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Abstract

We study the scheduling situation in which a set of jobs subjected to release dates
and deadlines are to be performed on a single machine. The objective is to minimize
a piecewise linear objective function Zj F; where F;(Cj;) corresponds to the cost of the
completion of job j at time C';. This class of function is very large and thus interesting both
from a theoretical and practical point of view: It can be used to model total (weighted)
completion time, total (weighted) tardiness, earliness and tardiness, etc. We introduce
a new Mixed Integer Program (MIP) based on time interval decomposition. Our MIP
is closely related to the well-known time-indexed MIP formulation but uses much less
variables and constraints. Experiments on academic benchmarks as well as on real-life
industrial problems show that our generic MIP formulation is efficient.
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1 Introduction

A huge amount of research has been carried on single machine “total cost” scheduling prob-
lems over the last 60 years. However, most of the papers are dedicated to special cases and
there are few results on generic objective functions. Objective functions of real-life manufac-
turing problems are often much more complex than the well-known scheduling criteria such
as total (weighted) completion time, total (weighted) tardiness, earliness and tardiness, etc.
For instance, the combination of time windows (release dates and deadlines) together with
a sum objective function is almost never considered in the literature. We refer to [40] for a
brief overview of the complexity of the manufacturing scheduling problems encountered by
the users of Ilog’s Integrated production planning and scheduling software.

The objective of this paper is to introduce a new, efficient and non-trivial MIP formulation
that can be used on a large variety of single machine scheduling problem.
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We study the scheduling situation in which a set N of jobs {1,2,...,n} have to to be
processed without preemption on a single machine. Each job j € N has a release date r;, a
positive processing time p; > 0 and a deadline d;. For each job j, we also have a cost function
F}; which is a piecewise linear function of the completion time C; of j. If the deadline d; of
job j is not explicitly given, it can be set to the sum of the beginning of the last linear piece
of F; and the total processing time of jobs. The objective is to minimize the overall cost
Ej F;(Cj). This class of functions is very large and thus interesting both from a theoretical
and practical point of view: It can be used to model total (weighted) completion time, total
(weighted) tardiness, earliness and tardiness, etc.

We first introduce some basic notation for the problem. Let T" = maxjecy d; denote the
time horizon of the problem. Without any loss of generality, we assume that there is a partition
of the interval (0,7] into a set M = {1,...,m} of intervals I,, = (ey—1,€y] (for u € M), i.e.
eg < ep <--- < e, such that

e the cost function of any job j over any interval I, is linear, i.e.,

Fj(Cj) :f;‘+w;?-(0j—eu,1), Cj el,, ue M, j€ N.

u

; can be less or equal to zero),

where f*, w} are some constant values (w

e for every job j € N, r; = ¢, and d; = e, for some v,u € M.

We say that such a partition is linear. See an example of such a partition in Figure 1.
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Figure 1: Linear partition of the time horizon — an example with 2 jobs

The major contribution of this paper is to introduce a new MIP (Section 4) for the single
machine problem. It is based on basic properties (introduced in Section 3) of linear partitions.
This MIP is closely related to time-indexed MIPs (see Section 2) but it uses much less variables
and constraints. A more efficient (and more complex) variant of the MIP is described in
Section 5. Experimental results are reported in Section 6.

2 Literature Review

To formulate the objective function, we introduce the lateness L; = C; — d;, the tardiness
T; = max{0, L;}, the earliness £; = max(0,d; — C;) and the unit penalty U;, where U; = 0 if



Cj < dj and U; = 1 otherwise. The objective functions (depicted in Figure 2) to be minimized
are defined as follows:

e The Makespan Cpax = max; C;

e the Mazimum Lateness Lyax = max; L;,

e the Mazimum Tardiness Tyax = max; T},

o the Total Weighted Completion Time ) w;C},

o the Total Weighted Tardiness Y w;T;,

o the Total Weighted Number of Tardy Jobs > w;U;.

e the Farliness-Tardiness ) o; E; + 3;T).

Weights can be all equal to 1 and in this case, w; is dropped in the above notation.

w;Cj / Lj w; T} w;Uj a;Ej+ 0;T;

Figure 2: Classical objective functions  weighted completion time, lateness, weighted tardi-

ness, weighted number of late jobs, weighted earliness-tardiness

2.1 Specific Scheduling Algorithms

In this section, it is always assumed that we do not have deadlines. A lot of research has been
carried on the unweighted total tardiness problem with no release date. Powerful dominance
rules have been introduced by Emmons [29]. Lawler [35] has proposed a dynamic programming
algorithm that solves the problem in pseudo-polynomial time. Finally, Du and Leung have
shown that the problem is NP-Hard [27]. Most of the exact methods for solving the total
tardiness problem strongly rely on Emmons’ dominance rules. Potts and Van Wassenhove
[43], Chang et al.[18] and Szwarc et al.[54], have developed Branch and Bound methods using
the Emmons rules coupled with the decomposition rule of Lawler [35] together with some
other elimination rules. The best results have been obtained by Szwarc, Della Croce and
Grosso [54, 55] with a Branch and Bound method that efficiently handles instances with up to
500 jobs. The total weighted tardiness problem (> w;T;) is strongly NP-Hard [35]. For this
problem, Rinnooy Kan et al.[50] and Rachamadugu [45] have extended the Emmons Rules
[29]. Exact approaches based on Dynamic Programing and Branch and Bound have been
tested and compared by Abdul-Razacq, Potts and Van Wassenhove [1]. Recently, Pan and
Shi [41] have proposed a very efficient branch-and-bound algorithm which solves instances of
the problem 1 || Y w;T}; with up to 100 jobs.

There are less results on the total tardiness problem with arbitrary release dates. Chu and
Portmann [23| have introduced a sufficient condition for local optimality which allows them



to build a dominant subset of schedules. Chu [21] has also proposed a Branch and Bound
method using efficient dominance rules. This method handles instances with up to 30 jobs for
the hardest instances and with up to 230 jobs for the easiest ones. More recently, Baptiste,
Carlier and Jouglet [6] have described a new lower bound and some dominance rules which
are used in a Branch and Bound procedure which handles instances with up to 50 jobs for the
hardest instances and 500 jobs for the easiest ones. Let us also mention that exact Branch
and Bound procedures have been proposed for the same problem with setup times [46, 53|.
For the total weighted tardiness problem () w;T;) with release dates, Akturk and Ozdemir [3|
have proposed a sufficient condition for local optimality which improves heuristic algorithms.
This rule is then used with a generalization of Chu’s dominance rules to the weighted case in
a Branch and Bound algorithm |2]. This Branch and Bound method handles instances with
up to 20 jobs. Recently Jouglet et al. [32] have proposed a new Branch and Bound that solves
all instances with up to 35 jobs.

