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Linear differential operator algebra

Definition

K is a differential field if it is equipped with an additive map f+> f’
verifying the Leibniz rule

(fe) =f'g+fg

.

Linear differential operators in K(0) = {a,0" + - - + @10 + ao }.
Example of derivation:
frei

over [F,(x)

Commutation rule:

of =f0+f

Exemple :

(265 +2)8° + (5 +2)0° + 26 + 2x° + 2 € F3(x)(9)
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“Resolution” and factorisation

L € K{(D). L) — 0
y =

@ If L’ is a right factor of L then all solutions of L’ are solutions of L.

@ Factorisation of L gives information on “where” to find solutions.

Sometimes the only available description of a solution is the smallest LDE
it verifies.

Analogy: Sometimes the only description of a root of a polynomial is its
minimal polynomial.

Objective: How to factor L as a product of irreducible linear differential
operators?
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Theorem (P., 2021)
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Contribution 1

Theorem (P., 2021)

It is possible to compute, for a given linear differential equation with
coefficients in A[x| of order m, with polynomial coefficients of degree at
most d, all the characteristic polynomials of its p-curvatures for all primes
p < N using

O(Nd((m+ d) “ + (m+ d) %))

operations in A.

Ingredients:
@ Isomorphism with skew polynomials
@ Azumaya algebra structure

@ Fast factorial computation techniques (Harvey 2014)
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Implementation

Implementation of the algorithm in SageMath

Time (in seconds)

102 4
ol
101 4 '
)
100 4
~y=N/T0
- operators of order 3, degree 2
- operators of order 7, degree 5
- operators of order 15, degree 12
1014 7 - operators of order 20, degree 2

N

T
10! 10? 10° 10*
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Comparison with previously best algorithm

Time (in seconds)

102 4

101 4

100 4

10 4

+ quasilinear algorithm .
- iteration of square root algorithm

N

10? 10? 10%
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State of the art on factorisation

In characteristic 0:

@ D. Yu. Grigoriev, Complexity of factoring and calculating the GCD of
linear ordinary differential operators, JSC. 10 (1990).

@ M. van Hoeij, Factorization of differential operators with rational
functions coefficients, JSC. 24 (1997).

@ M. van Hoeij. Rational solutions of the mixed differential equation
and its application to factorization of differential operators. ISSAC
1996.

@ J. van der Hoeven, Around the numeric-symbolic computation of
differential Galois groups. JSC. 42 (2007)

@ F. Chyzak, A. Goyer, and M. Mezzarobba, Symbolic-numeric
factorization of differential operators. ISSAC 2022.
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State of the art on factorisation

In characteristic p:

@ M. van der Put, Differential equations in characteristic p. 1995.

@ M. van der Put. Modular methods for factoring differential operators.
Unpublished manuscript, 1997.

M. Giesbrecht, Y. Zhang, Factoring and decomposing Ore
polynomials over IF,(t), ISSAC 2003.

@ T. Cluzeau, Factorisation of differential systems in characteristic p,
ISSAC 2003.

X. Caruso, J. Le Borgne. A new faster algorithm for factoring skew
polynomials over finite fields. JSC 2017.

J. Gomez-Torrecillas, F. J. Lobillo, G. Navarro, Computing the bound
of an Ore polynomial. Applications to factorisation, JSC 2019.
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State of the art on factorisation

Unsolved case: Central operators

C :=TF,(xP) is the field of constants of F,(x).
C[0P] is the center of IF,(x)(0).

Let N € C[Y] be an irreducible polynomial. Two questions:

@ Is N(0P) irreducible?

@ If it isn’t, how to determine an irreducible divisor of it?
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Contribution 2

Theorem (P. 2023)

Let N, € F,[X, Y] be an irreducible polynomial of bidegree (d, d,). There
exists an algorithm testing the irreducibility of N.(xP, OP) in polynomial time
in dy, d, andlog(p).
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Contribution 3

Theorem (P. 2023)

Let N, € X, Y] be an irreducible polynomial of bidegree (dy, d, ). If

Ny (xP, OP) is reducible then there exists an irreducible factor of N.(xP, OP)
whose coefficients are of degree O(d? d;‘j) and an algorithm finding such a
factor in time polynomial in dy and d, and quasi-linear in p.

