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Abstract

This paper deals with the Minimum Latency Problem (MLP), a variant of the well-known Travel-

ing Salesman Problem in which the objective is to minimize the sum of waiting times of customers.

This problem arises in many applications where customer satisfaction is more important than the

total time spent by the server. This paper presents a novel branch-and-price algorithm for MLP

that strongly relies on new features for the ng-path relaxation, namely: (1) a new labeling algo-

rithm with an enhanced dominance rule named multiple partial label dominance; (2) a generalized

definition of ng-sets in terms of arcs, instead of nodes; and (3) a strategy for decreasing ng-set size

when those sets are being dynamically chosen. Also, other elements of efficient exact algorithms

for vehicle routing problems are incorporated into our method, such as reduced cost fixing, dual

stabilization, route enumeration and strong branching. Computational experiments over TSPLIB

instances are reported, showing that several instances not solved by the current state-of-the-art

method can now be solved.

Keywords: minimum latency, ng-paths, branch-and-price

1. Introduction

This paper deals with the Minimum Latency Problem (MLP). In MLP, we are given a complete

directed graph G = (V,A) and a time tij for each arc (i, j) ∈ A. Set V is composed of n + 1

nodes: node 0, representing a depot, and n nodes representing customers. The task is to find

a Hamiltonian circuit (i0 = 0, i1, . . . , in, in+1 = 0), a.k.a tour, in G that minimizes
∑n+1

t=1 l(it),

where the latency l(it) is defined as the accumulated travel time from the depot to it. The MLP

is related to the Time Dependent Traveling Salesman Problem (TDTSP), a generalization of the

Traveling Salesman Problem (TSP) in which the cost for traversing an arc depends on its position

in the tour. More precisely, MLP can be viewed as the particular case of the TDTSP where the

cost of an arc (i, j) in position p, 0 ≤ p ≤ n, is given by (n− p+ 1)tij .
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The MLP is also known in the literature as Delivery Man Problem (Roberti and Mingozzi,

2014), Traveling Repairman Problem (Afrati, Foto et al., 1986), Traveling Deliveryman Problem

(Tsitsiklis, 1992) and Traveling Salesman with Cumulative Costs (Bianco et al., 1993). Although

MLP seems to be a simple variant of TSP, some important characteristics are very different in

those problems. First, two different viewpoints of a distribution system are considered: TSP is

server oriented, since one wants to minimize the total travel time; on the other hand, MLP is

customer oriented because the objective is equivalent to minimizing the average waiting time of

customers (Silva et al., 2012; Sitters, 2002; Archer and Williamson, 2003). Customer satisfaction

is the main objective in many applications, such as home delivery services (Méndez-Dı́az et al.,

2008), and has attracted the attention of researchers, as reflected by the considerable number

of MLP variants studied in the very last years (see, for instance, (Lysgaard and Wøhlk, 2014;

Rivera et al., 2016; Nucamendi-Guillén et al., 2016; Sze et al., 2017)). Second, in contrast to what

happens in TSP, simple local changes may affect globally a MLP solution because the latency

of subsequent customers may change (Silva et al., 2012; Sitters, 2002). This can make it more

difficult to solve MLP both exactly and heuristically. For example, current state-of-the-art exact

methods for MLP are not capable of solving consistently instances with 150 customers, whereas

TSP instances with thousands of customers are solved routinely (Abeledo et al., 2013).

Many complexity results for MLP have been obtained. The problem is NP-Hard for general

metric spaces (Sahni and Gonzalez, 1976), and remains NP-Hard even if the times correspond to

euclidean distances (Afrati, Foto et al., 1986) or if they are obtained from an underlying graph

that is a tree Sitters (2002). On the other hand, the problem is polynomial if the underlying

graph is a path (Afrati, Foto et al., 1986; Garca et al., 2002), a tree with equal weights or a tree

with diameter at most 3 (Blum et al., 1994). The MLP with deadlines, i.e., with upper bounds on

l(it), is NP-Hard even for paths (Afrati, Foto et al., 1986). In terms of approximation, hardness

results show that one should not expect to attain arbitrarily good approximation factors for MLP

(Blum et al., 1994). However, 3.59 and 3.03 approximations are known for general metric spaces

and general trees, respectively (Chaudhuri et al., 2003; Archer and Blasiak, 2010). Moreover, a

constant factor approximation is not likely to exist if times do not satisfy the triangle inequality,

just as for TSP (Blum et al., 1994).