For the total completion time problem () w;C;), in the case of identical release dates, both
the unweighted and the weighted problems can easily be solved polynomially in O(nlogn) by
applying the Shortest Weighted Processing Time priority rule, also called Smith’s rule [52].
For the unweighted problem with release dates, several researchers have introduced dominance
properties and proposed a number of algorithms [17, 26, 25]. Chu [20, 22| has proved several
dominance properties and has provided a Branch and Bound algorithm. Chand, Traub and
Uzsoy used a decomposition approach to improve Branch and Bound algorithms [16]. Among
the exact methods, the most efficient algorithms [20, 16] can handle instances with up to 100
jobs. The weighted case with release dates is NP-Hard in the strong sense [49] even when the
preemption is allowed [34]|. Several dominance rules and Branch and Bound algorithms have
been proposed [10, 11, 31, 48|. To our knowledge, the best results are obtained by Pan and
Shi [42] with a hybrid Branch and Bound-Dynamic Programming algorithm which has been
tested on instances involving up to 200 jobs.

Many exact methods have been proposed for the problem of minimizing the number of late
jobs (3>_U;) |7, 24, 8]. More recently, Sadykov [51] and M’Hallah and Bulfin [38]| have proposed
efficient exact algorithms for solving the general case of this problem: 1| r; | > w;U;. Both
algorithms are able to solve instances with up to 100 jobs.

Less papers are devoted to the problem with the earliness-tardiness objective function. The
Branch and Bound algorithm by Sourd and Kedad-Sidhoum [30] and Branch and Bound and
Dynamic Programming algorithms by Yau et al. [59] can be used to solve optimally instances
of the problem 1 || Y o; E; + 3;1; with up to 50 jobs. Another Branch and Bound algorithm
has been earlier proposed by Chen, Chu and Proth [19].

2.2 Generic MIP Formulations

Time Indexed Formulation

When all processing times p; of jobs are integers, the single-machine non-preemptive schedul-
ing problem with an arbitrary cost function can be formulated as an Integer Program using
time-indexed variables. Binary variable X, j € N, t € [0,T), takes value 1 if job j starts at
time ¢, and otherwise X;; = 0. We then have



T

min ZFj(t-i-pj)Xj (1)
t=0
dj—pj

st. Y Xp=1, jeEN, (2)
t:'l‘j

t
> > Xjs <1, telo,7), (3)

JEN s=max{0,t—p;+1}
X1 €{0,1}, jeN,tel0,T). (4)

The constraints (2) state that each job starts exactly once within its time window. The
constraints (3) guarantee that, at each time moment, only one job is processed. Release dates
and deadlines can be taken into account by setting appropriate variables to zero.

The time-indexed formulation is known for more than 40 years. It was used, for example,
in the works by Bowman [13], Pritsker et al. [44], Redwine and Wismer [47|. The polyhedral
study of this formulation was conducted by Dyer and Wolsey [28], Sousa and Wolsey [33],
Akker et al. [57]. The main advantage of this formulation is that, by solving its LP relaxation,
one can obtain a very strong lower bound on the optimal solution value. In the special case
where processing times are equal (Vi, p; = p), many problems turn to be polynomially solvable
(see [5, 4]) and the the continuous relaxation of the time-indexed formulation is sometimes
integral [15, 56, 58].

Another obvious advantage is the possibility to model single-machine non-preemptive prob-
lem with any objective function. Unfortunately, the formulation has one big drawback. For
practical instances with a large number of jobs and large processing times, the size of the
formulation becomes so large that it is difficult to solve even its LP relaxation in a reasonable
time.

Linear Ordering Formulation
Another way to solve some single-machine scheduling problems by Integer Programming is to
use the following linear ordering formulation. Binary variable §;;, 4,5 € N, takes value 1 if

job i precedes job j, and otherwise d;; = 0. Continuous variable C}, j7 € N, represents the
completion time of job j. Now we can write the formulation for the case without release dates.

JEN
s.t. 5ij+5ji§17 1,7 € N, 1 <j, (6)
Oij + 0k + 0k <2, G5,k €N, i#j#k, (7)
dj > Cj > Z pidij +pj, jEN, (8)
iEN,i#]
6;; €{0,1}, i,j €N, i#j. (9)

The constraints (6) state that, for every pair of jobs, one should precede the other. The
constraints (7) guarantee that, for every triple of jobs 4,75,k € N, if i precedes j and j
precedes k then i should precede k. The constraints (8) relate the variables § and C. To be



able to express the objective function ),y F(C}j) using linear constraints, F};(C;) should be
piecewise linear and convex.

In order to take into account the different release dates (and thus, possible idle times in
the schedule), the constraints

deCjZTj-f—pj, 7 €N, (10)
should be added, and the constraints (6) and (7) should be changed to

where M’ is sufficiently big. In our case, M’ can be set to maxjen d; — minjen7;. The
constraints (11) are usually called “big-M” constraints.

A better variant of the linear ordering formulation for the case with different release dates
and a regular (non-decreasing) objective function was proposed by Nemhauser and Savels-
bergh [39]. The linear ordering formulation is compact but its continuous relaxation is known
to be weaker (experimentally) than the continuous relaxation of the time-indexed formulation,
especially when the “big-M” constraints are used. A more detailed survey on different MIP
formulations for machine scheduling problems can be found in [37].

3 Basic Results

We say that job j is “started” in interval I, if its starting time is greater than or equal to e, 1
and less than e,. We say that job j is “completed” in interval I, if its completion time is such
that e,—1 < Cj < e,. Let @, denote the set of jobs started and completed in interval I,:

Qu = {j EN: (Sj,c]} C Iu}.

Claim 1 There exists an optimal schedule in which, for any interval I,,, w € M, and any two

u

jobs i,j € Qy, job i is sequenced before job j when 1;]—? > 1;—]
i j

This claim is based on a simple exchange argument between consecutive jobs. It is a straight-
forward adaptation of Smith’s rule (see for instance [14]). In the following, we denote by o,
a permutation of jobs {1,2,...,n} in which “long” jobs come first in any order, and “short”
jobs come last according to Smith rule:
wi | vy
Di < ey~ €ey—1,pj < €y — €y—1, i > i
or = oy(1) < oy(j), Vi,j€ N.

Di = €y — u—1,P5 < €y — €y—1
Although several permutations satisfy this condition, for each u € M, only one of them is

used in the remaining of the paper. The necessity of moving “long” jobs to the beginning of
the permutation will be clear in Section 5.

Definition 1 Given a linear partition {I,}uenr, a schedule is called canonical if, for each

u€e M,



e there is at most one idle time period per interval I,

e jobs in @, are processed according to the permutation o,, where jobs j € Q,, with wi >0
are processed before the idle time period in I, and jobs j € Qy with wi < 0 are processed

after the idle time period in I, (see Figure 3).

Qu
€u—1 A &)
(e ™\ |
! . . idle time . . !
S : J1 J2 J3 J4 : S o
w}-‘le w}‘QZO w}‘3<0w}l4<0

ou(J1) < ou(j2) < oul(y3) < oulja)

Figure 3: Sequencing of jobs in a canonical schedule

Claim 2 There exists an optimal canonical schedule.

