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tWe study the s
heduling situation in whi
h a set of jobs subje
ted to release datesand deadlines are to be performed on a single ma
hine. The obje
tive is to minimizea pie
ewise linear obje
tive fun
tion ∑

j Fj where Fj(Cj) 
orresponds to the 
ost of the
ompletion of job j at time Cj . This 
lass of fun
tion is very large and thus interesting bothfrom a theoreti
al and pra
ti
al point of view: It 
an be used to model total (weighted)
ompletion time, total (weighted) tardiness, earliness and tardiness, et
. We introdu
ea new Mixed Integer Program (MIP) based on time interval de
omposition. Our MIPis 
losely related to the well-known time-indexed MIP formulation but uses mu
h lessvariables and 
onstraints. Experiments on a
ademi
 ben
hmarks as well as on real-lifeindustrial problems show that our generi
 MIP formulation is e�
ient.Keywords: Mixed Integer Program, S
heduling, Earliness, Tardiness1 Introdu
tionA huge amount of resear
h has been 
arried on single ma
hine �total 
ost� s
heduling prob-lems over the last 60 years. However, most of the papers are dedi
ated to spe
ial 
ases andthere are few results on generi
 obje
tive fun
tions. Obje
tive fun
tions of real-life manufa
-turing problems are often mu
h more 
omplex than the well-known s
heduling 
riteria su
has total (weighted) 
ompletion time, total (weighted) tardiness, earliness and tardiness, et
.For instan
e, the 
ombination of time windows (release dates and deadlines) together witha sum obje
tive fun
tion is almost never 
onsidered in the literature. We refer to [40℄ for abrief overview of the 
omplexity of the manufa
turing s
heduling problems en
ountered bythe users of Ilog's Integrated produ
tion planning and s
heduling software.The obje
tive of this paper is to introdu
e a new, e�
ient and non-trivial MIP formulationthat 
an be used on a large variety of single ma
hine s
heduling problem.
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We study the s
heduling situation in whi
h a set N of jobs {1, 2, . . . , n} have to to bepro
essed without preemption on a single ma
hine. Ea
h job j ∈ N has a release date rj , apositive pro
essing time pj > 0 and a deadline dj . For ea
h job j, we also have a 
ost fun
tion
Fj whi
h is a pie
ewise linear fun
tion of the 
ompletion time Cj of j. If the deadline dj ofjob j is not expli
itly given, it 
an be set to the sum of the beginning of the last linear pie
eof Fj and the total pro
essing time of jobs. The obje
tive is to minimize the overall 
ost
∑

j Fj(Cj). This 
lass of fun
tions is very large and thus interesting both from a theoreti
aland pra
ti
al point of view: It 
an be used to model total (weighted) 
ompletion time, total(weighted) tardiness, earliness and tardiness, et
.We �rst introdu
e some basi
 notation for the problem. Let T = maxj∈N dj denote thetime horizon of the problem. Without any loss of generality, we assume that there is a partitionof the interval (0, T ] into a set M = {1, . . . ,m} of intervals Iu = (eu−1, eu] (for u ∈ M), i.e.
e0 < e1 < · · · < em, su
h that

• the 
ost fun
tion of any job j over any interval Iu is linear, i.e.,
Fj(Cj) = fu

j + wu
j · (Cj − eu−1), Cj ∈ Iu, u ∈ M, j ∈ N.where fu

j , wu
j are some 
onstant values (wu

j 
an be less or equal to zero),
• for every job j ∈ N , rj = ev and dj = eu for some v, u ∈ M .We say that su
h a partition is linear. See an example of su
h a partition in Figure 1.PSfrag repla
ements
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CjFigure 1: Linear partition of the time horizon � an example with 2 jobsThe major 
ontribution of this paper is to introdu
e a new MIP (Se
tion 4) for the singlema
hine problem. It is based on basi
 properties (introdu
ed in Se
tion 3) of linear partitions.This MIP is 
losely related to time-indexed MIPs (see Se
tion 2) but it uses mu
h less variablesand 
onstraints. A more e�
ient (and more 
omplex) variant of the MIP is des
ribed inSe
tion 5. Experimental results are reported in Se
tion 6.2 Literature ReviewTo formulate the obje
tive fun
tion, we introdu
e the lateness Lj = Cj − dj, the tardiness
Tj = max{0, Lj}, the earliness Ej = max(0, dj −Cj) and the unit penalty Uj, where Uj = 0 if2



Cj ≤ dj and Uj = 1 otherwise. The obje
tive fun
tions (depi
ted in Figure 2) to be minimizedare de�ned as follows:
• The Makespan Cmax = maxj Cj,
• the Maximum Lateness Lmax = maxj Lj ,
• the Maximum Tardiness Tmax = maxj Tj ,
• the Total Weighted Completion Time ∑

wjCj ,
• the Total Weighted Tardiness ∑

wjTj ,
• the Total Weighted Number of Tardy Jobs ∑

wjUj .
• the Earliness-Tardiness ∑

αjEj + βjTj.Weights 
an be all equal to 1 and in this 
ase, wj is dropped in the above notation.PSfrag repla
ements
wjCj Lj wjTj wjUj αjEj + βjTjFigure 2: Classi
al obje
tive fun
tions � weighted 
ompletion time, lateness, weighted tardi-ness, weighted number of late jobs, weighted earliness-tardiness2.1 Spe
i�
 S
heduling AlgorithmsIn this se
tion, it is always assumed that we do not have deadlines. A lot of resear
h has been
arried on the unweighted total tardiness problem with no release date. Powerful dominan
erules have been introdu
ed by Emmons [29℄. Lawler [35℄ has proposed a dynami
 programmingalgorithm that solves the problem in pseudo-polynomial time. Finally, Du and Leung haveshown that the problem is NP-Hard [27℄. Most of the exa
t methods for solving the totaltardiness problem strongly rely on Emmons' dominan
e rules. Potts and Van Wassenhove[43℄, Chang et al.[18℄ and Szwar
 et al.[54℄, have developed Bran
h and Bound methods usingthe Emmons rules 
oupled with the de
omposition rule of Lawler [35℄ together with someother elimination rules. The best results have been obtained by Szwar
, Della Cro
e andGrosso [54, 55℄ with a Bran
h and Bound method that e�
iently handles instan
es with up to500 jobs. The total weighted tardiness problem (∑wiTi) is strongly NP-Hard [35℄. For thisproblem, Rinnooy Kan et al.[50℄ and Ra
hamadugu [45℄ have extended the Emmons Rules[29℄. Exa
t approa
hes based on Dynami
 Programing and Bran
h and Bound have beentested and 
ompared by Abdul-Raza
q, Potts and Van Wassenhove [1℄. Re
ently, Pan andShi [41℄ have proposed a very e�
ient bran
h-and-bound algorithm whi
h solves instan
es ofthe problem 1 ||

∑

wjTj with up to 100 jobs.There are less results on the total tardiness problem with arbitrary release dates. Chu andPortmann [23℄ have introdu
ed a su�
ient 
ondition for lo
al optimality whi
h allows them3



to build a dominant subset of s
hedules. Chu [21℄ has also proposed a Bran
h and Boundmethod using e�
ient dominan
e rules. This method handles instan
es with up to 30 jobs forthe hardest instan
es and with up to 230 jobs for the easiest ones. More re
ently, Baptiste,Carlier and Jouglet [6℄ have des
ribed a new lower bound and some dominan
e rules whi
hare used in a Bran
h and Bound pro
edure whi
h handles instan
es with up to 50 jobs for thehardest instan
es and 500 jobs for the easiest ones. Let us also mention that exa
t Bran
hand Bound pro
edures have been proposed for the same problem with setup times [46, 53℄.For the total weighted tardiness problem (∑ wiTi) with release dates, Akturk and Ozdemir [3℄have proposed a su�
ient 
ondition for lo
al optimality whi
h improves heuristi
 algorithms.This rule is then used with a generalization of Chu's dominan
e rules to the weighted 
ase ina Bran
h and Bound algorithm [2℄. This Bran
h and Bound method handles instan
es withup to 20 jobs. Re
ently Jouglet et al. [32℄ have proposed a new Bran
h and Bound that solvesall instan
es with up to 35 jobs.For the total 
ompletion time problem (∑wiCi), in the 
ase of identi
al release dates, boththe unweighted and the weighted problems 
an easily be solved polynomially in O(n log n) byapplying the Shortest Weighted Pro
essing Time priority rule, also 
alled Smith's rule [52℄.For the unweighted problem with release dates, several resear
hers have introdu
ed dominan
eproperties and proposed a number of algorithms [17, 26, 25℄. Chu [20, 22℄ has proved severaldominan
e properties and has provided a Bran
h and Bound algorithm. Chand, Traub andUzsoy used a de
omposition approa
h to improve Bran
h and Bound algorithms [16℄. Amongthe exa
t methods, the most e�
ient algorithms [20, 16℄ 
an handle instan
es with up to 100jobs. The weighted 
ase with release dates is NP-Hard in the strong sense [49℄ even when thepreemption is allowed [34℄. Several dominan
e rules and Bran
h and Bound algorithms havebeen proposed [10, 11, 31, 48℄. To our knowledge, the best results are obtained by Pan andShi [42℄ with a hybrid Bran
h and Bound-Dynami
 Programming algorithm whi
h has beentested on instan
es involving up to 200 jobs.Many exa
t methods have been proposed for the problem of minimizing the number of latejobs (∑Ui) [7, 24, 8℄. More re
ently, Sadykov [51℄ and M'Hallah and Bul�n [38℄ have proposede�
ient exa
t algorithms for solving the general 
ase of this problem: 1 | rj |
∑

wjUj. Bothalgorithms are able to solve instan
es with up to 100 jobs.Less papers are devoted to the problem with the earliness-tardiness obje
tive fun
tion. TheBran
h and Bound algorithm by Sourd and Kedad-Sidhoum [30℄ and Bran
h and Bound andDynami
 Programming algorithms by Yau et al. [59℄ 
an be used to solve optimally instan
esof the problem 1 ||
∑

