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Linear differential operator algebra

Definition

K is a differential field if it is equipped with an additive map f 7→ f ′

verifying the Leibniz rule

(fg)′ = f ′g+ fg ′.

Linear differential operators in K〈∂〉 = {an∂n + · · ·+ a1∂ + a0}.

Commutation rule:

∂f = f∂ + f ′

Example of derivation:

f ′ = d
dx f

over Fp(x)

Exemple :

(2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2 ∈ F3(x)〈∂〉
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“Resolution” and factorisation

L ∈ K〈∂〉.
L(y) = 0

If L′ is a right factor of L then all solutions of L′ are solutions of L.

Factorisation of L gives information on “where” to find solutions.

Sometimes the only available description of a solution is the smallest LDE
it verifies.

Analogy: Sometimes the only description of a root of a polynomial is its
minimal polynomial.

Objective: How to factor L as a product of irreducible linear differential
operators?

3 / 24



“Resolution” and factorisation

L ∈ K〈∂〉.
L(y) = 0

If L′ is a right factor of L then all solutions of L′ are solutions of L.

Factorisation of L gives information on “where” to find solutions.

Sometimes the only available description of a solution is the smallest LDE
it verifies.

Analogy: Sometimes the only description of a root of a polynomial is its
minimal polynomial.

Objective: How to factor L as a product of irreducible linear differential
operators?

3 / 24



“Resolution” and factorisation

L ∈ K〈∂〉.
L(y) = 0

If L′ is a right factor of L then all solutions of L′ are solutions of L.

Factorisation of L gives information on “where” to find solutions.

Sometimes the only available description of a solution is the smallest LDE
it verifies.

Analogy: Sometimes the only description of a root of a polynomial is its
minimal polynomial.

Objective: How to factor L as a product of irreducible linear differential
operators?

3 / 24



“Resolution” and factorisation

L ∈ K〈∂〉.
L(y) = 0

If L′ is a right factor of L then all solutions of L′ are solutions of L.

Factorisation of L gives information on “where” to find solutions.

Sometimes the only available description of a solution is the smallest LDE
it verifies.

Analogy: Sometimes the only description of a root of a polynomial is its
minimal polynomial.

Objective: How to factor L as a product of irreducible linear differential
operators?

3 / 24



“Resolution” and factorisation

L ∈ K〈∂〉.
L(y) = 0

If L′ is a right factor of L then all solutions of L′ are solutions of L.

Factorisation of L gives information on “where” to find solutions.

Sometimes the only available description of a solution is the smallest LDE
it verifies.

Analogy: Sometimes the only description of a root of a polynomial is its
minimal polynomial.

Objective: How to factor L as a product of irreducible linear differential
operators?

3 / 24



“Resolution” and factorisation

L ∈ K〈∂〉.
L(y) = 0

If L′ is a right factor of L then all solutions of L′ are solutions of L.

Factorisation of L gives information on “where” to find solutions.

Sometimes the only available description of a solution is the smallest LDE
it verifies.

Analogy: Sometimes the only description of a root of a polynomial is its
minimal polynomial.

Objective: How to factor L as a product of irreducible linear differential
operators?

3 / 24



Contribution 1

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in Z[x], the characteristic polynomials of its p-curvatures for all
primes p < N using Õ(N) binary operations.

Isomorphism with skew polynomials

Azumaya algebra structure

Fast factorial computation techniques (Harvey 2014)
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Implementation

Implementation of the algorithm in SageMath
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Comparison with previously best algorithm
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State of the art on factorisation

In characteristic 0:
D. Yu. Grigoriev, Complexity of factoring and calculating the GCD of
linear ordinary differential operators, JSC. 10 (1990).

M. van Hoeij, Factorization of differential operators with rational
functions coefficients, JSC. 24 (1997).

M. van Hoeij. Rational solutions of the mixed differential equation
and its application to factorization of differential operators. ISSAC
1996.

J. van der Hoeven, Around the numeric-symbolic computation of
differential Galois groups. JSC. 42 (2007)

F. Chyzak, A. Goyer, and M. Mezzarobba, Symbolic-numeric
factorization of differential operators. ISSAC 2022.
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State of the art on factorisation

In characteristic p:
M. van der Put, Differential equations in characteristic p. 1995.

M. van der Put. Modular methods for factoring differential operators.
Unpublished manuscript, 1997.

M. Giesbrecht, Y. Zhang, Factoring and decomposing Ore
polynomials over Fp(t), ISSAC 2003.

T. Cluzeau, Factorisation of differential systems in characteristic p,
ISSAC 2003.

X. Caruso, J. Le Borgne. A new faster algorithm for factoring skew
polynomials over finite fields. JSC 2017.

J. Gomez-Torrecillas, F. J. Lobillo, G. Navarro, Computing the bound
of an Ore polynomial. Applications to factorisation, JSC 2019.
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State of the art on factorisation

Unsolved case: Central operators

Facts

C := Fp(xp) is the field of constants of Fp(x).
C[∂p] is the center of Fp(x)〈∂〉.