Proof: Consider an optimal schedule which is not canonical and u € M such that jobs in
Q. are not processed according to o,. Obviously, | @, |> 2, meaning that j € Q, = p; <
ey — ey—1- Now we rearrange jobs in @), according to o,. By Smith’s rule, the cost of the
schedule do not increase, and the schedule remains optimal. Then, we shift jobs j € Q,,
wj > 0, to the left, and jobs j € Qu, w} > 0, to the right as much as possible and as long
as they remain in @Q,. By doing this, we again do not increase the cost of the schedule and
reduce the number of non-empty idle time periods in I, to at most one. By implementing this
procedure for each u € M, we obtain an optimal canonical schedule. [J

So, we can restrict our search for an optimal solution to only canonical schedules. There-
fore, our problem reduces to

e determining in which intervals jobs are started and completed;

e finding the lengths of the idle time periods in each interval.

In the paper, we rely on the following notation. Let Bj and A;-‘, 7 € N, u € M, be the sets
of jobs which come, respectively, before and after job j in the permutation o,. Let also N B,
and NS, denote the sets of “big” and “small” jobs for a given interval I,; NB, = {i € N :
pi >ey—ey—1}, NSy ={i € N: p; <e, —ey_1}. We also define the sets ABY = Ay N NB,y,
BB} = B} N NB,, AS} = Ay N NS,, BS} = BN NS,.

4 The interval-indexed formulation

First, we introduce the variables of the model. The binary variable X¥', j € N, u € M, takes
value 1 if job j is started in interval I, or earlier, and otherwise X' = 0. The binary variable
Y/, je N, ue M, takes value 1 if job j is completed in interval I, or earlier, and otherwise
Yj“ = 0. For each j € N, we set XJQ =0, X}” =1, on =0, ij = 1. The continuous variable
W, u € M, denotes the length of the idle time period in interval I,,. The continuous variables



FJ“, j € N, u € M, are used to compute the difference between the actual cost of job j and
the minimum cost of j over the interval I,,:

0, Cj & I, or wi =0,
F;‘ = Cj — €y—1, Cj € I, and w;-L > 0,
€u—Cj, Cj € I, and w;-L < 0,

Then, if job j is completed in interval I, F;(Cj) = f}' + |w}|F}, and the objective function
can be written as

min » > | wi | Ff 4 )Y min{Fj(eu-1), Fj(en) } (¥} = Y. (12)

JEN ueM JEN ueM

4.1 Feasibility constraints

Each canonical schedule is determined by a vector (X,Y, W) € {0,1}™ x {0,1}™™ x R of
instantiated variables. The following constraints describe feasible canonical schedules.

Y/l <Y[, VYueM,VjeN,
Xy P < X}, VueM,VjeN,

(13)
(14)
Y < XY, VYueM,VjeN, (15)
X' <Y, Vue M, VjeNS,, (16)
Y < X{™', Vue M, VjeNB,, (17)
Xi=0, VjeEN, rj=ey, (18)
iju: ) VjGN, dj:eu’ (19)
u
STV Wy <en— Y e(XP -V, Yue M, (20)
JEN v=1 iEN
u
Dop XY Wy e+ Y e(XP =YY", VueM, (21)
JEN v=1 1EN
dXF-YM) <1, VueM, (22)
iEN
Wy <ey,—ey—1—(ey—e€y-1)- Z (X1 =Y"), Yue M, (23)
1EN
X =YY - XN <1, Yue M, Vje NS, (24)
iEN By,
Y €{0,1}, VYue M,¥Yje N, (25)
X' e{0,1}, Vue M,VjeN. (26)

The inequalities (13) and (14) ensure that the values taken by variables Y and X are
consistent with the definition of these variables. The constraints (15) state that, if a job is
completed in some interval, it should be started in this interval or before. The inequalities
(16) reflect the fact that, if a job is “small” for an interval, it cannot be started before the
beginning of the interval and completed after the end of the interval. The inequalities (17)
state that, if a job is “big” for an interval, it cannot be started and completed in this interval.



Note that the constraints (16) and (17) can be omitted after a suitable modification of the
inequalities (13) and (15). The constraints (18) and (19) are needed to take into account the
release dates and deadlines of jobs.

The constraints (20), (21) guarantee that the sum of the processing times of jobs completed
(started) in the first u intervals plus the total idle time in these intervals is not more (less) than
ey, i.e. the total length of these intervals. The terms with € are used here to impose the strict
conditions: if job j is started in I,, then S; < e,; if job j is completed in I, then C; > e,_;.
e should be chosen in such a way that, for all w € M, e, /e is integer, and for all j € N, p;/e
is integer. Note that the terms with € can be omitted as long as f;-“l + wi(ey — ey—1) < f}'
for all w € M, j € N (this obviously holds for regular objective functions).

The constraints (22) state that there is at most one job that is started before time moment
ey, and finished after it. The constraints (23) put the length of the idle time period in an interval
to zero, if some job is started before the beginning of the interval and completed after the end
of the interval. Note that the constraints (23) imply the constraints (22). The constraints
(24) eliminate the possibility of “overlapping”, when some job i is started before the beginning
of an interval I, and completed after the end of I, and some job j is fully processed inside
interval I,,.

We have just showed that the constraints (13)-(26) are valid. In other words, if a canonical
schedule is feasible, the corresponding vector (X,Y, W) satisfy the constraints (13)-(26). We
now show that these constraints suffice to describe the set of all feasible canonical schedules.

Proposition 1 Given a linear partition {I,}uenrr, let vector (X, Y, W) satisfy the constraints

(13)-(26). Then the corresponding canonical schedule is feasible.

Proof: Let z(j), j € N, be the index such that X7 — X771 = 1 and y(j). j € N, be

the index such that ij(j) - Yf(j)_l = 1. By the constraints (14) and (13), z(j) and y(j) are
defined identically. We first show that there is a permutation (ji,jo,...,Jn) of jobs which
satisfies the condition

y(jk—l) < x(]k)a ke {2,,77,} (27)
For this, we prove that there is no pair (7, j) of jobs such that z(i) < y(j) and x(j) < y(4).

Consider a pair (4, j) of jobs. Suppose that (i) < y(j) and z(j) < y(i). Note that, by the
constraints (15), z(i) < y(i) and x(j) < y(j). Then, there can be two possibilities.

1. Let (i) < y(i) and z(j) < y(j). We denote x = max{x (i), z(j)} and y = min{y(3), y(j)}
Then we have x < y, and therefore X7 = X;? =1land V" = Yf = 0. But this is impos-
sible due to the constraints (22). Contradiction.

2. Let x(i) = y(¢) or x(j) = y(j). Without loss of generality, assume that x(j) = y(j).
Then X;C(j) = ij(j) =1, X;C(j%l = ij(j)fl = 0, and j € NS, otherwise the
constraints (17) would be violated. We have z(i) < y(j) = z(j) < y(i), therefore

Xf(j)_l =1, Yix(j) = 0, and i € NB;), otherwise we would violate the constraints

(16). Consequently, X7V~ ;") =1 and vV 7! - X7V = 1. But this is impossible

due to the constraints (24). Contradiction.

So, there exists a permutation v = (j1, ..., j,) which satisfies the condition (27). We perturb
~ by sorting all jobs j such that xz(j) = y(j) = w according to the permutation o, for all
u € M. We obtain permutation 6 = (ji,...,Jn) which still satisfies (27).