αjEj + βjTj with up to 50 jobs. Another Bran
h and Bound algorithmhas been earlier proposed by Chen, Chu and Proth [19℄.2.2 Generi
 MIP FormulationsTime Indexed FormulationWhen all pro
essing times pj of jobs are integers, the single-ma
hine non-preemptive s
hedul-ing problem with an arbitrary 
ost fun
tion 
an be formulated as an Integer Program usingtime-indexed variables. Binary variable Xjt, j ∈ N , t ∈ [0, T ), takes value 1 if job j starts attime t, and otherwise Xjt = 0. We then have
4



min

T
∑

t=0

Fj(t + pj)Xjt (1)
s.t.

dj−pj
∑

t=rj

Xjt = 1, j ∈ N, (2)
∑

j∈N

t
∑

s=max{0,t−pj+1}

Xjs ≤ 1, t ∈ [0, T ), (3)
Xjt ∈ {0, 1}, j ∈ N, t ∈ [0, T ). (4)The 
onstraints (2) state that ea
h job starts exa
tly on
e within its time window. The
onstraints (3) guarantee that, at ea
h time moment, only one job is pro
essed. Release datesand deadlines 
an be taken into a

ount by setting appropriate variables to zero.The time-indexed formulation is known for more than 40 years. It was used, for example,in the works by Bowman [13℄, Pritsker et al. [44℄, Redwine and Wismer [47℄. The polyhedralstudy of this formulation was 
ondu
ted by Dyer and Wolsey [28℄, Sousa and Wolsey [33℄,Akker et al. [57℄. The main advantage of this formulation is that, by solving its LP relaxation,one 
an obtain a very strong lower bound on the optimal solution value. In the spe
ial 
asewhere pro
essing times are equal (∀i, pi = p), many problems turn to be polynomially solvable(see [5, 4℄) and the the 
ontinuous relaxation of the time-indexed formulation is sometimesintegral [15, 56, 58℄.Another obvious advantage is the possibility to model single-ma
hine non-preemptive prob-lem with any obje
tive fun
tion. Unfortunately, the formulation has one big drawba
k. Forpra
ti
al instan
es with a large number of jobs and large pro
essing times, the size of theformulation be
omes so large that it is di�
ult to solve even its LP relaxation in a reasonabletime.Linear Ordering FormulationAnother way to solve some single-ma
hine s
heduling problems by Integer Programming is touse the following linear ordering formulation. Binary variable δij , i, j ∈ N , takes value 1 ifjob i pre
edes job j, and otherwise δij = 0. Continuous variable Cj, j ∈ N , represents the
ompletion time of job j. Now we 
an write the formulation for the 
ase without release dates.

min
∑

j∈N

Fj(Cj) (5)
s.t. δij + δji ≤ 1, i, j ∈ N, i < j, (6)

δij + δjk + δki ≤ 2, i, j, k ∈ N, i 6= j 6= k, (7)
dj ≥ Cj ≥

∑

i∈N,i6=j

piδij + pj, j ∈ N, (8)
δij ∈ {0, 1}, i, j ∈ N, i 6= j. (9)The 
onstraints (6) state that, for every pair of jobs, one should pre
ede the other. The
onstraints (7) guarantee that, for every triple of jobs i, j, k ∈ N , if i pre
edes j and jpre
edes k then i should pre
ede k. The 
onstraints (8) relate the variables δ and C. To be5



able to express the obje
tive fun
tion ∑

j∈N Fj(Cj) using linear 
onstraints, Fj(Cj) should bepie
ewise linear and 
onvex.In order to take into a

ount the di�erent release dates (and thus, possible idle times inthe s
hedule), the 
onstraints
dj ≥ Cj ≥ rj + pj, j ∈ N, (10)should be added, and the 
onstraints (6) and (7) should be 
hanged to

Ci ≥ Cj + pi − M ′δij , i, j ∈ N, i 6= j, (11)where M ′ is su�
iently big. In our 
ase, M ′ 
an be set to maxj∈N dj − minj∈N rj. The
onstraints (11) are usually 
alled �big-M� 
onstraints.A better variant of the linear ordering formulation for the 
ase with di�erent release datesand a regular (non-de
reasing) obje
tive fun
tion was proposed by Nemhauser and Savels-bergh [39℄. The linear ordering formulation is 
ompa
t but its 
ontinuous relaxation is knownto be weaker (experimentally) than the 
ontinuous relaxation of the time-indexed formulation,espe
ially when the �big-M� 
onstraints are used. A more detailed survey on di�erent MIPformulations for ma
hine s
heduling problems 
an be found in [37℄.3 Basi
 ResultsWe say that job j is �started� in interval Iu if its starting time is greater than or equal to eu−1and less than eu. We say that job j is �
ompleted� in interval Iu if its 
ompletion time is su
hthat eu−1 < Cj ≤ eu. Let Qu denote the set of jobs started and 
ompleted in interval Iu:
Qu =

{

j ∈ N :
(

Sj , Cj

]

⊆ Iu

}

.Claim 1 There exists an optimal s
hedule in whi
h, for any interval Iu, u ∈ M , and any twojobs i, j ∈ Qu, job i is sequen
ed before job j when wu
i

pi
>

wu
j

pj
.This 
laim is based on a simple ex
hange argument between 
onse
utive jobs. It is a straight-forward adaptation of Smith's rule (see for instan
e [14℄). In the following, we denote by σua permutation of jobs {1, 2, . . . , n} in whi
h �long� jobs 
ome �rst in any order, and �short�jobs 
ome last a

ording to Smith rule:

pi < eu − eu−1, pj < eu − eu−1,
wu

i

pi
>

wu
j

pj

or

pi ≥ eu − eu−1, pj < eu − eu−1















⇒ σu(i) < σu(j), ∀i, j ∈ N.Although several permutations satisfy this 
ondition, for ea
h u ∈ M , only one of them isused in the remaining of the paper. The ne
essity of moving �long� jobs to the beginning ofthe permutation will be 
lear in Se
tion 5.De�nition 1 Given a linear partition {Iu}u∈M , a s
hedule is 
alled 
anoni
al if, for ea
h
u ∈ M , 6



• there is at most one idle time period per interval Iu,
• jobs in Qu are pro
essed a

ording to the permutation σu, where jobs j ∈ Qu with wu

j ≥ 0are pro
essed before the idle time period in Iu and jobs j ∈ Qu with wu
j < 0 are pro
essedafter the idle time period in Iu (see Figure 3).