Let N ∈ C[Y] be an irreducible polynomial. Two questions:

Is N(∂p) irreducible?

If it isn’t, how to determine an irreducible divisor of it?
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Contribution 2

Theorem (P. 2023)

Let N∗ ∈ Fp[X,Y] be an irreducible polynomial of bidegree (dx, dy). There
exists an algorithm testing the irreducibility of N∗(xp, ∂p) in polynomial time
in dx, dy and log(p).

Ingredients:

Central simple algebra

Brauer group, local-global principle

Hensel lemma

10 / 24



Contribution 2

Theorem (P. 2023)

Let N∗ ∈ Fp[X,Y] be an irreducible polynomial of bidegree (dx, dy). There
exists an algorithm testing the irreducibility of N∗(xp, ∂p) in polynomial time
in dx, dy and log(p).

Ingredients:

Central simple algebra

Brauer group, local-global principle

Hensel lemma

10 / 24



Contribution 2

Theorem (P. 2023)

Let N∗ ∈ Fp[X,Y] be an irreducible polynomial of bidegree (dx, dy). There
exists an algorithm testing the irreducibility of N∗(xp, ∂p) in polynomial time
in dx, dy and log(p).

Ingredients:
Central simple algebra

Brauer group, local-global principle

Hensel lemma

10 / 24



Contribution 2

Theorem (P. 2023)

Let N∗ ∈ Fp[X,Y] be an irreducible polynomial of bidegree (dx, dy). There
exists an algorithm testing the irreducibility of N∗(xp, ∂p) in polynomial time
in dx, dy and log(p).

Ingredients:
Central simple algebra

Brauer group, local-global principle

Hensel lemma

10 / 24



Contribution 2

Theorem (P. 2023)

Let N∗ ∈ Fp[X,Y] be an irreducible polynomial of bidegree (dx, dy). There
exists an algorithm testing the irreducibility of N∗(xp, ∂p) in polynomial time
in dx, dy and log(p).

Ingredients:
Central simple algebra

Brauer group, local-global principle

Hensel lemma

10 / 24



Contribution 3

Theorem (P. 2023)

Let N∗ ∈ Fp[X,Y] be an irreducible polynomial of bidegree (dx, dy). If
N∗(xp, ∂p) is reducible then there exists an irreducible factor of N∗(xp, ∂p)
whose coefficients are of degree O(d2xd

4
y) and an algorithm finding such a

factor in time polynomial in dx and dy and quasi-linear in p.

Ingredients:

Geometry of curves

Riemann-Roch spaces

Divisor class group

Remark

The algorithm works for operators with coefficients in algebraic function
fields.
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Setting

We seek to factor N(∂p), with N(Y) irreducible separable over C.

N(∂p) = (2x6 + 2)∂6 + (x6 + 2)∂3 + 2x6 + 2x3 + 2

N(Y) = (2x6 + 2)Y2 + (x6 + 2)Y+ 2x6 + 2x3 + 2

Notation

DN(∂p) := Fp(x)⟨∂⟩/Fp(x)⟨∂⟩N(∂p).

DN(∂p)L is the Fp(x)〈∂〉-submodule of DN(∂p) generated by L.

Fact

L 7→ DN(∂p)L is a decreasing bijection between

The set of monic divisors of N(∂p)

The set of Fp(x)〈∂〉-submodules of DN(∂p).
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Structural results

Notation

CN := C[Y]/N(Y)

Proposition (Jacobson)

DN(∂p) is a central simple CN-algebra a dimension p2 (Y 7→ ∂p)

Theorem (Artin-Wedderburn)

Any central simple CN-algebra is isomorphic to a matrix ring over a division
algebra.

DN(∂p) is either a division algebra or it is isomorphic to Mp(CN).
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Structural results

If DN(∂p) is a division algebra then N(∂p) has no nontrivial divisor.

Notation

yN is the image of Y in CN = C[Y]/N(Y)

Lemma (Jacobson, van der Put)

If DN(∂p) ' Mp(CN) then L ∈ KN〈∂〉 is an irreducible divisor of ∂p − yN iff
L = ∂ − f

with f (p−1) + f p = yN.
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Local-global principle

KN〈∂〉/∂p−yN is a finite dimensional central simple CN-algebra

⇒ has an isomorphism class in Br(CN).

∂p − yN is reducible in KN〈∂〉 iff KN〈∂〉/∂p−yN

Br(CN) ↪→
⊕

P∈PCN

Br(CN,P)

where PCN is the set of places of CN and CN,P is the completion of CN in P.

Theorem (P. 2023)

N(∂p) is reducible iff the equation f(p−1) + fp = yN has a local solution in
every place of KN.
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Hensel lemma

(
g
d
dt

)p−1

(f ) + f p = yN in Fq((t)),

where g is the derivative of a prime element of the place considered.