Let B;»S and A;s-, J € N, be the sets of jobs which come, respectively, before and after job j
in permutation 6. Now we construct schedule 7 by setting

u(j)
Ci(m)= > pi+> Wy, Vj€EN, (28)
i€ BJU{j} v=1
y(@) -1 w? 20 or 2(j) <y(),
where u(j) = )
y(i), wi? <0 and x(j) = y(j).
As u(j1) < --- <u(jn), we have Cj, (1) —pj, > Cj,_,(m), Vk € {2,...,n}. To show that 7

is a feasible schedule, it remains to show that r; +p; < Cj(m) < d;. As the partition is linear,
we have r; = e, for some w € M. Note that w < x(j), otherwise the constraints (18) would
be violated. As X =0, Vi € A?- U{j}, and w < u(y),

(28) d (21)
Ci(m) = > pi+ Y Wotpj = ew+pj=1j+Dp;

i€B) v=1
In the same manner, using the constraints (19), we can prove that the completion times do
not violate the deadlines of jobs.
We now show that, for each j € N, e;;y—1 < .5;(m) < ey(;) and ey(j)_l < Cj(m) < ey

As 2(j) — 1 < u(j) and z(j) < (i), Vi € A%, we have X;V ™" =0, Vi € A% U {j}, and
Xf’(j)fl =0,V: € A?-. Therefore,

Sj(ﬂ) = Z pi + Z Wy, > Z Di + Z W, > €x(j)—1
i€B) i€B? v=1
29) s W1 _ yali)-1
Citm) = Y pZ—I—ZW >ey e (X oyt
i€ BJU{j} iEN

Suppose Cj(7) = ey(j)—1, then, as p; > 0, by the constraints (21), ij(j)fl =1, and ij(j)fl =
0 implying C(m) > ey(jy—1 + €, contradiction. Therefore, C;(7) > ey (j)—1

Note that the constraints (23) imply

> W,=0, VjeN. (29)

As y(i) < 2(j) < y(j), Vi € B, we have Y'Y = 1, vi € BY, and YY) = 1, i € BJU {;}.
Therefore,

(28) y(4) (20)
Ci(m) < ) pit+ Y Wy < ey
iGB?U{]} v=1
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z(5) y(j)—
Sj(ﬂ) = sz Z Wv—sz-i-ZW-i- Z W,
i€B? i€B? =z(j)+1
RES. (379 vy,
iEN

Let u(j) = y(j) implying z(j) = y(j), then

z(j) 20)

sz+ZW < €x; —52(}( z(4) Y'Z»T(J)>

zeB5 iEN

Suppose S;j(m) = e(;), then, as p; > 0, by the constraints (20), Y] =0) = 0, and X;-B(j) =
implying S;(m) < ey(;) — €, contradiction. Therefore, S;(m) < ey(j)-

Finally, by construction, 7 is a canonical schedule. [J

4.2 Constraints Related to the Overall Cost

Now we describe the constraints that relate variables X, Y, W and F.

11



u—1
Fj' > Z piY T+ p Y+ Z Wy — €eu-1,

iEN\{j} v=1
Vu e M, Vj € NBy, wj >0, (30)

u—1
Fj' > Z piY 4 ij;-‘_l + Z Wy —ey—1,

ieN\{} v=1
Vu e M, Vj € NSy, wj >0, (31)
F>pYi+ ) pY 4+ Y pYi+ D pX T+
iEB;‘ iEAB; iEAS}‘
u—1
Z Wy —ey—1 — (1 - Y}u + X;Lil) : (eu - eufl)y
v=1
Vu € M, Vj € NS, wi >0, (32)
m
Fr> > p(l-XN+ Y W, —(T—e,) -
ieEN\{j} v=u-+1
(1- Yju + Yju_l) “(ew — eu-1),
Vu € M, Vj € NBy, wj <0, (33)
m
Ff> > p(l=XN+ Y W, —(T—e) -
i€N\{j} v=u+1
=X Y1) (ew —eu),
Vu e M, Vj € NSy, wj <0, (34)
Fi' > Z pi(l— X1+ Z pi(1—-Y") +
ieA;‘UBB;‘ ieBS}‘

m
DW= (T—e) = (1 =Y+ X7 (e —eu),
v=u-+1
Vu € M, Vj € NS, w; <0, (35)

Once the variables Y, X, W are instantiated, the constraints (30)-(32) determine the
values for variables F}', j € N, u € M, wi > 0, and the constraints (33)-(35) determine the
values for variables F}', j € N, u € M, w} <0.

Assume job j is completed in interval I, in m. We consider two cases.

1. Either job j is “big” for I, (then j is completed first in I, in 7) or job j is “small” for I,
and j is started in I, or earlier and completed in I, in 7.

e wi > 0. Cj(m) equals the sum of p;, the total processing time of jobs completed
in interval I,_q or earlier and the total idle time in the first u — 1 intervals. Here
Fi' = Cj(m) — ey—1. If j is “big” for I, F}' is instantiated by the constraint (30).
If j is “small” for I, F}* is instantiated by the constraint (31).

o wi < 0. Cj(m) equals T minus the sum of the total processing time of jobs in
N\ {j} started in interval I, or later and the total idle time in the last m — u
intervals. Here F}' = e, — Cj(m). If j is “big” for I, F}* is instantiated by the
constraint (33). If j is “small” for I,,, F}" is instantiated by the constraint (34).
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2. Job j is “small” for I,,, and j is started and completed in I, in .

e wi > 0. Cj(m) equals the sum of p;, the total processing time of jobs in B}
completed in interval I,, or earlier, the total processing time of jobs in A}‘ started
in interval I,_q or earlier and the total idle time in the first u — 1 intervals. Here

Fj' = Cj(m) — ey—1, F}" is instantiated by the constraint (32).

e wi < 0. Cj(m) equals T" minus the sum of the total processing time of jobs in
By completed in interval I,41 or later, the total processing time of jobs in A;?
started in interval I, or later and the total idle time in the last m — u intervals.
Fit = e, — Cj(rm), I} is instantiated by the constraint (35).

To prove the correctness of the interval-based formulation, it remains to show the validity
of the constraints (30)-(35). We do this in the next proposition. Let [7}(k) be the value of

the right-hand side of the constraint (k), and

E}(30), j € NBu, wj >0,
g | WX {F¥(31), F¥(32)}, j€ NSy, w} >0,
=3 u y

E5(33), J € NBuy, wj <0,

max {F}(34), F¥(35)}, j€ NSy, wj <0.

Proposition 2 The formulation (12)-(26), (30)-(35) is correct.

Proof: Consider vector (X,Y, W) satisfying the constraints (12)-(26) and the corresponding
canonical schedule. To prove the proposition, we show that F}' = max{L7},0}, i.e.

L. if job j is completed in interval I, then w} > 0 implies I} = C} (m) — ey—1, and wi <0
implies I} = e, — Cj(7);
2. if job j is not completed in interval [,, then £/ <0.

Case 1. Let job j is completed in interval I, implying Y}* = 1 and Y;*~' = 0. We have
two sub-cases.

