the left multiplication by
oP.
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Mathematical theory

Another p-curvature

Definition
Let Ly € F,(6)(0). Its p-curvature By(Lg)(0) is the F,(60)-linear

endomorphism of F,(6)(9)/F,(0)(d)Ls induced by the left multiplication by
oP.

If B= B(Ly)(#) is its companion matrix then:

B,(Lp) = B(0)B(O0+1)---B(0+p—1)

13/22



Mathematical theory

Two crucial maps: =, and = 5

Let L, € Fp(2)(0) (resp. Ly € F,(0)(0)) with leading coefficient L, (resp. ly).

Ezo(Ls) = ()(())()
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Mathematical theory

Two crucial maps: =, and = 5

Properties:

@ =. 5 sends an operator with polynomial coefficients to an operator
with polynomial coefficients.
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Mathematical theory

Two crucial maps: =, and = 5

Properties:

@ =. 5 sends an operator with polynomial coefficients to an operator
with polynomial coefficients.

e Im(=,5) C Fy(2°)[0P] and Im (Zg,5) C F, (6P — 0)[0P]
o Multiplicativity: Z. g : F,(-)(0F) — Fo(-)(9*P).

Theorem (Bostan, Caruso, Schost, ISSAC 2014)

The applications E. 5 commute with the isomorphism ®,:

KX (OFY) —22 s K[O)(9+Y)

lEX,a lEo,a

K| [04P) —2s K9P — 6][07]
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Mathematical theory

Two crucial maps: =, and = 5

(z+1)20° —20+ 2 +3
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Mathematical theory

Two crucial maps: =, and = 5

(z+1)203 —20+ 22 +3 '+ 0°+200°+(02—0)0—(0+3)+(6°—30%+20)0 >

__ 243
72427+1
z
7242741
1 0
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Mathematical theory

Two crucial maps: =, and = 5

(z+1)203 —20+ 22 +3 '+ 0°+200°+(02—0)0—(0+3)+(6°—30%+20)0 >

—(6° — 36 + 20)

43 1 0
12t2z+1 1 0
1 7242741 1 ((9 + 3)
1 0 1 7(92 _ 0)

1 —20
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Mathematical theory

Two crucial maps: =, and = 5

(z+1)203 —20+ 22 +3 '+ 0°+200°+(02—0)0—(0+3)+(6°—30%+20)0 >

—(6° — 36 + 20)

_ 743 1 0
22t2z+1 1 0
1 242741 1 (60 +3)
o 1 (6% - 9)
1 —260
(20427 +1)9%5 + 97 +2(6°~0)9"
( +2)85+Z“’+2Zs sz(((:r) :(‘)9))() +52+)?95+76>30—15

16/22



Algorithm

Extension to integral coefficients

B : Z[Z(0F") = Z[0](0F)
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Algorithm

Extension to integral coefficients

B : Z[Z(0F") = Z[0](0F)

mod p

Z[2)(0*) Fypl2(0*)

mod p

Z[o)(o+) Fpl0](0*)
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Algorithm

Extension to integral coefficients

Z[7(5+) F,[4(0+1)
@lz éplz
ZI9)(0%Y) —2E s T, [6](0+)

B(0) is the companion matrix of ®(L).

B(0)B(@+1)---B(@+p—1) modpforallp< N.
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Algorithm

A first simplification

If L € Fp[2](0) has coefficients of degree at most d, then Zg 5(®,(L)) has
coefficients of degree at most din 67 — 6.
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A first simplification
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coefficients of degree at most din 67 — 6.

It is possible to determine entirely P € F,[0P — 6] of degree dp in 0 from its
first d coefficients.
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Algorithm

A first simplification

If L € Fp[2](0) has coefficients of degree at most d, then Zg 5(®,(L)) has
coefficients of degree at most din 67 — 6.

It is possible to determine entirely P € F,[0P — 6] of degree dp in 0 from its
first d coefficients.

Conclusion: All computations can be done modulo #¢+1.

18/22



Algorithm

Computation of (p — 1)! mod p° [CosTA, GERBICZ,
HARVEY, 2014]

(3—1)!
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Algorithm

Computation of (p — 1)! mod p° [CosTA, GERBICZ,
HARVEY, 2014]

(3-1)! (5—1)! (7—1)!
mod 3°5°7° mod 5°7° mod 7°¢

(3=1)! mod 3°5°7°) x (3 x4) mod 5°7°

((6—-1)!' mod 5°7°) x (5x6) mod 7°
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Algorithm

Computation of B(f)---B(@ +p—1) mod p

N=T.

B(0)B(O+1)B(6+2) B(#)---BO+4) B()--B(H+6)
mod 3 x5 x7 mod 5 X 7 mod 7

(B®)B(@+1)B(#+2) mod3x5x7)xBO+3)BO+4) modbxT

(B(6)---B(0 +4) mod5x7)x B(O+5)B(6+6) mod7

Remainder tree.



Algorithm

Computation of (p — 1)! mod p° [CosTA, GERBICZ,
HARVEY, 2014]

M1 7]

(][] [E]@] [B]w] [0
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Future works

@ [BosTaN, CARUSO, ScHOST, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial

22/22



Algorithm

Future works

@ [BosTaN, CARUSO, ScHOST, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial = can a similar
method be applied?

22/22



Algorithm

Future works

@ [BosTaN, CARUSO, ScHOST, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial = can a similar
method be applied?

@ Extension to operators with coefficients in a number field.

22/22



Algorithm

Future works

@ [BosTaN, CARUSO, ScHOST, 2016] brought the computation of invariant
factors of the p-curvature to that of a matrix factorial = can a similar
method be applied?

@ Extension to operators with coefficients in a number field.

THANK YOU FOR YOUR ATTENTION
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