
Compact MIP formulations for Minimizing Total Weighted

Tardiness

Philippe Baptiste

Ecole Polytechnique, CNRS LIX, 91128 Palaiseau, France.

Tel: +33 6 87 02 24 23, Philippe.Baptiste@polytechnique.fr.

Sadykov Ruslan

CORE, Université Catholique de Louvain,

voie du Roman Pays, 34, 1348 Louvain-la-Neuve, Belgium

Tel: +32 10 47 94 21, fax: +32 10 47 43 01,

sadykov@core.ucl.ac.be

Abstract

We present new MIP formulations for the single machine total weighted tardiness
problem. These formulations are based on a partition of the time horizon into intervals.
This partition is done in such a way that the problem reduces to the problem of
assigning jobs to intervals. This leads to a compact formulation that can be solved
with standard integer programming techniques. We also introduce a relaxation of the
problem, solved by coliumn generation, which gives tight lower bounds.

1 Introduction

A set of jobs N = {1, . . . , n} has to be processed on a single machine. Only one job
can be processed at a time and preemptions are not allowed. All jobs are available for
processing at time zero. Each job j ∈ N has a processing time pj, a due date dj and
a weight wj . All data is integer. The tardiness Tj(π) of job j in schedule π is defined
as Tj(π) = max{0, Cj(π) − dj}. For given schedule π, job j is on time if Cj(π) ≤ dj ,
otherwise job j is late. The objective is to find a schedule π with minimum total weighted
tardiness

∑

j∈N wjTj(π). Using the standard scheduling notation, this problem is denoted
as 1 ||

∑

wjTj. The problem has received a significant attention in the literature (e.g.,
dominance rules [3, 5, 1] and exact approach [2]).

2 Appropriate partition of the time horizon

This problem can be modelled with a large “time-indexed” MIP where, for each job j and
each time point t, we have a binary variable xjt ∈ {0, 1} that indicates whether j is started
at t or not. The formulation is the following.

1

min

P−1
∑

t=0

∑

j∈N

wj · max{t + pj − dj , 0}xjt

s.t.

P−pj
∑

t=0

xjt = 1, j ∈ N,

∑

j∈N

t
∑

s=max{0,t−pj}

xjs = 1, 0 ≤ t ≤ P − 1,

The main issue with this formulation is that the number of variables is pseudopolyno-
mial, leading to huge MIPs that cannot be solved even for small sizes of instances. The
main purpose of this section is to find a partition of the time horizon into a rather “small”
set of intervals such that when we know which jobs are completed in the intervals we can
immediately derive an optimal schedule. The major advantage of this technique is that the
resulting MIP, in which time-indexed variables are replaced by interval-indexed variables,
is small and can be solved efficiently.

First, note that there is an optimal schedule without idle times and hence the com-
pletion time of the last job equals P =

∑

j∈N pj. Given a partition of (0, P] into intervals

{I1, . . . , Im}, {σ1, . . . , σm} is an appropriate set of permutations if and only if there is an
optimal schedule S in which, for any two jobs i, j that are both completed in Iu, job i is
sequenced before job j if and only if σu(i) < σu(j).

Ex 1 Consider for instance 1 ||
∑

wjCj , a special case of 1 ||
∑

wjTj . In this case there is
one single interval I1 and the appropriate permutation σ1 is the one corresponding
to Smith order.

Ex 2 If Iu = (u − 1, u] ∀u ∈ [1, . . . , P] then any set of permutations is appropriate.

Ex 3 When all processing times are equal to p, the set of intervals {I1, . . . , Im} is exactly
the set of intervals corresponding to consecutive due dates. It is then easy to see
that for an interval Iu = (di, dj], the order corresponding to permutation σu can be
described as follows. Put first jobs k with dk ≤ di according to Smith rule, then put
all other jobs in any order.

When processing times are arbitrary, Smith rule is not appropriate any more for late jobs.
Consider an instance of the problem with 2 jobs, p1 = 4, d1 = 9, w1 = 2, p2 = 10,
d2 = 5, w2 = 3. In the only optimal schedule S∗ job 2 precedes job 1. In S∗ both jobs
are completed in interval I2 = [10, 14], but Smith order is (1, 2). Our major result is
that there are partitions (with a reasonably small number of intervals) for which we can
compute appropriate permutations in polynomial time.

Proposition 1. Let Iu = [eu−1 + 1, eu], u = {1, . . . ,m} be any partition such that

• for all due date dj there is an index u such that dj = eu,

• for any pair of jobs (i, j) ∈ N with pi/wi ≤ pj/wj and any interval Iu, either

eu ≤ eu−1 + pj or eu−1 ≥ di +
⌈

wjpi

wi

⌉

− pi

then an appropriate set of permutations can be computed in polynomial time.

2

3 MIP formulation

Consider a partition of the time horizon into intervals {I1, . . . , Im} and an appropriate set
of permutations σ. Let M = {1, . . . ,m}. We denote Au

j and Bu
j , j ∈ N , u ∈ M , the sets of

jobs which come, respectively, after and before job j in permutation σu. We also denote τu
j

the minimum tardiness of job j if it is assigned to interval u: τu
j = max{0, eu−1 + 1− dj}.