1.a. Fither j € NB, (then j is completed first in I,, in w) or j € NS, , j is started in
I, 1 or earlier and completed in I, in w. We have

y(j)—1
wi>0: Cj(m) = Z pi+pj+ Z W,
ieN\{j}, v=1
y(§)<u—1
u—1
= > pYT apYr 4> W (36)
ieN\{j} v=1
wi<0: Cj(r) = T— Z pi — Z W,
i€N\{j}, v=y(j)+1
z(i)>u
m
= T- Y pl-XH- > W, (37)
ieN\{j} v=u+1

13



Let j € NBy, w} > 0. Then Cj(m) = (36) = F7{(30) + ey—1.

Let j € NBy, w} <0. Then Cj(7) = (37) = ey, — F5(33).

Let j € NS, wl > 0. Cj(w) = (36) = E¥(31) + ey—1. Also, as X' =1 = Y}, using (16),
F%(32) is less or equal to

szY“JrZW 0.2 (38)

iEN

Let j € NSy, w} < 0. Cj(m) = (37) = ey — F(34) + ey—1. Also, as X}'"! =1 =Y}, using
(16), E}‘(35) is less or equal to

doop( =X+ ) W —THew (39)
ieN\{j} v=u+1
u—1
(21)
<= > pXPT =Y Weteuq <0
i€N\{j} v=1

1.b. j € NSy, j is started and completed in I, in 7. Then X;-‘_l =0, Y =1, and we
have

y(j)—
wt>0: Ci(m) = > pit Y pitpit Z W,
zEB“ zEA“
y(z)<u ()<u 1
= D pYr+ ) pX T p Y +ZW (40)
zGBu ZGA“
m
wi<0: Ci(m) = T— > pi— > pi— > W,
i€BY, €AY, v=y(j)+1
yizutl  a(i)>u
m
=T — > p(1=-Y")=> p(l-X"H= > W, (41)
i€BY €AY v=u+1

Let wf > 0. Then, using (17) and (24), Xl=vr vie ABY, and therefore Cj(m) = (40) =
F¥(32) 4+ ey—1. Also, as X!'~1 < V', F¥(31) < (38) <0.

Let w! < 0. Then, using (17) and (2 ) X;~! =Y, Vie BBY, and therefore Cj(r) = (41) =
ew — F75(33). Also, F¥(34) = (39) <

Case 2. Let job j is not completed in interval [, implying Y;* = Yj“_l. We have two
sub-cases.

2.a. j € NB,. Then, F¥(30) is equal to

> pV 4 Z W, —eu_1 < 0. (42)

1EN

Also, F7(33) = (39) < 0.
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(15) (16)
2.b. j € NS,. Then Yju—l < X;‘_l < VP = Yj“_l = Yj“_l = X;‘_l. Therefore,
F¥(31) = (42) < 0. Using (16), we have F%(32) < (38) < 0 and F%(35) < (39) < 0. Finally,
FU(34) = (39) < 0. O

Clearly, the interval-indexed formulation is compact. The number of variables do not
exceed 3nm+m = O(nm), the number of constraints do not exceed 6nm +4m = O(nm). For

the classical objective functions, we have m = O(n), and the size of the formulation becomes
O(n?) x O(n?).

4.3 Additional constraints

A usual way to strengthen a MIP formulation is to add redundant constraints which cut off
some fractional solutions. In this subsection, we suggest such constraints for the interval-
indexed formulation.

Consider intervals I, and I, v,u € M, v < u, and a job j € N.

o Let p; < ey, —e,. Then job j cannot be started before e, and completed after e,,
therefore Y;* > X7. This constraint is not dominated by other constraints of this type
if pj > e, —eyy1 and pj > ey_1 — ey.

e Let p; < e, —e,. Then job j cannot be started after or at e, and completed before or
at ey, therefore YJ“ < X;?. This constraint is not dominated by other constraints of this
type if p; < euq11 — e, and p; < ey — €y1.

o Let w}‘ > 0, ey—1 +p; < e, and ey,—_1 + p; > ey—1, meaning that, once started in
interval I, job j should be completed in I, or later. Then, if j is completed in I,
Fi' > pj — (ey—1 — €y—1), and the constraint

F}' > (pj — eu1 +eo1) (V) = X77) (43)

is valid. Moreover, if e, + p; < e,, once started in I, j should be completed in I,,, and
(43) can be strengthened to

Fi' > (pj—ew1+ep1)(X] — XJ7H).

o Let w;‘ <0, ey +p; < e, and e, + p; > e,_1, meaning that, once started in interval I,
job j should be completed in I, or earlier. Then, if j is completed in I, F}* > e, —ey—pj,
and the constraint

-1
Fjt 2 (eu — eo —pj) (Xj = Y}'7) (44)

is valid. Moreover, if e,_1 + p; > e,_1, once started in I,,, j should be completed in I,
and (44) can be strengthened to
—1
FP> (ew = e0 = p)(X] = X071

Note that the overall number of the suggested constraints which are not dominated is O(nm).
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5 Tightening the MIP with appropriate partitions of the time

horizon

In this section, we will restrict the class of canonical schedules. This will allow us to strengthen
the interval-indexed formulation by

e reducing the number of feasible solutions of the formulation,

e tightening the constraints (32) and (35), as the term —(1—-Y}" —i—X;‘_l) (ey — ey—1) will
be changed to —(1 — Y} + Yj"_l) (ey — ey—1).

Additionally, it will be possible to formulate a special case of the problem using only variables
Y and F' (subsection 5.3).

Remember that, in a canonical schedule, jobs in @, (started and completed in I,) are
sequenced according to the permutation o,. Let now @, denote the set of jobs completed, but
not necessarily started in interval I,:

Qu={ieN: CeL}.
Definition 2 Given a linear partition {I,}uenr, a schedule is called strictly canonical if it is

canonical and, for each uw € M, jobs in @, are processed according to the permutation o,.

Unfortunately, the set of strictly canonical schedules does not keep the optimality property,
as shown in the next example.

Example: Consider the partition {(0,9],(9,20]} of the time horizon and the 3-job instance
with data shown in Table 1. There is only one optimal schedule 7* = (2,1, 3) in which all jobs
are completed in interval Iy = (9,20], but the permutation o9 is (1,3,2). &

j pi oy dp (ffwp) o (ffw3)
1 4 0 20 0,0) 0,2)

9 0 0 20 0,0) (0,3.5)
3 6 0 20 0,0) (0,2.4)

Table 1: The data for Example 5

So, for an arbitrary linear partition of the time horizon, there is not always an optimal
strictly canonical schedule.

Definition 3 A linear partition of the time horizon is called appropriate if there exists an

optimal strictly canonical schedule for it.