PSfrag repla
ements

eu−1 eu

j1 j2 j3 j4

Qu

wu
j1

≥ 0 wu
j2

≥ 0 wu
j3

< 0 wu
j4

< 0

σu(j1) < σu(j2) < σu(j3) < σu(j4)

idle time
Figure 3: Sequen
ing of jobs in a 
anoni
al s
heduleClaim 2 There exists an optimal 
anoni
al s
hedule.Proof: Consider an optimal s
hedule whi
h is not 
anoni
al and u ∈ M su
h that jobs in

Qu are not pro
essed a

ording to σu. Obviously, | Qu |≥ 2, meaning that j ∈ Qu ⇒ pj <
eu − eu−1. Now we rearrange jobs in Qu a

ording to σu. By Smith's rule, the 
ost of thes
hedule do not in
rease, and the s
hedule remains optimal. Then, we shift jobs j ∈ Qu,
wu

j ≥ 0, to the left, and jobs j ∈ Qu, wu
j > 0, to the right as mu
h as possible and as longas they remain in Qu. By doing this, we again do not in
rease the 
ost of the s
hedule andredu
e the number of non-empty idle time periods in Iu to at most one. By implementing thispro
edure for ea
h u ∈ M , we obtain an optimal 
anoni
al s
hedule. �So, we 
an restri
t our sear
h for an optimal solution to only 
anoni
al s
hedules. There-fore, our problem redu
es to

• determining in whi
h intervals jobs are started and 
ompleted;
• �nding the lengths of the idle time periods in ea
h interval.In the paper, we rely on the following notation. Let Bu

j and Au
j , j ∈ N , u ∈ M , be the setsof jobs whi
h 
ome, respe
tively, before and after job j in the permutation σu. Let also NBuand NSu denote the sets of �big� and �small� jobs for a given interval Iu: NBu = {i ∈ N :

pi > eu − eu−1}, NSu = {i ∈ N : pi ≤ eu − eu−1}. We also de�ne the sets ABu
j = Au

j ∩NBu,
BBu

j = Bu
j ∩ NBu, ASu

j = Au
j ∩ NSu, BSu

j = Bu
j ∩ NSu.4 The interval-indexed formulationFirst, we introdu
e the variables of the model. The binary variable Xu

j , j ∈ N , u ∈ M , takesvalue 1 if job j is started in interval Iu or earlier, and otherwise Xu
j = 0. The binary variable

Y u
j , j ∈ N , u ∈ M , takes value 1 if job j is 
ompleted in interval Iu or earlier, and otherwise

Y u
j = 0. For ea
h j ∈ N , we set X0

j = 0, Xm
j = 1, Y 0

j = 0, Y m
j = 1. The 
ontinuous variable

Wu, u ∈ M , denotes the length of the idle time period in interval Iu. The 
ontinuous variables7



F u
j , j ∈ N , u ∈ M , are used to 
ompute the di�eren
e between the a
tual 
ost of job j andthe minimum 
ost of j over the interval Iu:

F u
j =











0, Cj 6∈ Iu or wu
j = 0,

Cj − eu−1, Cj ∈ Iu and wu
j > 0,

eu − Cj , Cj ∈ Iu and wu
j < 0,Then, if job j is 
ompleted in interval Iu, Fj(Cj) = fu

j + |wu
j |F

u
j , and the obje
tive fun
tion
an be written as

min
∑

j∈N

∑

u∈M

| wu
j | F u

j +
∑

j∈N

∑

u∈M

min{Fj(eu−1), Fj(eu)}(Y u
j − Y u−1

j ). (12)4.1 Feasibility 
onstraintsEa
h 
anoni
al s
hedule is determined by a ve
tor (X,Y,W ) ∈ {0, 1}nm × {0, 1}nm × R
m
+ ofinstantiated variables. The following 
onstraints des
ribe feasible 
anoni
al s
hedules.

Y u−1
j ≤ Y u

j , ∀u ∈ M, ∀j ∈ N, (13)
Xu−1

j ≤ Xu
j , ∀u ∈ M, ∀j ∈ N, (14)

Y u
j ≤ Xu

j , ∀u ∈ M, ∀j ∈ N, (15)
Xu−1

j ≤ Y u
j , ∀u ∈ M, ∀j ∈ NSu, (16)

Y u
j ≤ Xu−1

j , ∀u ∈ M, ∀j ∈ NBu, (17)
Xu

j = 0, ∀j ∈ N, rj = eu, (18)
Y u

j = 1, ∀j ∈ N, dj = eu, (19)
∑

j∈N

pjY
u
j +

u
∑

v=1

Wv ≤ eu −
∑

i∈N

ǫ(Xu
i − Y u

i ), ∀u ∈ M, (20)
∑

j∈N

pjX
u
j +

u
∑

v=1

Wv ≥ eu +
∑

i∈N

ǫ(Xu
i − Y u

i ), ∀u ∈ M, (21)
∑

i∈N

(Xu
i − Y u

i ) ≤ 1, ∀u ∈ M, (22)
Wu ≤ eu − eu−1 − (eu − eu−1) ·

∑

i∈N

(

Xu−1
i − Y u

i

)

, ∀u ∈ M, (23)
∑

i∈NBu

(Xu−1
i − Y u

i ) + Y u
j − Xu−1

j ≤ 1, ∀u ∈ M, ∀j ∈ NSu, (24)
Y u

j ∈ {0, 1}, ∀u ∈ M,∀j ∈ N, (25)
Xu

j ∈ {0, 1}, ∀u ∈ M,∀j ∈ N. (26)The inequalities (13) and (14) ensure that the values taken by variables Y and X are
onsistent with the de�nition of these variables. The 
onstraints (15) state that, if a job is
ompleted in some interval, it should be started in this interval or before. The inequalities(16) re�e
t the fa
t that, if a job is �small� for an interval, it 
annot be started before thebeginning of the interval and 
ompleted after the end of the interval. The inequalities (17)state that, if a job is �big� for an interval, it 
annot be started and 
ompleted in this interval.8



Note that the 
onstraints (16) and (17) 
an be omitted after a suitable modi�
ation of theinequalities (13) and (15). The 
onstraints (18) and (19) are needed to take into a

ount therelease dates and deadlines of jobs.The 
onstraints (20), (21) guarantee that the sum of the pro
essing times of jobs 
ompleted(started) in the �rst u intervals plus the total idle time in these intervals is not more (less) than
eu, i.e. the total length of these intervals. The terms with ǫ are used here to impose the stri
t
onditions: if job j is started in Iu then Sj < eu; if job j is 
ompleted in Iu then Cj > eu−1.
ǫ should be 
hosen in su
h a way that, for all u ∈ M , eu/ǫ is integer, and for all j ∈ N , pj/ǫis integer. Note that the terms with ǫ 
an be omitted as long as fu−1

j + wu
j (eu − eu−1) ≤ fu

jfor all u ∈ M , j ∈ N (this obviously holds for regular obje
tive fun
tions).The 
onstraints (22) state that there is at most one job that is started before time moment
eu and �nished after it. The 
onstraints (23) put the length of the idle time period in an intervalto zero, if some job is started before the beginning of the interval and 
ompleted after the endof the interval. Note that the 
onstraints (23) imply the 
onstraints (22). The 
onstraints(24) eliminate the possibility of �overlapping�, when some job i is started before the beginningof an interval Iu and 
ompleted after the end of Iu and some job j is fully pro
essed insideinterval Iu.We have just showed that the 
onstraints (13)-(26) are valid. In other words, if a 
anoni
als
hedule is feasible, the 
orresponding ve
tor (X,Y,W ) satisfy the 
onstraints (13)-(26). Wenow show that these 
onstraints su�
e to des
ribe the set of all feasible 
anoni
al s
hedules.Proposition 1 Given a linear partition {Iu}u∈M , let ve
tor (X,Y,W ) satisfy the 
onstraints(13)-(26). Then the 
orresponding 
anoni
al s
hedule is feasible.Proof: Let x(j), j ∈ N , be the index su
h that X

x(j)
j − X

x(j)−1
j = 1 and y(j), j ∈ N , bethe index su
h that Y

x(j)
j − Y

x(j)−1
j = 1. By the 
onstraints (14) and (13), x(j) and y(j) arede�ned identi
ally. We �rst show that there is a permutation (j1, j2, . . . , jn) of jobs whi
hsatis�es the 
ondition
y(jk−1) ≤ x(jk), k ∈ {2, . . . , n}. (27)For this, we prove that there is no pair (i, j) of jobs su
h that x(i) < y(j) and x(j) < y(i).Consider a pair (i, j) of jobs. Suppose that x(i) < y(j) and x(j) < y(i). Note that, by the
onstraints (15), x(i) ≤ y(i) and x(j) ≤ y(j). Then, there 
an be two possibilities.1. Let x(i) < y(i) and x(j) < y(j). We denote x = max{x(i), x(j)} and y = min{y(i), y(j)}.Then we have x < y, and therefore Xx

i = Xx
j = 1 and Y x

i = Y x
j = 0. But this is impos-sible due to the 
onstraints (22). Contradi
tion.2. Let x(i) = y(i) or x(j) = y(j). Without loss of generality, assume that x(j) = y(j).Then X

x(j)
j = Y

x(j)
j = 1, X

x(j)−1
j = Y

x(j)−1
j = 0, and j ∈ NSx(j), otherwise the
onstraints (17) would be violated. We have x(i) < y(j) = x(j) < y(i), therefore

X
x(j)−1
i = 1, Y

x(j)
i = 0, and i ∈ NBx(j), otherwise we would violate the 
onstraints(16). Consequently, X

x(j)−1
i −Y

x(j)
i = 1 and Y

x(j)−1
j −X

x(j)
j = 1. But this is impossibledue to the 
onstraints (24). Contradi
tion.So, there exists a permutation γ = (j1, . . . , jn) whi
h satis�es the 
ondition (27). We perturb