Theorem (P. 2023)

If f ∈ Fq((t)) verifies
(
g d

dt
)p−1

(f ) + f p = yN + O(t pn) then there exists
f∗ ∈ Fq((t)) such that(

g
d
dt

)p−1

(f∗ ) + f p∗ = yN + O(t p(pn+(p−1)(1−ν(g))))
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Irreducibility test

Corollary(
g d

dt
)p−1

(f ) + f p = yN has a solution in Fq((t)) iff there exists

f∗ ∈ Fq((t)) such that
(
g d

dt
)p−1

(f ) + f p = yN + O(t pν(g)).

The condition is empty unless ν(yN) < pν(g).

f(p−1) + f p = yN has a solution in KN iff it has a local solution at the
poles of yN and x.

Theorem (P. 2023)

Let N∗ ∈ Fp[X,Y] be an irreducible polynomial of bidegree (dx, dy). We can
test the irreducibility of N∗(xp, ∂p) in Fp(x)〈∂〉 at the cost of:

a factorisation of x and a root of N∗ in KN,

O(dx + dy) evals of functions in KN of size O(dy × (d 2
x dy + dxd 2

y )),

Oε((dx + dega log(p)2 + (d 3
x d

2
y + d 2

x d
3
y ) log(p)) bit operations.
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Factoring N(∂p): when KN = Fp(x)

Suppose that KN = Fp(x), yN = ap ∈ Fp(xp) and that there exists f ∈ Fp(x)
verifying f (p−1) + f p = ap.
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verifying f (p−1) + f p = ap.

Step 1: Show that there is a solution whose denominator divides that of a.

Any pole of f which is not a pole of a is a simple pole.

Remove poles by adding multiple of h′

h .
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p-Riccati equation in the general case

Same ideas:

Step 1: Locate and bound the poles of a solution.

Step 2: Compute a Riemann-Roch space.

Step 3: Solve an Fp-linear system.

Difference:

Poles not necessarily simple. Bounded by ramification index.

Local improvement f− h′

h .

Problem: By adding h′

h we may add more poles.
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p-Riccati equation in the general case

How close is the divisor of poles of f from being a h′

h ?

Definition

D ∼ D′ iff D− D′ is principal i.e. equal to (h) :=
∑

P∈PKN
νP(h) ·P

for some h ∈ KN.

The group of equivalence classes of divisors is the divisor class group
of Cl(KN)

Cl(KN) is a finitely generated commutative group.
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p-Riccati equation in the general case

Theorem (P. 2023)

Let ΣN be the set of solutions of the p-Riccati equation. If S is a generating
family of Cl(KN)/pCl(KN) then

ΣN = ∅ ⇔ ΣN ∩ L(A(S)) = ∅

where
A(S) = max(Diff(KN)− 2(x)∞ +

∑
P∈S

P, (a)∞).
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Algorithm

Theorem

Let ΣN be the set of solutions of the p-Riccati equation. If S is a generating
family of Cl(KN)/pCl(KN) then

ΣN = ∅ ⇔ ΣN ∩ L(A(S)) = ∅.

Compute a Fp-basis of L(A(S)).
Solve a linear system.
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Theorem

Let ΣN be the set of solutions of the p-Riccati equation. If S is a generating
family of Cl(KN)/pCl(KN) then

ΣN = ∅ ⇔ ΣN ∩ L(A(S)) = ∅.

Compute S a generating family of Cl(KN)/pCl(KN).
Pick sufficiently many random places.

Compute a Fp-basis of L(A(S)).
Solve a linear system.
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Perspectives

lclm decomposition. Writing L as the lclm of L1, . . . , Ln with∑n
i=1 ord(Li) = ord(L).

Loewy decomposition: L = L1 . . . Ln with Ln being the lclm of all the
irreducible right factors of L. Give a lclm decomposition of each Li.

Study the fine-grained algorithmic aspects of the algorithm
(OM-factorization, Riemann-Roch spaces)
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Thank you for your attention
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p-Riccati equation in the general case

Denote KN = Fp(x)[a] with ap = yN.
Let f ∈ KN verify f (p−1) + f p = a p. Let P be a pole of f, νP the associated
valuation and e(P) its ramification index.

Lemma

νP(f) ⩾ min(−e(P), νP(a))

Lemma

If νP(a) > −e(P), then there exists a unique k ∈ Fp such that for all g ∈ KN

verifying νP(g) ≡ k mod p,

νP(f− g′

g
) ⩾ 1− e(P).

ReP(f) := k
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p-Riccati equation in the general case

Theorem

Re(f) =
∑
P

ReP(f) ·P

If Re(f) ∼ D′ then there exists another solution f∗ verifying

νP(f∗) ⩾ min(νP(a), 1− e(P))

for all P /∈ Supp(D′).

Corollary

If S is a family of places of KN generating Cl(KN) then there exists another
solution f∗ of the p-Riccati equation verifying
νP(f∗) ⩾ min(νP(a), 1− e(P)) for all P /∈ S.
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