Ingredients:
@ Geometry of curves
@ Riemann-Roch spaces

@ Divisor class group

The algorithm works for operators with coefficients in algebraic function
fields.
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N©OP) = (2x° +2)9% + (x° +2)0° + 2x° +2x* + 2

NY)= (25 +2)Y + (68 +2)Y+2x° +2x° + 2

@ Dy(ary := Fo({)/F,(x)(0) N(P).
@ Dy(aryL is the Fy(x)(0)-submodule of Dy(sry generated by L.

€

L — DyaryL is a decreasing bijection between
@ The set of monic divisors of N(9P)

@ The set of IF,(x)(0)-submodules of D).
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Structural results

Cy := /Ny)

Proposition (Jacobson)

Dy(ary is a central simple Cy-algebra a dimension p? (Y~ 0P)

Theorem (Artin-Wedderburn)

Any central simple Cy-algebra is isomorphic to a matrix ring over a division
algebra.

Dyary is either a division algebra or it is isomorphic to M,(Cy).
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Structural results

If Dyory is a division algebra then N(9P) has no nontrivial divisor.

yn is the image of Yin Cy = C[Y/N(v) / \
N

Ky = Fp(x) - Cn Fp(x)
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Structural results

If Dyory is a division algebra then N(9P) has no nontrivial divisor.

Kn
yn is the image of Yin Cy = C[Y/N(v) / \
KN = FP(X) o CN IE‘p(X) CN > yN
on : FD@)/nor) s Kn(0) for—yy X
C= FP<XP)

Lemma (Jacobson, van der Put)

If Dnary =~ Mp(C) then L € Ky(0) is an irreducible divisor of O — yy iff
L=0—fwith f(P=1) 4 fr =y,
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Local-global principle

KN<3>/6P—yN is a finite dimensional central simple Cy-algebra
= has an isomorphism class in Br(Cy).

P — yy is reducible in Ky(0) iff KN(D) /0P —yyis trivial in Br(Cy)

Br(Cy) — €P Br(Cnsp)
PePc,

where Pc, is the set of places of Cy and Cy s is the completion of Cy in .

Theorem (P. 2023)

N(OP) is reducible iff the equation fP~1) + f = y\ has a local solution in
every place of Ky.
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Hensel lemma

(s2) e =p mE@),
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Hensel lemma

(s2) e =p mE@),

where g is the derivative of a prime element of the place considered.

Theorem (P. 2023)

Iffe Fq((t)) verifies (g?dt)’kl (f) + fP = yn + O(tP") then there exists
f« € Fg((8)) such that

d\"
(gdt> (i) +fP=yn+ O(tp(pn+(p—1)(1—v(g))))
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Irreducibility test

° (ggdt)pfl (f) + fP = yn has a solution in F,((t)) iff there exists
f. € Fy((f) such that (g2) ™" (f) + f7 = yy + O(tP(®).

.
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Irreducibility test

° (ggdt)pfl (f) + fP = yn has a solution in F,((t)) iff there exists
S« € Fg((2)) such that (gﬁdt)pfl (f) + fP = yn + O(tP* (@),
@ The condition is empty unless v(yy) < pv(g).

o AP~ 4 fP — y, has a solution in Ky iff it has a local solution at the
poles of yy and x.

Theorem (P. 2023)

Let N, € X, Y] be an irreducible polynomial of bidegree (dy, d,). We can
test the irreducibility of N,(x,0P) inF,(x)(0) at the cost of:

@ a factorisation of x and a root of N, in Ky,
e O(dy+ d,) evals of functions in Ky of size O(d, x (d2d, + dxdyz)),
o O.((dy+ degalog(p)® + (d?d? + d?d?)log(p)) bit operations.
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Factoring N(0P): when Ky = Fp(x)

Suppose that Ky = F,(x), yn = a” € Fp(x”) and that there exists f € F,(x)
verifying f(P~1) 4 fP = aP.