γ by sorting all jobs j su
h that x(j) = y(j) = u a

ording to the permutation σu for all
u ∈ M . We obtain permutation δ = (j1, . . . , jn) whi
h still satis�es (27).9



Let Bδ
j and Aδ

j , j ∈ N , be the sets of jobs whi
h 
ome, respe
tively, before and after job jin permutation δ. Now we 
onstru
t s
hedule π by setting
Cj(π) =

∑

i∈Bδ
j ∪{j}

pi +

u(j)
∑

v=1

Wv, ∀j ∈ N, (28)where u(j) =







y(j) − 1, w
y(j)
j ≥ 0 or x(j) < y(j),

y(j), w
y(j)
j < 0 and x(j) = y(j).As u(j1) ≤ · · · ≤ u(jn), we have Cjk

(π)− pjk
≥ Cjk−1

(π), ∀k ∈ {2, . . . , n}. To show that πis a feasible s
hedule, it remains to show that rj + pj ≤ Cj(π) ≤ dj . As the partition is linear,we have rj = eω for some ω ∈ M . Note that ω < x(j), otherwise the 
onstraints (18) wouldbe violated. As Xω
j = 0, ∀i ∈ Aδ

j ∪ {j}, and ω ≤ u(j),
Cj(π)

(28)
≥

∑

i∈Bδ
j

pi +
ω

∑

v=1

Wv + pj

(21)
≥ eω + pj = rj + pj.In the same manner, using the 
onstraints (19), we 
an prove that the 
ompletion times donot violate the deadlines of jobs.We now show that, for ea
h j ∈ N , ex(j)−1 ≤ Sj(π) < ex(j) and ey(j)−1 < Cj(π) ≤ ey(j).As x(j) − 1 ≤ u(j) and x(j) ≤ x(i), ∀i ∈ Aδ

j , we have X
x(j)−1
i = 0, ∀i ∈ Aδ

j ∪ {j}, and
X

y(j)−1
i = 0, ∀i ∈ Aδ

j . Therefore,
Sj(π) =

∑

i∈Bδ
j

pi +

u(j)
∑

v=1

Wv ≥
∑

i∈Bδ
j

pi +

x(j)−1
∑

v=1

Wv

(21)
≥ ex(j)−1,

Cj(π)
(28)
≥

∑

i∈Bδ
j ∪{j}

pi +

y(j)−1
∑

v=1

Wv

(21)
≥ ey(j)−1 + ǫ

∑

i∈N

(

X
y(j)−1
i − Y

y(j)−1
i

)

.Suppose Cj(π) = ey(j)−1, then, as pj > 0, by the 
onstraints (21), X
y(j)−1
j = 1, and Y

y(j)−1
j =

0 implying Cj(π) ≥ ey(j)−1 + ǫ, 
ontradi
tion. Therefore, Cj(π) > ey(j)−1.Note that the 
onstraints (23) imply
y(j)−1
∑

v=x(j)+1

Wv = 0, ∀j ∈ N. (29)As y(i) ≤ x(j) ≤ y(j), ∀i ∈ Bδ
j , we have Y

x(j)
i = 1, ∀i ∈ Bδ

j , and Y
y(j)
i = 1, ∀i ∈ Bδ

j ∪ {j}.Therefore,
Cj(π)

(28)
≤

∑

i∈Bδ
j∪{j}

pi +

y(j)
∑

v=1

Wv

(20)
≤ eyj

.

10



Let u(j) = y(j) − 1, then
Sj(π) =

∑

i∈Bδ
j

pi +

y(j)−1
∑

v=1

Wv =
∑

i∈Bδ
j

pi +

x(j)
∑

v=1

Wv +

y(j)−1
∑

v=x(j)+1

Wv(20),(29)
≤ exj

− ǫ
∑

i∈N

(

X
x(j)
i − Y

x(j)
i

)

.Let u(j) = y(j) implying x(j) = y(j), then
Sj(π)

(28)
≤

∑

i∈Bδ
j

pi +

x(j)
∑

v=1

Wv

(20)
≤ exj

− ǫ
∑

i∈N

(

X
x(j)
i − Y

x(j)
i

)

.Suppose Sj(π) = ex(j), then, as pj > 0, by the 
onstraints (20), Y
x(j)
j = 0, and X

x(j)
j = 1,implying Sj(π) ≤ ex(j) − ǫ, 
ontradi
tion. Therefore, Sj(π) < ex(j).Finally, by 
onstru
tion, π is a 
anoni
al s
hedule. �4.2 Constraints Related to the Overall CostNow we des
ribe the 
onstraints that relate variables X, Y , W and F .

11



F u
j ≥

∑

i∈N\{j}

piY
u−1
i + pjY

u
j +

u−1
∑

v=1

Wv − eu−1,

∀u ∈ M, ∀j ∈ NBu, wu
j > 0, (30)

F u
j ≥

∑

i∈N\{j}

piY
u−1
i + pjX

u−1
j +

u−1
∑

v=1

Wv − eu−1,

∀u ∈ M, ∀j ∈ NSu, wu
j > 0, (31)

F u
j ≥ pjY

u
j +

∑

i∈Bu
j

piY
u
i +

∑

i∈ABu
j

piY
u
i +

∑

i∈ASu
j

piX
u−1
i +

u−1
∑

v=1

Wv − eu−1 − (1 − Y u
j + Xu−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j > 0, (32)

F u
j ≥

∑

i∈N\{j}

pi(1 − Xu−1
i ) +

m
∑

v=u+1

Wv − (T − eu) −

(1 − Y u
j + Y u−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NBu, wu
j < 0, (33)

F u
j ≥

∑

i∈N\{j}

pi(1 − Xu−1
i ) +

m
∑

v=u+1

Wv − (T − eu) −

(1 − Xu−1
j + Y u−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j < 0, (34)

F u
j ≥

∑

i∈Au
j ∪BBu

j

pi(1 − Xu−1
i ) +

∑

i∈BSu
j

pi(1 − Y u
i ) +

m
∑

v=u+1

Wv − (T − eu) − (1 − Y u
j + Xu−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j < 0, (35)On
e the variables Y , X, W are instantiated, the 
onstraints (30)-(32) determine thevalues for variables F u

j , j ∈ N , u ∈ M , wu
j > 0, and the 
onstraints (33)-(35) determine thevalues for variables F u

j , j ∈ N , u ∈ M , wu
j < 0.Assume job j is 
ompleted in interval Iu in π. We 
onsider two 
ases.1. Either job j is �big� for Iu (then j is 
ompleted �rst in Iu in π) or job j is �small� for Iuand j is started in Iu−1 or earlier and 
ompleted in Iu in π.

• wu
j > 0. Cj(π) equals the sum of pj, the total pro
essing time of jobs 
ompletedin interval Iu−1 or earlier and the total idle time in the �rst u − 1 intervals. Here

F u
j = Cj(π) − eu−1. If j is �big� for Iu, F u

j is instantiated by the 
onstraint (30).If j is �small� for Iu, F u
j is instantiated by the 
onstraint (31).

• wu
j < 0. Cj(π) equals T minus the sum of the total pro
essing time of jobs in

N \ {j} started in interval Iu or later and the total idle time in the last m − uintervals. Here F u
j = eu − Cj(π). If j is �big� for Iu, F u

j is instantiated by the
onstraint (33). If j is �small� for Iu, F u
j is instantiated by the 
onstraint (34).12



2. Job j is �small� for Iu, and j is started and 
ompleted in Iu in π.
• wu

j > 0. Cj(π) equals the sum of pj, the total pro
essing time of jobs in Bu
j
ompleted in interval Iu or earlier, the total pro
essing time of jobs in Au

j startedin interval Iu−1 or earlier and the total idle time in the �rst u − 1 intervals. Here
F u

j = Cj(π) − eu−1, F u
j is instantiated by the 
onstraint (32).