The assignment binary variable Zu
j , j ∈ N , u ∈ M , takes the value 1 if job j is

completed in interval u or earlier, otherwise Zju = 0. For each j ∈ N , we set Z0
j = 0 and

Zm
j = 1. The variable T̃j , j ∈ N , denotes the difference between the tardiness Tj of job

j and the value τu
j , where u is the interval to which job j is assigned. The variable Cu

j ,
j ∈ N , u ∈ M , denotes the completion time of job j if it is completed in interval Iu. We
now give the formulation.

min
∑

j∈N

wj ·

(

T̃j +
∑

u∈M

τu
j (Zu

j − Zu−1

j)

)

(1)

s.t.
∑

j∈N

pjZ
u
j ≤ eu, ∀u ∈ M, (2)

Zu−1

j ≤ Zu
j , ∀j ∈ N,∀u ∈ M, (3)

Cu
j ≥ pjZ

u
j +

∑

i∈Au
j

piZ
u−1

i +
∑

i∈Bu
j

piZ
u
i , ∀j ∈ N,∀u ∈ M, (4)

T̃j ≥ Cu
j − (eu−1 + 1) − (1 − Zu

j + Zu−1

j) · (eu − eu−1 − 1),

∀j ∈ N,∀u ∈ M,dj ≤ eu−1, (5)

Zu
j ∈ {0, 1}, ∀j ∈ N,∀u ∈ M, (6)

Cu
j ≥ 0, ∀j ∈ N,∀u ∈ M, (7)

T̃j ≥ 0, ∀j ∈ N. (8)

The constraints (2) guarantee that schedule is feasible, i.e. the sum of the processing
times of jobs assigned to the first u intervals is not more than eu, the total length of these
intervals. The inequalities (3) ensure that the values taken by Z are consistent with the
meaning of these variables. The constraints (5) relate variables Z, T̃ , and C.

Preliminary experiments show that the proposed formulation outperforms other MIP
formulations appeared in the literature [4].

4 Dantzig-Wolfe reformulation

Let the set Ωu, u ∈ M , includes all partial schedules starting not later than eu−1 where
jobs are completed in interval Iu and processed according to permutation σu. Each set Ωu,
u ∈ M \ {m}, also includes empty partial schedules, i.e. the schedule containing no jobs.
For each job j ∈ N , ajω = 1 if partial schedule ω contains job j, otherwise ajω = 0. Let
cω, ω ∈ Ωu, be the difference between eu−1 and the starting time of ω. Let hω, ω ∈ Ωu,
be the total cost of ω: hω =

∑

j∈N ajωwjTj(ω). The sum of processing times of all jobs
included in ω we denote p̄ω: p̄ω =

∑

j∈N ajωpj.

3

The binary variable λω equals 1 if the solution includes partial schedule ω, otherwise
λω = 0. Using these variables, a relaxation of the problem can be formulated as the
following master problem (MP).

min
∑

u∈M

∑

ω∈Ωu

hωλω (9)

s.t.
∑

u∈M

∑

ω∈Ωu

ajωλω = 1, ∀j ∈ N, (10)

∑

ω∈Ωu+1

cωλω +
∑

ω∈Ωu

p̄ωλω = eu − eu−1 +
∑

ω∈Ωu

cωλω, 1 ≤ u < m, (11)

∑

ω∈Ωu

λω = 1, ∀u ∈ M (12)

λω ≥ 0, ∀ω ∈ Ωu,∀u ∈ M. (13)

The constraints (10) specify that each job is contained in exactly one partial schedule
included in the solution. The constraints (11) guarantee a partial schedule starts at the
time moment when the previous partial schedule is completed. Finally, the constraints (12)
state that only one partial schedule should be selected for each interval. The formulation
(MP) can be solved by iteratively adding columns with negative reduced cost. To find
such columns, the pricing problem should be solved. This problem can be found in O(nP)
time by dynamic programming.

Preliminary experiments showed that the formulation (MP) can be solved in a reason-
able time and gives tight lower bound for the problem. A comparison has been performed
with a Lagrangean relaxation lower bound from [2].

References

[1] Arkturk M.S., M.B. Yildririm (1999). A new dominance rule for the total weighted
tardiness problem. Production Planning and Control, 10(2), 138–149.

[2] Babu P., L. Péridy, E. Pinson (2004). A branch and bound algorithm to minimize
total weighted tardiness on a single processor. Annals of Operations Research, 129,
33–46.

[3] Emmons H. (1969). One-machine sequencing to minimize certain functions of jobs
tardiness. Operations Research, 17, 701–715.

[4] Khowala K., A. Keha, J. Fowler (2005). A comparison of different formulations for
the non-preemptive single machine total weighted tardiness scheduling problem. In:
The 2nd Multidisciplinary International conference on scheduling MISTA, New York,

USA, July 2005.

[5] Rinnooy Kan A., B. Lageweg, J.K. Lenstra (1975). Minimizing total cost in one-
machine scheduling. Operations Research, 23, 908–927.

4