Step 1: Show that there is a solution whose denominator divides that of a.

Any pole of fwhich is not a pole of a is a simple pole.

. . H
Remove poles by adding multiple of 7.

18/24
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p-Riccati equation in the general case

Same ideas:
Step 1: Locate and bound the poles of a solution.
Step 2: Compute a Riemann-Roch space.

Step 3: Solve an [F,-linear system.

Difference:
@ Poles not necessarily simple. Bounded by ramification index.

’
@ Local improvement f— %

Problem: By adding %/ we may add more poles.

19/24
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p-Riccati equation in the general case

. .. . H
How close is the divisor of poles of ffrom being a 7-?

Definition
@ D~ D'iff D— D is principal i.e. equal to (h) := Z‘bGPKN v (h) - B
for some h € Ky.
@ The group of equivalence classes of divisors is the divisor class group
of CI(KN)

Cl(Ky) is a finitely generated commutative group.
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p-Riccati equation in the general case

Theorem (P. 2023)

Let Xy be the set of solutions of the p-Riccati equation. If S is a generating
family of CUKx)/pci(ky) then

In=2 < IyNLIAS) =2
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p-Riccati equation in the general case

Theorem (P. 2023)

Let Xy be the set of solutions of the p-Riccati equation. If S is a generating
family of CUKx)/pci(ky) then

In=2 < IyNLIAS) =2

where

A(S) = max(Diff(Ky) — 2(x Z
Bes
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Algorithm

Let Xy be the set of solutions of the p-Riccati equation. If S is a generating
family of CU(Kv)/pci(ky) then
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Algorithm

Let Xy be the set of solutions of the p-Riccati equation. If S is a generating
family of CU(Kv)/pci(ky) then

Pick sufficiently many random places.
e Compute a F,-basis of L(A(S)).

@ Solve a linear system.
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@ Iclm decomposition. Writing L as the Iclm of Ly,..., L, with
Sor ord(L;) = ord(L).
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@ Iclm decomposition. Writing L as the Iclm of Ly,..., L, with
Sor ord(L;) = ord(L).

@ Loewy decomposition: L = L; ... L, with L, being the lclm of all the
irreducible right factors of L. Give a lclm decomposition of each L;.

@ Study the fine-grained algorithmic aspects of the algorithm
(OM-factorization, Riemann-Roch spaces)
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Thank you for your attention



p-Riccati equation in the general case

Denote Ky = Fp( )[a] with @ = yy.
Let f € Ky verify f(P=1) & fP = aP. Let B be a pole of f, vy the associated
valuation and e(*}3) its ramification index.

vp(f) > min(—e(%R), vp(a))

If v (a) > —e(*B), then there exists a unique k € ¥, such that for all g € Ky
verifying vy (g) = k mod p,

(= i) > 1 o).

%qu(f) =k
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p-Riccati equation in the general case
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p-Riccati equation in the general case

Re(f) = Y Reg(f) - P
B0

If Re(f) ~ D' then there exists another solution f, verifying
vp(f.) = min(vp(a), 1 — e(R))
for allP ¢ Supp(D').

26/24



p-Riccati equation in the general case

Re(f) = Y Reg(f) - P
B0

If Re(f) ~ D' then there exists another solution f, verifying
vp(f.) = min(vp(a), 1 — e(R))

for allP ¢ Supp(D').

A\

If Sis a family of places of Ky generating C1(Ky) then there exists another
solution f, of the p-Riccati equation verifying

vp(fi) = min(vyp(a),1 — e(P)) for all P ¢ S.

\,
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p-Riccati equation in the general case

Re(f) = Y Rex(H) - P
B

IfRe(f) ~ D' + pD, then there exists another solution f, verifying
vp(f.) = min(vp(a), 1 — e(R))

for allP ¢ Supp(D').

A\

If Sis a family of places of Ky generating Cl(Kv)/pci(ky) then there exists
another solution f; of the p-Riccati equation verifying

vp(fi) = min(vyp(a),1 — e(P)) for all P ¢ S.

\,

26/24