• wu
j < 0. Cj(π) equals T minus the sum of the total pro
essing time of jobs in

Bu
j 
ompleted in interval Iu+1 or later, the total pro
essing time of jobs in Au

jstarted in interval Iu or later and the total idle time in the last m − u intervals.
F u

j = eu − Cj(π), F u
j is instantiated by the 
onstraint (35).To prove the 
orre
tness of the interval-based formulation, it remains to show the validityof the 
onstraints (30)-(35). We do this in the next proposition. Let F u

j (k) be the value ofthe right-hand side of the 
onstraint (k), and
F u

j =























F u
j (30), j ∈ NBu, wu

j > 0,

max
{

F u
j (31), F u

j (32)
}

, j ∈ NSu, wu
j > 0,

F u
j (33), j ∈ NBu, wu

j < 0,

max
{

F u
j (34), F u

j (35)
}

, j ∈ NSu, wu
j < 0.Proposition 2 The formulation (12)-(26), (30)-(35) is 
orre
t.Proof: Consider ve
tor (X,Y,W ) satisfying the 
onstraints (12)-(26) and the 
orresponding
anoni
al s
hedule. To prove the proposition, we show that F u

j = max{F u
j , 0}, i.e.1. if job j is 
ompleted in interval Iu, then wu

j > 0 implies F u
j = Cj(π)− eu−1, and wu

j < 0implies F u
j = eu − Cj(π);2. if job j is not 
ompleted in interval Iu, then F u

j ≤ 0.Case 1. Let job j is 
ompleted in interval Iu, implying Y u
j = 1 and Y u−1

j = 0. We havetwo sub-
ases.1.a. Either j ∈ NBu (then j is 
ompleted �rst in Iu in π) or j ∈ NSu , j is started in
Iu−1 or earlier and 
ompleted in Iu in π. We have

wu
j > 0 : Cj(π) =

∑

i∈N\{j},

y(i)≤u−1

pi + pj +

y(j)−1
∑

v=1

Wv

=
∑

i∈N\{j}

piY
u−1
i + pjY

u
j +

u−1
∑

v=1

Wv. (36)
wu

j < 0 : Cj(π) = T −
∑

i∈N\{j},

x(i)≥u

pi −
m

∑

v=y(j)+1

Wv

= T −
∑

i∈N\{j}

pi(1 − Xu−1
i ) −

m
∑

v=u+1

Wv. (37)13



Let j ∈ NBu, wu
j > 0. Then Cj(π) = (36) = F u

j (30) + eu−1.Let j ∈ NBu, wu
j < 0. Then Cj(π) = (37) = eu − F u

j (33).Let j ∈ NSu, wu
j > 0. Cj(π) = (36) = F u

j (31) + eu−1. Also, as Xu−1
j = 1 = Y u

j , using (16),
F u

j (32) is less or equal to
∑

i∈N

piY
u
i +

u−1
∑

v=1

Wv − eu

(20)
≤ 0. (38)Let j ∈ NSu, wu

j < 0. Cj(π) = (37) = eu − F u
j (34) + eu−1. Also, as Xu−1

j = 1 = Y u
j , using(16), F u

j (35) is less or equal to
∑

i∈N\{j}

pi(1 − Xu−1
i ) +

m
∑

v=u+1

Wv − T + eu−1 (39)
≤ −

∑

i∈N\{j}

piX
u−1
i −

u−1
∑

v=1

Wv + eu−1

(21)
≤ 0.1.b. j ∈ NSu, j is started and 
ompleted in Iu in π. Then Xu−1

j = 0, Y u
j = 1, and wehave

wu
j > 0 : Cj(π) =

∑

i∈Bu
j
,

y(i)≤u

pi +
∑

i∈Au
j
,

x(i)≤u−1

pi + pj +

y(j)−1
∑

v=1

Wv

=
∑

i∈Bu
j

piY
u
i +

∑

i∈Au
j

piX
u−1
i + pjY

u
j +

u−1
∑

v=1

Wv. (40)
wu

j < 0 : Cj(π) = T −
∑

i∈Bu
j ,

y(i)≥u+1

pi −
∑

i∈Au
j ,

x(i)≥u

pi −
m

∑

v=y(j)+1

Wv

= T −
∑

i∈Bu
j

pi(1 − Y u
i ) −

∑

i∈Au
j

pi(1 − Xu−1
i ) −

m
∑

v=u+1

Wv. (41)Let wu
j > 0. Then, using (17) and (24), Xu−1

i = Y u
i , ∀i ∈ ABu

j , and therefore Cj(π) = (40) =

F u
j (32) + eu−1. Also, as Xu−1

j < Y u
j , F u

j (31) < (38) ≤ 0.Let wu
j < 0. Then, using (17) and (24), Xu−1

i = Y u
i , ∀i ∈ BBu

j , and therefore Cj(π) = (41) =
eu − F u

j (33). Also, F u
j (34) = (39) ≤ 0.Case 2. Let job j is not 
ompleted in interval Iu, implying Y u

j = Y u−1
j . We have twosub-
ases.2.a. j ∈ NBu. Then, F u

j (30) is equal to
∑

i∈N

piY
u−1
i +

y(j)−1
∑

v=1

Wv − eu−1

(20)
≤ 0. (42)Also, F u

j (33) = (39) ≤ 0. 14



2.b. j ∈ NSu. Then Y u−1
j

(15)
≤ Xu−1

j

(16)
≤ Y u

j = Y u−1
j ⇒ Y u−1

j = Xu−1
j . Therefore,

F u
j (31) = (42) ≤ 0. Using (16), we have F u

j (32) ≤ (38) ≤ 0 and F u
j (35) ≤ (39) ≤ 0. Finally,

F u
j (34) = (39) ≤ 0. �Clearly, the interval-indexed formulation is 
ompa
t. The number of variables do notex
eed 3nm+m = O(nm), the number of 
onstraints do not ex
eed 6nm+4m = O(nm). Forthe 
lassi
al obje
tive fun
tions, we have m = O(n), and the size of the formulation be
omes

O(n2) × O(n2).4.3 Additional 
onstraintsA usual way to strengthen a MIP formulation is to add redundant 
onstraints whi
h 
ut o�some fra
tional solutions. In this subse
tion, we suggest su
h 
onstraints for the interval-indexed formulation.Consider intervals Iv and Iu, v, u ∈ M , v ≤ u, and a job j ∈ N .
• Let pj ≤ eu − ev . Then job j 
annot be started before ev and 
ompleted after eu,therefore Y u

j ≥ Xv
j . This 
onstraint is not dominated by other 
onstraints of this typeif pj > eu − ev+1 and pj > eu−1 − ev .

• Let pj < eu − ev. Then job j 
annot be started after or at ev and 
ompleted before orat eu, therefore Y u
j ≤ Xv

j . This 
onstraint is not dominated by other 
onstraints of thistype if pj ≤ eu+1 − ev and pj ≤ eu − ev−1.
• Let wu

j > 0, ev−1 + pj ≤ eu and ev−1 + pj > eu−1, meaning that, on
e started ininterval Iv, job j should be 
ompleted in Iu or later. Then, if j is 
ompleted in Iu,
F u

j ≥ pj − (eu−1 − ev−1), and the 
onstraint
F u

j ≥ (pj − eu−1 + ev−1)(Y
u
j − Xv−1

j ) (43)is valid. Moreover, if ev + pj ≤ eu, on
e started in Iv, j should be 
ompleted in Iu, and(43) 
an be strengthened to
F u

j ≥ (pj − eu−1 + ev−1)(X
v
j − Xv−1

j ).

• Let wu
j < 0, ev + pj ≤ eu and ev + pj > eu−1, meaning that, on
e started in interval Iv,job j should be 
ompleted in Iu or earlier. Then, if j is 
ompleted in Iu, F u

j ≥ eu−ev−pj,and the 
onstraint
F u

j ≥ (eu − ev − pj)(X
v
j − Y u−1

j ) (44)is valid. Moreover, if ev−1 + pj > eu−1, on
e started in Iv, j should be 
ompleted in Iu,and (44) 
an be strengthened to
F u

j ≥ (eu − ev − pj)(X
v
j − Xv−1

j )Note that the overall number of the suggested 
onstraints whi
h are not dominated is O(nm).
15



5 Tightening the MIP with appropriate partitions of the timehorizonIn this se
tion, we will restri
t the 
lass of 
anoni
al s
hedules. This will allow us to strengthenthe interval-indexed formulation by
• redu
ing the number of feasible solutions of the formulation,
• tightening the 
onstraints (32) and (35), as the term −(1−Y u

j +Xu−1
j ) · (eu − eu−1) willbe 
hanged to −(1 − Y u

j + Y u−1
j ) · (eu − eu−1).Additionally, it will be possible to formulate a spe
ial 
ase of the problem using only variables

Y and F (subse
tion 5.3).Remember that, in a 
anoni
al s
hedule, jobs in Qu (started and 
ompleted in Iu) aresequen
ed a

ording to the permutation σu. Let now Q̄u denote the set of jobs 
ompleted, butnot ne
essarily started in interval Iu:
Q̄u =