5.1 Obtaining an appropriate partition

In this subsection, we will give sufficient conditions for a linear partition to be appropriate.
We then describe how an appropriate partition which satisfy these conditions can be obtained.
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For w € M and i,5 € N such that o,(i) < 0,(j), we denote as T7; the minimum time moment
t € [ey—1, €y — pi] such that, if j is the immediate predecessor of ¢ and C; > t then exchanging
7 and ¢ do not increase the cost of the schedule:

T = min {t D Vs € (t ey, Fjoi(s) < O},

=
J t€lew—1,6u—p;)

where Fj_i(s) = Fi(s +pi — pj) + Fj(s + pi) — Fj(s) — Fi(s + pi).
If e,—1 > ey — p;, we set TZQJ‘ = ey_1-

Now we explain how the values T} can be obtained. First note, that only the first term of
the function Fj_,;(s) is piecewise linear in interval [e,_1, e, — p;], other three terms are linear
in it. Therefore, in interval [e,_1,e, — pi], Fjoi(s) is piecewise linear with inflections only
possible at points e, + p; — p;, v < u — 1. Knowing this, it is easy to find T;; by checking the

value of F}_,; at all inflection points and at e,—1. So, the complexity of finding one value T;]‘

is O(m).

Proposition 3 A linear partition {I,}uenr is appropriate if, for each uw € M and each pair

of jobs i,7 € N such that o,(i) < 04(j), at least one of the following two conditions is true:

ey < ey—1+ pj, (45)
cur > T} (46)

Proof: Consider an optimal schedule which is not strictly canonical. We will transform it
recursively to a strictly canonical schedule without increasing the cost. We begin with © = m.

Main step. First we rearrange jobs in (), according to o, and leave at most one idle time
period (between jobs with wi < 0 and wy < 0). This can be done without increasing the
cost of the schedule. If now jobs in @Q are processed according to o,, we set u := u — 1 and
do the main step from the beginning. If not, this means that o,(j) > o,(i), where j is the
job completed but not started in I, and ¢ is the job processed first among jobs in Q). There
cannot be an idle time between j and 4, otherwise w} < 0 and shifting j to the right would
decrease the cost — contradiction with the optimality of the schedule. By the construction
of oy, pj < ey —ey—1. So, (45) is violated, meaning that (46) is satisfied. Therefore, as
Cj>ey—1 > T3, exchanging j and ¢ do not increase the cost of the schedule.

Now there are two possible cases.

1. Job ¢ still completes in I,,. Then we can rearrange jobs in @), according to o, without
increasing the cost and, as 0,,(i) = mingeg,{ou(k)}, jobs in @, are processed according
to o,. We set u:=wu — 1 and go to the main step.

2. Job i does not complete in I, anymore. Then we go to the main step without decreasing
u (but with less jobs in Q).

We stop when v = 0. [

By the definition of the problem, a linear partition of the time horizon is given. In order
to check if it is appropriate, we check whether

HY = [T}

v w1 5] & Iy, Yu e M, Vi, j € N : oy(i) < oulj).
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If, for some u € M, there exist pairs of jobs ¢, j € N such that Hj C I, it suffices to divide the
interval I, into sub-intervals in a way that they do not strictly contain intervals Hj:. Clearly,
a sub-partition of a linear partition is also linear. In Algorithm 1, we outline the procedure
for finding an appropriate sub-partition for a given partition. It is easy to see that the overall
procedure has a polynomial complexity. In practice, the time needed to find an appropriate
linear partition is negligible in comparison with the time needed to solve the interval-indexed
formulation.

Algorithm 1 A procedure for finding an appropriate sub-partition

1. Partition {Iy}1<y<m is given
2: Findo,, 1 <u<m

3 u:=1

4: while v < m do

B, :=0; k:=1

ot

6: for all (i,5) € N : 0,(i) < 0u(j) do
7: Find HY = [T, ey—1 + pj]

8 if H;; C I, then

9 B, =B, U{H}}

10: end if

11:  end for

12:  if B, # () then

13: Find (tg,t1,...,t;) such that tg = ey—_1, tx = ey,
and H ¢ (t;—1,4], V1 <1< k,VH € B,.
14: Divide interval I, into sub-intervals {(¢;—1, ] }1<i<k
15: m :=m+ k — 1; update o, [}, wi, Vu <v<m,VjeN
16:  end if

17 u:=u-+k
18: end while

19: return {1, }1<u<m

Example: Consider the 3-job instance of Table 1 and the initial partition {(0,9], (9,20]}. We
have B; = () and

By = {H122 = [12,19], HZ, = [11.75,19], HZ, = [9.8, 15]}.
We divide interval Iy = (9, 20] into sub-intervals (9, 12] and (12, 20] and obtain an appropriate
partition {(0,9],(9,12],(12,20]}. Now, o1 = 03 = (2,1,3), 02 = (1,3,2), (f2,w?) = (0,2),

(f3,w3) = (0,3.5), (f5,w3) = (0,24), (f{,w}) = (6,2), (f7,w3) = (10.5,3.5), (f3,w3) =
(7.2,2.4). &
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5.2 Tightening the formulation

Once an appropriate linear partition of the time horizon is known, the constraints which
determine the values for variables F}‘, u € M, 57 € NS,, can be strengthened: the constraints
(31) and (32) can be replaced by the constraint

F>pY+ Y pVi+ ) pY+ Y X+
i€BY icABY i€AS®

u—1
Z Wy —eu—1—(1— Y;L + ijuil) - (ey — eu—1),
v=1
Vue M, Vj € NSy, wj >0, (47)

and the constraints (34) and (35) can be replaced by the constraint

Fr> > p(1=XpN+ ) p(l-Y")+
icAvUBBY icBSu

m
S Wy —(T—en) = (=Y + Y (e —eu ),
v=u+1
Yu e M, Vj e NS,, w}‘<0. (48)

To keep the formulation correct the constraint (24) should be replaced by the constraint

XY+ ) (X ey h Y- X<
i 7 % ? J J
1€EBBy, 1€AY

Vu € M, Vj € NS,. (49)

Proposition 4 Given an appropriate linear partition of the time horizon, the formulation
(12)-(23), (25)-(26), (30), (33), (47)-(49) is correct.

Proof: We first show that the constraint (49) cuts off vectors (X, Y, W) which correspond to
schedules which are canonical but not strictly canonical. In such a schedule, for some u € M,
job 7 € NS, started and completed in I,, succeeds a job i € A}‘ completed but not started in

I,. Then Y}" — X;‘_l =1, X;‘_l — Y;u_l = 1, and the constraint (49) is violated. Moreover,
(49) implies (24). So, a vector (X,Y, W) satisfying the constraints (14)-(23), (25)-(26), (49)
corresponds to a feasible strictly optimal schedule.

In Proposition 2, we have showed that F}' = max{F;/(30),0}, j € NB", w} > 0 and
Fi' = max{F7(33),0}, j € NB", w} <0. It now suffices to show that

Y =

{ max { F4(47),0}, j € NSy, wl >0,
J

max {E;*(48),O} , J € NSy, wi <0.

Case 1. Let job j is completed in interval I, implying Y/ =1 and Y;“1 = 0. We have
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y(5)—

wi <0: Cj(m) = Zpﬁ— Z pz—i—pJ—FZW

zGBu ZGA“
y(i )<u y(i )<u 1
= > pYr+ D> pV Y +ZW (50)
ZGB” ZGA“
m
wl<0: Ci(m) = T— Y pi— Y pi— Y. W
iEB;‘, iGA;‘, v=y(j)+1
y@DZutl  y()2u
m
=T — Y p(1=-Y")=D p(1=Y""= > W, (51)
i€BY €AY v=u+1

Let w? > 0. Then, using (49), (22) and (17), ¥;*~' = Y}, Vi € ABY, and, using (49), (22)
and (16), Y;*~' = X7, Vi € ASY. Therefore Cj(m) = (50) = F%(47) + ey_1.