{

j ∈ N : Cj ∈ Iu

}

.De�nition 2 Given a linear partition {Iu}u∈M , a s
hedule is 
alled stri
tly 
anoni
al if it is
anoni
al and, for ea
h u ∈ M , jobs in Q̄u are pro
essed a

ording to the permutation σu.Unfortunately, the set of stri
tly 
anoni
al s
hedules does not keep the optimality property,as shown in the next example.Example: Consider the partition {(0, 9], (9, 20]} of the time horizon and the 3-job instan
ewith data shown in Table 1. There is only one optimal s
hedule π∗ = (2, 1, 3) in whi
h all jobsare 
ompleted in interval I2 = (9, 20], but the permutation σ2 is (1, 3, 2). ♠
j pj rj dj (f1

j , w1
j ) (f2

j , w2
j )1 4 0 20 (0, 0) (0, 2)2 10 0 20 (0, 0) (0, 3.5)3 6 0 20 (0, 0) (0, 2.4)Table 1: The data for Example 5So, for an arbitrary linear partition of the time horizon, there is not always an optimalstri
tly 
anoni
al s
hedule.De�nition 3 A linear partition of the time horizon is 
alled appropriate if there exists anoptimal stri
tly 
anoni
al s
hedule for it.5.1 Obtaining an appropriate partitionIn this subse
tion, we will give su�
ient 
onditions for a linear partition to be appropriate.We then des
ribe how an appropriate partition whi
h satisfy these 
onditions 
an be obtained.16



For u ∈ M and i, j ∈ N su
h that σu(i) < σu(j), we denote as T u
ij the minimum time moment

t ∈ [eu−1, eu − pi] su
h that, if j is the immediate prede
essor of i and Cj ≥ t then ex
hanging
j and i do not in
rease the 
ost of the s
hedule:

T u
ij = min

t∈[eu−1,eu−pi]

{

t : ∀s ∈ (t, eu], Fj↔i(s) ≤ 0
}

,where Fj↔i(s) = Fi(s + pi − pj) + Fj(s + pi) − Fj(s) − Fi(s + pi).If eu−1 > eu − pi, we set T u
ij = eu−1.Now we explain how the values T u

ij 
an be obtained. First note, that only the �rst term ofthe fun
tion Fj↔i(s) is pie
ewise linear in interval [eu−1, eu − pi], other three terms are linearin it. Therefore, in interval [eu−1, eu − pi], Fj↔i(s) is pie
ewise linear with in�e
tions onlypossible at points ev + pj − pi, v ≤ u− 1. Knowing this, it is easy to �nd T u
ij by 
he
king thevalue of Fj↔i at all in�e
tion points and at eu−1. So, the 
omplexity of �nding one value T u

ijis O(m).Proposition 3 A linear partition {Iu}u∈M is appropriate if, for ea
h u ∈ M and ea
h pairof jobs i, j ∈ N su
h that σu(i) < σu(j), at least one of the following two 
onditions is true:
eu ≤ eu−1 + pj, (45)
eu−1 ≥ T u

ij . (46)Proof: Consider an optimal s
hedule whi
h is not stri
tly 
anoni
al. We will transform itre
ursively to a stri
tly 
anoni
al s
hedule without in
reasing the 
ost. We begin with u = m.Main step. First we rearrange jobs in Qu a

ording to σu and leave at most one idle timeperiod (between jobs with wu
j ≤ 0 and wu

j < 0). This 
an be done without in
reasing the
ost of the s
hedule. If now jobs in Q̄ are pro
essed a

ording to σu, we set u := u − 1 anddo the main step from the beginning. If not, this means that σu(j) > σu(i), where j is thejob 
ompleted but not started in Iu and i is the job pro
essed �rst among jobs in Q. There
annot be an idle time between j and i, otherwise wu
j < 0 and shifting j to the right wouldde
rease the 
ost � 
ontradi
tion with the optimality of the s
hedule. By the 
onstru
tionof σu, pj < eu − eu−1. So, (45) is violated, meaning that (46) is satis�ed. Therefore, as

Cj > eu−1 ≥ T u
ij , ex
hanging j and i do not in
rease the 
ost of the s
hedule.Now there are two possible 
ases.1. Job i still 
ompletes in Iu. Then we 
an rearrange jobs in Qu a

ording to σu withoutin
reasing the 
ost and, as σu(i) = mink∈Qu

{σu(k)}, jobs in Q̄u are pro
essed a

ordingto σu. We set u := u − 1 and go to the main step.2. Job i does not 
omplete in Iu anymore. Then we go to the main step without de
reasing
u (but with less jobs in Q̄u).We stop when u = 0. �By the de�nition of the problem, a linear partition of the time horizon is given. In orderto 
he
k if it is appropriate, we 
he
k whether

Hu
ij = [T u

ij , eu−1 + pj ] 6⊂ Iu, ∀u ∈ M, ∀i, j ∈ N : σu(i) < σu(j).17



If, for some u ∈ M , there exist pairs of jobs i, j ∈ N su
h that Hu
ij ⊂ Iu, it su�
es to divide theinterval Iu into sub-intervals in a way that they do not stri
tly 
ontain intervals Hu

ij. Clearly,a sub-partition of a linear partition is also linear. In Algorithm 1, we outline the pro
edurefor �nding an appropriate sub-partition for a given partition. It is easy to see that the overallpro
edure has a polynomial 
omplexity. In pra
ti
e, the time needed to �nd an appropriatelinear partition is negligible in 
omparison with the time needed to solve the interval-indexedformulation.Algorithm 1 A pro
edure for �nding an appropriate sub-partition1: Partition {Iu}1≤u≤m is given2: Find σu, 1 ≤ u ≤ m3: u := 14: while u ≤ m do5: Bu := ∅; k := 16: for all (i, j) ∈ N : σu(i) < σu(j) do7: Find Hu
ij = [T u

ij , eu−1 + pj]8: if Hu
ij ⊂ Iu then9: Bu := Bu ∪ {Hu

ij}10: end if11: end for12: if Bu 6= ∅ then13: Find (t0, t1, . . . , tk) su
h that t0 = eu−1, tk = eu,and H 6⊂ (tl−1, tl], ∀1 ≤ l ≤ k, ∀H ∈ Bu.14: Divide interval Iu into sub-intervals {(tl−1, tl]}1≤l≤k15: m := m + k − 1; update σv, f v
j , wv

j , ∀u ≤ v ≤ m, ∀j ∈ N16: end if17: u := u + k18: end while19: return {Iu}1≤u≤mExample: Consider the 3-job instan
e of Table 1 and the initial partition {(0, 9], (9, 20]}. Wehave B1 = ∅ and
B2 =

{

H2
12 = [12, 19],H2

32 = [11.75, 19],H2
13 = [9.8, 15]

}

.We divide interval I2 = (9, 20] into sub-intervals (9, 12] and (12, 20] and obtain an appropriatepartition {(0, 9], (9, 12], (12, 20]}. Now, σ1 = σ3 = (2, 1, 3), σ2 = (1, 3, 2), (f2
1 , w2

1) = (0, 2),
(f2

2 , w2
2) = (0, 3.5), (f2

3 , w2
3) = (0, 2.4), (f3

1 , w3
1) = (6, 2), (f3

2 , w3
2) = (10.5, 3.5), (f3

3 , w3
3) =

(7.2, 2.4). ♠
18



5.2 Tightening the formulationOn
e an appropriate linear partition of the time horizon is known, the 
onstraints whi
hdetermine the values for variables F u
j , u ∈ M , j ∈ NSu, 
an be strengthened: the 
onstraints(31) and (32) 
an be repla
ed by the 
onstraint

F u
j ≥ pjY

u
j +

∑

i∈Bu
j

piY
u
i +

∑

i∈ABu
j

piY
u
i +

∑

i∈ASu
j

piX
u−1
i +

u−1
∑

v=1

Wv − eu−1 − (1 − Y u
j + Y u−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j > 0, (47)and the 
onstraints (34) and (35) 
an be repla
ed by the 
onstraint

F u
j ≥

∑

i∈Au
j ∪BBu

j

pi(1 − Xu−1
i ) +

∑

i∈BSu
j

pi(1 − Y u
i ) +

m
∑

v=u+1

Wv − (T − eu) − (1 − Y u
j + Y u−1

j ) · (eu − eu−1),

∀u ∈ M, ∀j ∈ NSu, wu
j < 0. (48)To keep the formulation 
orre
t the 
onstraint (24) should be repla
ed by the 
onstraint