Let w! < 0. Then, using (49) and (22), ;"' = X!, Vi € A, and Y;* = X", Vi € BBY.
Therefore Cj(m) = (51) = e, — F}(48).

Case 2. Let job j is not completed in interval I, implying Y]“ = Yj"_l. Then, using (16),
F5(47) < (38) < 0and £7(48) < (39) <0. O
5.3 Special case with regular objective function and no idle time
We now consider a special case of the problem, in which the objective function is regular, i.e.
F} is non-decreasing for all jobs j € N. Additionally, we suppose that there exists an optimal

schedule with no idle time. The last condition holds, for example, if

1. idle times are forbidden;

2. release dates are the same (we can put them to zero).

In this case, given an appropriate linear partition, we can “get rid” of the variables X and
W and propose an interval-indexed formulation which uses only variables Y and F':

min Z Z wj F}' + Z Z [ =Y h (52)

JEN ueM JEN ueM
st. YIT'<Y!" VjeN, VueM, (53)
> piYi <ew, Vue M, (54)
JEN
F>pYi+ > pV N+ > piV —eu1 —
ieA;‘ iGB;‘
1=Y/+Y" ") (eu—€u-1), VjEN,Vue M, (55)
Y;'€{0,1}, VjeN, Vue M, (56)
F;">0, VjeN,Vue M. (57)
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Here the objective function (52) and the constraints (53)-(54) are conserved. The con-
straint (55) link variables F' and Y if job j is completed in interval I,, then its completion
time equals the sum of processing times of job j, jobs in B;»‘ completed in I, or earlier and
jobs in A;-‘ completed in I,,_1 or earlier.

6 Numerical experiments

In order to compare the time-indexed and interval-indexed formulations numerically, these
formulations have been tested on instances of the problems 1 | r; | > o E; + 3;71; and
1 || > w;Tj. The experiments have been performed on a computer with a 1.8Ghz processor
and 512 Mb of memory was using the Cplex 10.1 MIP solver.

In the experiments, we were interested in the following statistics.

P,  percentage of instances solved to optimality within time limit ¢.

Tov average time in seconds needed to solve an instance to optimality (only for instances
solved to optimality).

Nd,, — average number of nodes in the search tree (only for instances solved to optimality).

Gap  average integrality gap, i.e. the average difference between the best found solution and
the best found lower bound, percentage wise the best found solution (only for instances

which were not solved to optimality and for which at least one feasible solution was
found).

X LP — average difference between the the best found solution and the lower bound at the
top node of the search tree after generating standard cuts, percentage wise the optimal
solution (only for instances for which the LP relaxation was solved within the time limit).

6.1 Test instances

The first group of the test instances of the problem 1 | r; | >~ «; E;+ (;T; were generated using
the following standard procedure. For a given number of jobs n, the processing times of each
job are first randomly drawn from the uniform distribution U[f,10-0). Then the due dates are
drawn from Uldmin, dmin + pP] where dpin = max(0, P(t—p/2)) and P = Z?Zl p;, the release
dates r;, j € N, are drawn from U|0, ¢d;], and weights «;, §; are drawn from U[1,5]. The
four parameters 0, 7, p, ¢ are respectively the time, tardiness, range and release parameters.

We generated instances for n € {10,15,20,30}, 6 € {10,50}, 7 € {0.2,0.5,0.8}, p €
{0.2,0.5,0.8}, ¢ € {0.2,0.5,0.8}. For each value of (n,0,7,p,), 1 instance was generated,
making 27 instances for each couple (n,f). Note that for these instances, the “big-M” con-
straints should be used in the linear ordering formulation. The results are presented in Table 2.

You can see that linear ordering formulation with the “big-M” constraints is the worst
one. Among the other two, the time-indexed formulation performs better when the processing
times are smaller, and the interval-indexed formulation is preferable when processing times
are big. Note that, when (n,0) = (20, 50), the time-indexed formulation was not able to find
a feasible solution in 1000 seconds for the half of instances. The number of intervals m in
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Linear ordering “big-M” formulation

0 =10 6 =50
n Piooos Tawv  Ndow XLP  Gap Piooos Taww  Ndowy XLP  Gap
10 100% 3.5 14652  73.4% 0.0% 100% 3.8 15695 72.7% 0.0%
15 51.9% 136.3 373407 79.5% 35.9% 44 4% 96.2 266517 82.3% 35.1%
20 74% 226.3 479945 85.3% 53.9% 11.1% 62.9 134472 86.1% 59.7%

Time-indexed formulation

0 =10 6 =50
n Piooos Taw  Ndow XLP  Gap Piooos Taww  Ndow XLP  Gap
10 100% 2.7 89.5 0.7% 0.0% 81.4% 135.0 627.1 1.3% 3.4%
15 92.6% 47.3 1107.8 2.3% 1.3% 55.6% 316.1 98.3 3.3% 6.4%
20 66.7% 152.8 15194 1.9% 2.2% 22.2% 383.5 0.0 11.3% 17.4%

Interval-indexed formulation

0 =10 6 =50
n Piooos Taw  Ndow XLP  Gap Piooos Taww  Ndow XLP  Gap
10 100% 7.1 820.3 25.8% 0.0% 100% 5.6 552.8 23.2% 0.0%
15 85.2% 194.3 83409 25.6% 3.8% 85.2% 235.6 6949.8 23.5% 6.7%
20 25.9% 255.6 2993.4 23.9% 13.6% 20.6% 394.5 4458.8 23.1% 10.7%

Table 2: Comparison of the formulations on the first group of the test instances of the problem
Llrj | 2B+ ;T

appropriate linear partitions computed for the instances of the problem 1 | T | > o B 4 3T
was always below 3n.

The second group of the test instances of the problem 1 | 7 | > a; E;+ ;T were generated
using the procedure just presented but with one difference: here we limit by u, the number
of distinct release and due dates. This allows us to decrease the number of intervals for
the interval-indexed formulation. Such a restriction makes sense, as in practice, number of
different release and due dates of jobs is often very limited. For generating instances, we set
tn = [n-2/3]. Again, for each couple (n,#), 27 instances were generated. The results for the
time-indexed and interval-indexed formulations are presented in Table 3.