∑

i∈BBu

(Xu−1
i − Y u

i ) +
∑

i∈Au
j

(Xu−1
i − Y u−1

i ) + Y u
j − Xu−1

j ≤ 1,

∀u ∈ M, ∀j ∈ NSu. (49)Proposition 4 Given an appropriate linear partition of the time horizon, the formulation(12)-(23), (25)-(26), (30), (33), (47)-(49) is 
orre
t.Proof: We �rst show that the 
onstraint (49) 
uts o� ve
tors (X,Y,W ) whi
h 
orrespond tos
hedules whi
h are 
anoni
al but not stri
tly 
anoni
al. In su
h a s
hedule, for some u ∈ M ,job j ∈ NSu started and 
ompleted in Iu su

eeds a job i ∈ Au
j 
ompleted but not started in

Iu. Then Y u
j − Xu−1

j = 1, Xu−1
i − Y u−1

i = 1, and the 
onstraint (49) is violated. Moreover,(49) implies (24). So, a ve
tor (X,Y,W ) satisfying the 
onstraints (14)-(23), (25)-(26), (49)
orresponds to a feasible stri
tly optimal s
hedule.In Proposition 2, we have showed that F u
j = max{F u

j (30), 0}, j ∈ NBu, wu
j > 0 and

F u
j = max{F u

j (33), 0}, j ∈ NBu, wu
j < 0. It now su�
es to show that

F u
j =

{

max
{

F u
j (47), 0

}

, j ∈ NSu, wu
j > 0,

max
{

F u
j (48), 0

}

, j ∈ NSu, wu
j < 0.Case 1. Let job j is 
ompleted in interval Iu, implying Y u

j = 1 and Y u−1
j = 0. We have

19



wu
j < 0 : Cj(π) =

∑

i∈Bu
j ,

y(i)≤u

pi +
∑

i∈Au
j ,

y(i)≤u−1

pi + pj +

y(j)−1
∑

v=1

Wv

=
∑

i∈Bu
j

piY
u
i +

∑

i∈Au
j

piY
u−1
i + pjY

u
j +

u−1
∑

v=1

Wv. (50)
wu

j < 0 : Cj(π) = T −
∑

i∈Bu
j ,

y(i)≥u+1

pi −
∑

i∈Au
j ,

y(i)≥u

pi −
m

∑

v=y(j)+1

Wv

= T −
∑

i∈Bu
j

pi(1 − Y u
i ) −

∑

i∈Au
j

pi(1 − Y u−1
i ) −

m
∑

v=u+1

Wv. (51)Let wu
j > 0. Then, using (49), (22) and (17), Y u−1

i = Y u
i , ∀i ∈ ABu

j , and, using (49), (22)and (16), Y u−1
i = Xu−1

i , ∀i ∈ ASu
j . Therefore Cj(π) = (50) = F u

j (47) + eu−1.Let wu
j < 0. Then, using (49) and (22), Y u−1

i = Xu−1
i , ∀i ∈ Au

j , and Y u
i = Xu−1

i , ∀i ∈ BBu
j .Therefore Cj(π) = (51) = eu − F u

j (48).Case 2. Let job j is not 
ompleted in interval Iu, implying Y u
j = Y u−1

j . Then, using (16),
F u

j (47) ≤ (38) ≤ 0 and F u
j (48) ≤ (39) ≤ 0. �5.3 Spe
ial 
ase with regular obje
tive fun
tion and no idle timeWe now 
onsider a spe
ial 
ase of the problem, in whi
h the obje
tive fun
tion is regular, i.e.

Fj is non-de
reasing for all jobs j ∈ N . Additionally, we suppose that there exists an optimals
hedule with no idle time. The last 
ondition holds, for example, if1. idle times are forbidden;2. release dates are the same (we 
an put them to zero).In this 
ase, given an appropriate linear partition, we 
an �get rid� of the variables X and
W and propose an interval-indexed formulation whi
h uses only variables Y and F :

min
∑

j∈N

∑

u∈M

wu
j F u

j +
∑

j∈N

∑

u∈M

fu
j (Y u

j − Y u−1
j ) (52)

s.t. Y u−1
j ≤ Y u

j , ∀j ∈ N, ∀u ∈ M, (53)
∑

j∈N

pjY
u
j ≤ eu, ∀u ∈ M, (54)

F u
j ≥ pjY

u
j +

∑

i∈Au
j

piY
u−1
i +

∑

i∈Bu
j

piY
u
i − eu−1 −

(1 − Y u
j + Y u−1

j ) · (eu − eu−1), ∀j ∈ N, ∀u ∈ M, (55)
Y u

j ∈ {0, 1}, ∀j ∈ N, ∀u ∈ M, (56)
F u

j ≥ 0, ∀j ∈ N, ∀u ∈ M. (57)20



Here the obje
tive fun
tion (52) and the 
onstraints (53)-(54) are 
onserved. The 
on-straint (55) link variables F and Y : if job j is 
ompleted in interval Iu then its 
ompletiontime equals the sum of pro
essing times of job j, jobs in Bu
j 
ompleted in Iu or earlier andjobs in Au

j 
ompleted in Iu−1 or earlier.6 Numeri
al experimentsIn order to 
ompare the time-indexed and interval-indexed formulations numeri
ally, theseformulations have been tested on instan
es of the problems 1 | rj |
∑

αjEj + βjTj and
1 ||

∑

wjTj. The experiments have been performed on a 
omputer with a 1.8Ghz pro
essorand 512 Mb of memory was using the Cplex 10.1 MIP solver.In the experiments, we were interested in the following statisti
s.
Pt � per
entage of instan
es solved to optimality within time limit t.
Tav � average time in se
onds needed to solve an instan
e to optimality (only for instan
essolved to optimality).
Ndav � average number of nodes in the sear
h tree (only for instan
es solved to optimality).
Gap � average integrality gap, i.e. the average di�eren
e between the best found solution andthe best found lower bound, per
entage wise the best found solution (only for instan
eswhi
h were not solved to optimality and for whi
h at least one feasible solution wasfound).
XLP � average di�eren
e between the the best found solution and the lower bound at thetop node of the sear
h tree after generating standard 
uts, per
entage wise the optimalsolution (only for instan
es for whi
h the LP relaxation was solved within the time limit).6.1 Test instan
esThe �rst group of the test instan
es of the problem 1 | rj |

∑

αjEj +βjTj were generated usingthe following standard pro
edure. For a given number of jobs n, the pro
essing times of ea
hjob are �rst randomly drawn from the uniform distribution U [θ, 10 ·θ). Then the due dates aredrawn from U [dmin, dmin+ρP ] where dmin = max(0, P (τ −ρ/2)) and P =
∑n

j=1 pj, the releasedates rj , j ∈ N , are drawn from U [0, φdj ], and weights αj , βj are drawn from U [1, 5]. Thefour parameters θ, τ , ρ, φ are respe
tively the time, tardiness, range and release parameters.We generated instan
es for n ∈ {10, 15, 20, 30}, θ ∈ {10, 50}, τ ∈ {0.2, 0.5, 0.8}, ρ ∈
{0.2, 0.5, 0.8}, φ ∈ {0.2, 0.5, 0.8}. For ea
h value of (n, θ, τ, ρ, φ), 1 instan
e was generated,making 27 instan
es for ea
h 
ouple (n, θ). Note that for these instan
es, the �big-M� 
on-straints should be used in the linear ordering formulation. The results are presented in Table 2.You 
an see that linear ordering formulation with the �big-M� 
onstraints is the worstone. Among the other two, the time-indexed formulation performs better when the pro
essingtimes are smaller, and the interval-indexed formulation is preferable when pro
essing timesare big. Note that, when (n, θ) = (20, 50), the time-indexed formulation was not able to �nda feasible solution in 1000 se
onds for the half of instan
es. The number of intervals m in21



Linear ordering �big-M� formulation
θ = 10 θ = 50

n P1000s Tav Ndav XLP Gap P1000s Tav Ndav XLP Gap10 100% 3.5 14652 73.4% 0.0% 100% 3.8 15695 72.7% 0.0%15 51.9% 136.3 373407 79.5% 35.9% 44.4% 96.2 266517 82.3% 35.1%20 7.4% 226.3 479945 85.3% 53.9% 11.1% 62.9 134472 86.1% 59.7%Time-indexed formulation
θ = 10 θ = 50

n P1000s Tav Ndav XLP Gap P1000s Tav Ndav XLP Gap10 100% 2.7 89.5 0.7% 0.0% 81.4% 135.0 627.1 1.3% 3.4%15 92.6% 47.3 1107.8 2.3% 1.3% 55.6% 316.1 98.3 3.3% 6.4%20 66.7% 152.8 1519.4 1.9% 2.2% 22.2% 383.5 0.0 11.3% 17.4%Interval-indexed formulation
θ = 10 θ = 50

n P1000s Tav Ndav XLP Gap P1000s Tav Ndav XLP Gap10 100% 7.1 820.3 25.8% 0.0% 100% 5.6 552.8 23.2% 0.0%15 85.2% 194.3 8340.9 25.6% 3.8% 85.2% 235.6 6949.8 23.5% 6.7%20 25.9% 255.6 2993.4 23.9% 13.6% 29.6% 394.5 4458.8 23.1% 10.7%Table 2: Comparison of the formulations on the �rst group of the test instan
es of the problem
1 | rj |

∑

αjEj + βjTjappropriate linear partitions 
omputed for the instan
es of the problem 1 | rj |
∑

αjEj +βjTjwas always below 3n.The se
ond group of the test instan
es of the problem 1 | rj |
∑

αjEj+βjTj were generatedusing the pro
edure just presented but with one di�eren
e: here we limit by µn the numberof distin
t release and due dates. This allows us to de
rease the number of intervals forthe interval-indexed formulation. Su
h a restri
tion makes sense, as in pra
ti
e, number ofdi�erent release and due dates of jobs is often very limited. For generating instan
es, we set
µn = ⌈n · 2/3⌉. Again, for ea
h 
ouple (n, θ), 27 instan
es were generated. The results for thetime-indexed and interval-indexed formulations are presented in Table 3.On these instan
es, the interval-indexed formulation performs better, as the number ofintervals is redu
ed. Though, still when the pro
essing times are smaller and number of jobsis 30 or less, the time-indexed formulation is preferable. On instan
es with 40 jobs and more,the time-indexed formulation starts to have di�
ulties, as less and less feasible solutions 
anbe found within the time limit. For the half of 40-job instan
es and for all 50-job instan
es,no feasible solution was found within 1000 se
onds.22



Time-indexed Interval-indexed
(n, θ) P1000s Tav Ndav XLP Gap P1000s Tav Ndav XLP Gap

(10, 10) 100% 4.3 161.6 0.7% 0.0% 100% 1.3 703.2 33.2% 0.0%
(20, 10) 81.5% 201.0 1226.6 1.1% 1.3% 48.5% 393.9 26788.2 27.7% 7.7%
(30, 10) 40.7% 279.2 130.6 5.5% 8.9% 3.7% 393.9 948.1 28.7% 18.3%
(40, 10) 7.4% 508.4 170.0 10.7% 12.1% 0.0% 0.0 0.0 34.6% 30.0%
(50, 10) - - - - - 0.0% 0.0 0.0 40.7% 39.4%
(10, 50) 92.6% 86.1 124.1 0.7% 3.5% 100% 1.5 769.5 35.8% 0.0%
(15, 50) 48.2% 350.0 42.9 4.3% 8.2% 96.3% 130.8 23214.0 29.0% 1.2%
(20, 50) 18.5% 417.4 6.4 6.4% 10.8% 51.8% 225.5 16238.3 27.8% 6.6%Table 3: Comparison of the formulations on the se
ond group of the test instan
es of theproblem 1 | rj |

∑

αjEj + βjTjThe test instan
es of the problem 1 ||
∑

wjTj were generated using the following similarpro
edure. For a given number of jobs n, the pro
essing times of ea
h job are �rst ran-domly drawn from the uniform distribution U [1, 100]. Then the due dates are drawn from
U [dmin, dmin + ρP ] where dmin = max(0, P (τ − ρ/2)) and P =

∑n
j=1 pj , and weights aredrawn from U [1, 10]. We generated instan
es for n ∈ {10, 20, 30}, τ ∈ {0, 0.2, 0.4, 0.6, 0.8},

ρ ∈ {0.2, 0.4, 0, 6, 0.8, 1}. For ea
h triple (n, τ, ρ), 5 instan
e were generated, making 125 in-stan
es for ea
h n. The larger test instan
es of the problem 1 ||
∑

wjTj were taken from theOR-Library [9℄. For the problem 1 ||
∑

wjTj, the interval-indexed formulation uses only thevariables Y and F . Then, the linear ordering formulation is used in the form (5)-(9). Theresults are presented in Table 4. Note that by using the time-indexed formulation no feasiblesolution 
ould be found within 10 minutes for 1% of the 20-job instan
es, 2% of the 30-jobinstan
es, 23% of the 40-job instan
es, and 54% of the 50-job instan
es.As it 
an be seen, the linear ordering and interval-indexed formulations 
learly outperformthe time-indexed formulation. It is also worth noti
ing that the time-indexed formulationformulation has the smallest XLP ratio, but the size of the formulation does not allow to useit even for small instan
es.The linear ordering formulation is better when solving 30-jobs instan
es, as it 
an solvemore instan
es within the time limit. However, the two last formulations have solved almostthe same number of 40-jobs instan
es. Moreover, the interval-indexed formulation (IIF) hassolved more 50-jobs instan
es. We also noti
e that the interval-indexed formulation is mu
htighter than the linear ordering formulation. The statisti
s XLP is more than 3 times smallerfor the interval-indexed one. Also, the average integrality gap is mu
h better for instan
esunsolved by the interval-indexed formulation than for instan
es unsolved by the linear orderingone.The linear ordering formulation has O(n3) 
onstraints. When the dimension of the problemin
reases, the size of this formulation qui
kly grows and be
omes very large. Therefore, itse�e
tiveness drops rapidly with the in
rease of the dimension.The number of intervals m in appropriate linear partitions 
omputed for the instan
es of23



Time-indexed
n P10m Tav Ndav XLP Gap10 100% 0.3 1.1 0.0% 0.0%20 99.2% 23.3 25.7 0.3% 0.0%30 80.0% 120.5 53.6 0.4% 9.9%40 51.2% 450.6 33.0 0.5% 12.1%50 31.2% 272.1 38.4 0.6% 7.4%Linear ordering
n P10m Tav Ndav XLP Gap10 100% 0.1 10.2 8.8% 0.0%20 98.4% 2.2 323.1 18.9% 22.0%30 88.0% 30.9 2380.5 23.0% 25.1%40 65.6% 37.9 1038.7 23.6% 30.6%50 47.2% 84.6 554.9 23.7% 30.5%Interval-indexed
n P10m Tav Ndav XLP Gap10 100% 0.1 14.1 4.7% 0.0%20 100% 1.7 338.3 6.8% 0.0%30 82.4% 30.8 5245.8 6.8% 3.0%40 64.8% 34.0 2320.0 7.0% 3.6%50 57.6% 56.5 2654.8 7.2% 3.9%Table 4: Comparison of the formulations on the test instan
es of the problem 1 ||

∑

wjTjthe problem 1 ||
∑

wjTj was always below 2n.6.2 Pra
ti
al instan
esRe
ently, Le Pape and Robert have published a library of pra
ti
al instan
es for the planningand s
heduling problems [36℄. The instan
es of the type �NCOS� in this library 
an be trans-formed to instan
es of the problem 1 | rj |
∑

αjEj +βjTj . We have tested the interval-indexedand time-indexed formulations on the open instan
es of this type.Using the interval-indexed formulation, the following previously open 4 instan
es havebeen solved to optimality:
24



Name n TimeNCOS_04
 10 5sNCOS_05
 15 109sNCOS_14
 25 102mNCOS_14d 25 51mAdditionally, using the time-indexed formulation, the following previously open 12 in-stan
es have been solved to optimality:Name n TimeNCOS_11
 20 193sNCOS_12
 24 257sNCOS_12d 24 347sNCOS_13
 24 53sNCOS_15
 30 1320sNCOS_21a 50 <1sNCOS_21
 50 <1sNCOS_32
 75 2sNCOS_32d 75 2sNCOS_51
 200 8sNCOS_51d 200 7sNCOS_61d 500 15sNote that the large instan
es whi
h were solved 
ontain many identi
al jobs.7 Con
lusionsIn this paper, we have introdu
ed the interval-indexed formulation whi
h is the �rst 
ompa
tMIP formulation for the single ma
hine s
heduling problem to minimize a pie
ewise linearobje
tive fun
tion. This formulation has O(nm) variables and O(nm) 
onstraints, where n isthe number of jobs, and m is the number of intervals in whi
h the obje
tive fun
tions of alljobs are linear.Both the time-indexed and interval-indexed formulations have advantages. The �rst hasmu
h less binary variables, and the se
ond provides very strong linear programming lowerbounds. The numeri
al experiments showed that the 
hoi
e of the formulation to use shouldbe made based on the properties of the given instan
e to solve. The larger the pro
essingtimes of jobs are the more likely that the interval-indexed formulation will provide betterresults. Experiments show that the dire
t appli
ation of these formulations are useful forsolving medium size instan
es. Some open pra
ti
al instan
es were solved.The main dire
tion for the future resear
h 
on
erns the biggest disadvantage of the interval-indexed formulation: the relative weakness of lower bounds provided by its LP relaxation. Theformulation should be tightened in order to be more useful in pra
ti
e.Another resear
h dire
tion is an extension of the formulation to more general situations.These 
an be the presen
e of pre
eden
e relations between jobs, or the availability of severalidenti
al or unrelated ma
hines.Adaptation to the spe
ial 
ases of the problem is also a perspe
tive dire
tion. For example,25



often in pra
ti
e, many jobs are fully or almost identi
al. Exploiting su
h parti
ularities 
anlead to redu
ing the formulation size or its strengthening.As it was mentioned, the dire
t appli
ation of the interval-indexed formulation is not usu-ally e�
ient. As an alternative, the Dantzig-Wolfe reformulation and the 
olumn generationmethod 
an be tried. This approa
h would be similar to one of Bigras et al [12℄. The latteralso uses a partition of the time horizon. An advantage of our approa
h is that the partitionis done taking into a

ount properties of the problem, and this 
an be exploited to speed upthe 
olumn generation pro
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