On these instances, the interval-indexed formulation performs better, as the number of
intervals is reduced. Though, still when the processing times are smaller and number of jobs
is 30 or less, the time-indexed formulation is preferable. On instances with 40 jobs and more,
the time-indexed formulation starts to have difficulties, as less and less feasible solutions can
be found within the time limit. For the half of 40-job instances and for all 50-job instances,
no feasible solution was found within 1000 seconds.
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Time-indexed Interval-indexed

(n, 9) PlOOOs Tav Ndav XLP Gap PlOOOs Tav Ndav XLP Gap
(10,10) 100% 4.3 161.6 0.7% 0.0% 100% 1.3 703.2  33.2% 0.0%
(20, 10) 81.5% 201.0 1226.6 1.1% 1.3% 48.5% 393.9 26788.2 27.7% 7.7%
(30, 10) 40.7% 279.2 130.6 5.5% 8.9% 3.7% 393.9 948.1 28.7% 18.3%
(40, 10) 7.4% 508.4 170.0 10.7% 12.1% 0.0% 0.0 0.0 34.6% 30.0%
(50,10) - - - - - 0.0% 0.0 0.0 40.7% 39.4%
(10,50) 92.6% 86.1 124.1 0.7% 3.5% 100% 1.5 769.5 35.8% 0.0%
(15,50) 48.2% 350.0 42.9 4.3% 8.2% 96.3% 130.8 23214.0 29.0% 1.2%
(20, 50) 18.5% 4174 6.4 6.4% 10.8% 51.8% 225.5 16238.3 27.8% 6.6%

Table 3: Comparison of the formulations on the second group of the test instances of the

problem 1| 7; | > Ej + 5;T;

The test instances of the problem 1 || Y w;T; were generated using the following similar
procedure. For a given number of jobs n, the processing times of each job are first ran-
domly drawn from the uniform distribution U[1,100]. Then the due dates are drawn from
Uldmin, dmin + pP] where dyi, = max(0, P(1 — p/2)) and P = Z?lej, and weights are
drawn from UJ1,10]. We generated instances for n € {10,20,30}, 7 € {0,0.2,0.4,0.6,0.8},
p € {0.2,0.4,0,6,0.8,1}. For each triple (n,7,p), 5 instance were generated, making 125 in-
stances for each n. The larger test instances of the problem 1 || >~ w;T}; were taken from the
OR-Library [9]. For the problem 1 || > w;Tj, the interval-indexed formulation uses only the
variables Y and F. Then, the linear ordering formulation is used in the form (5)-(9). The
results are presented in Table 4. Note that by using the time-indexed formulation no feasible
solution could be found within 10 minutes for 1% of the 20-job instances, 2% of the 30-job
instances, 23% of the 40-job instances, and 54% of the 50-job instances.

As it can be seen, the linear ordering and interval-indexed formulations clearly outperform
the time-indexed formulation. It is also worth noticing that the time-indexed formulation
formulation has the smallest X L P ratio, but the size of the formulation does not allow to use
it even for small instances.

The linear ordering formulation is better when solving 30-jobs instances, as it can solve
more instances within the time limit. However, the two last formulations have solved almost
the same number of 40-jobs instances. Moreover, the interval-indexed formulation (IIF) has
solved more 50-jobs instances. We also notice that the interval-indexed formulation is much
tighter than the linear ordering formulation. The statistics X L P is more than 3 times smaller
for the interval-indexed one. Also, the average integrality gap is much better for instances
unsolved by the interval-indexed formulation than for instances unsolved by the linear ordering
one.

The linear ordering formulation has O(n?) constraints. When the dimension of the problem
increases, the size of this formulation quickly grows and becomes very large. Therefore, its
effectiveness drops rapidly with the increase of the dimension.

The number of intervals m in appropriate linear partitions computed for the instances of
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Time-indexed

n Piom Tov Ndy, XLP  Gap

10 100% 0.3 .1 00% 0.0%
20 99.2%  23.3 25.7  0.3%  0.0%
30 80.0% 120.5 53.6 0.4%  9.9%
40 51.2% 450.6 33.0  0.5% 121%
20 31.2% 2721 384  0.6% T7.4%

Linear ordering

n Piom T Nd,, XLP Gap

10 100% 0.1 10.2  88% 0.0%
20 98.4% 2.2 3231 18.9% 22.0%
30 88.0%  30.9 2380.5 23.0% 25.1%
40 65.6% 37.9 1038.7 23.6% 30.6%
20 472%  84.6 5549 23.7% 30.5%

Interval-indexed

n Piom Tov Ndy, XLP  Gap

10 100% 0.1 141 47%  0.0%
20 100% 1.7 3383 68% 0.0%
30 824%  30.8 52458 6.8% 3.0%
40 64.8%  34.0 23200 7.0% 3.6%
20 57.6%  56.5 2654.8 72%  3.9%

Table 4: Comparison of the formulations on the test instances of the problem 1 || > w;T;

the problem 1 || Y w;T; was always below 2n.

6.2 Practical instances

Recently, Le Pape and Robert have published a library of practical instances for the planning
and scheduling problems [36]. The instances of the type “NCOS” in this library can be trans-
formed to instances of the problem 1 | r; | > a; Ej+ ;1. We have tested the interval-indexed
and time-indexed formulations on the open instances of this type.

Using the interval-indexed formulation, the following previously open 4 instances have
been solved to optimality:
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Name n  Time

NCOS 04c 10 5s
NCOS_05¢ 15  109s
NCOS 1ldc 25 102m
NCOS 14d 25 5lm

Additionally, using the time-indexed formulation, the following previously open 12 in-
stances have been solved to optimality:

Name n  Time
NCOS 11c 20 193s
NCOS 12c 24 257Ts
NCOS_12d 24 347Ts
NCOS 13c 24 53s
NCOS_15¢ 30 1320s
NCOS 2la 50 <1s
NCOS_2l1c 50 <ls
NCOS 32c 75 25

NCOS 32d 75 2s
NCOS_5lc 200 8s
NCOS 51d 200 Ts
NCOS_61d 500  15s

Note that the large instances which were solved contain many identical jobs.

7 Conclusions

In this paper, we have introduced the interval-indexed formulation which is the first compact
MIP formulation for the single machine scheduling problem to minimize a piecewise linear
objective function. This formulation has O(nm) variables and O(nm) constraints, where n is
the number of jobs, and m is the number of intervals in which the objective functions of all
jobs are linear.

Both the time-indexed and interval-indexed formulations have advantages. The first has
much less binary variables, and the second provides very strong linear programming lower
bounds. The numerical experiments showed that the choice of the formulation to use should
be made based on the properties of the given instance to solve. The larger the processing
times of jobs are the more likely that the interval-indexed formulation will provide better
results. Experiments show that the direct application of these formulations are useful for
solving medium size instances. Some open practical instances were solved.

The main direction for the future research concerns the biggest disadvantage of the interval-
indexed formulation: the relative weakness of lower bounds provided by its LP relaxation. The
formulation should be tightened in order to be more useful in practice.

Another research direction is an extension of the formulation to more general situations.
These can be the presence of precedence relations between jobs, or the availability of several
identical or unrelated machines.

Adaptation to the special cases of the problem is also a perspective direction. For example,

25



often in practice, many jobs are fully or almost identical. Exploiting such particularities can
lead to reducing the formulation size or its strengthening.

As it was mentioned, the direct application of the interval-indexed formulation is not usu-

ally efficient. As an alternative, the Dantzig-Wolfe reformulation and the column generation
method can be tried. This approach would be similar to one of Bigras et al [12|. The latter
also uses a partition of the time horizon. An advantage of our approach is that the partition
is done taking into account properties of the problem, and this can be exploited to speed up

the column generation procedure.
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