The first integer programming formulations were given in (Picard and Queyranne, 1978),

where the authors stated TDTSP as a machine scheduling problem and solved instances with

up to 20 jobs by means of a branch-and-bound method over lagrangian bounds. A new for-

mulation with n constraints was presented in (Fox et al., 1980), but the authors did not report

any computational results. Lucena (1990) and Bianco et al. (1993) followed the same approach

as Picard and Queyranne (1978) and employed langragian bounds in experiments over MLP in-

stances with up to 30 and 60 vertices, respectively. The latter authors also developed a dynamic

programming method capable of attesting that the bounds obtained for 60-vertex instances were

within 3% from optimality. Then, a series of enumerative strategies based on new formulations
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was introduced in (Fischetti et al., 1993; Van Eijl, 1995; Méndez-Dı́az et al., 2008; Bigras et al.,

2008; Godinho et al., 2014), as well as cutting planes (Van Eijl, 1995; Méndez-Dı́az et al., 2008;

Bigras et al., 2008) and polyhedral studies (Méndez-Dı́az et al., 2008). Instances with 60 vertices

could already be solved by the algorithm of Fischetti et al. (1993). More recently, Abeledo et al.

(2013) managed to solve almost all TSPLIB instances with up to 107 vertices using a branch-cut-

and-price algorithm. The authors departed from a formulation by Picard and Queyranne (1978)

and proposed new inequalities, that are proved to be facet-inducing. Roberti and Mingozzi (2014)

implemented dual ascent and column generation techniques to compute a sequence of lower bounds

associated with set partitioning formulations where a column represents a ng-path, which is a path

relaxation introduced by Baldacci et al. (2011). A ng-path may contain cycles, but just those al-

lowed by the so-called ng-sets. Such sets are iteratively augmented so that less cycles are allowed

and improved bounds are obtained. The final lower bound is used in a dynamic programming re-

cursion to compute the optimal solution. This method could solve some larger TSPLIB instances,

with up to 150 vertices, and currently holds the status of state-of-the-art exact method for MLP.

Finally, heuristic algorithms for MLP can be found in (Ngueveu et al., 2010; Salehipour et al.,

2011; Silva et al., 2012; Mladenović et al., 2013).

This paper presents a novel branch-and-price algorithm for MLP that strongly relies on ng-

paths. Following the directions of Roberti and Mingozzi (2014), our method works over a set

partitioning formulation where columns represent ng-paths and the column generation bounds

computed on each node of the tree are derived from dynamically defined ng-sets. However, we

introduce the following improvements on the use of ng-paths.

• Multiple Partial Label Dominance: In the labeling algorithms used for pricing ng-

paths, a partial path P is represented as a label L(P ). A key concept in this kind of

algorithm is of dominance. A label L(P1) dominates a label L(P2) if the cost of P1 is not

larger than the cost of P2 and every completion of P2 is also a feasible completion of P1. In

this case, L(P2) can be safely eliminated. In this paper, we propose a stronger dominance

rule by which some extensions for L(P2) can be avoided, even though this label can not be

completely disregarded according to the classical dominance rule. We briefly discuss two

alternative implementations of this new dominance rule, where the best one typically speeds

the labeling algorithm by factors between 4 and 8.

• Arc-Based ng-Path Relaxation: ng-sets as originally defined by Baldacci et al. (2011)

are a vertex-based memory mechanism. In this paper, we provide a generalized definition of

them in terms of arcs. We show that this new definition is particularly useful in the context

of dynamically defined ng-sets, allowing strong bounds to be obtained in more controlled

pricing times.

• Fully Dynamic ng-Path Relaxation: We improve the dynamic ng-path relaxation of

Roberti and Mingozzi (2014) by introducing a procedure for decreasing the ng-sets, without
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changing the current bounds. Such reductions are beneficial for the pricing time and also

help to refine the choice of ng-sets.

Also, other well-known elements of efficient exact algorithms for many other variants of the

vehicle routing problem (VRP) are incorporated into our method, namely reduced cost fixing, dual

stabilization, route enumeration and strong branching. Computational experiments over MLP

instances derived from TSPLIB were conducted to attest the effectiveness of the new branch-and-

price algorithm. The results show that better bounds can be obtained in less computational time

when compared to the state-of-the-art algorithm, specially because of the new features for the

ng-path relaxation. In particular, the branch-and-price solved all the 9 instances with up to 150

vertices not solved in Roberti and Mingozzi (2014). It could also solve 4 additional instances,

with more than 150 vertices, never considered before by exact methods.

The remainder of this paper is organized as follows. Section 2 discusses the ng-path relaxation

and labeling algorithms. Section 3 introduces the new features for the ng-path relaxation. The

proposed branch-and-price algorithm is described in Section 4, where we also give implementations

details. Computational experiments are presented in Section 5. Finally, concluding remarks are

drawn in the last section.

2. Route Relaxations and Labeling Algorithms

This section reviews the route relaxations and labeling algorithms that are related to current

state-of-the-art exact algorithms for VRPs, such as Capacitated VRP (CVRP), VRP with time

windows (VRPTW), and the MLP itself. Such algorithms are based on a combination of column

and cut generation over the following set-partitioning formulation.

min
∑

r∈Ω

crλr (1)

s.t.
∑

r∈Ω

airλr = 1, ∀i ∈ C, (2)

λr ∈ {0, 1}, ∀r ∈ Ω, (3)

where C, Ω, cr and air denote, respectively, the set of customers, the set of feasible routes, the

cost of route r, and the number of times route r visits customer i.

As the number of variables in Formulation (1)-(3) is exponential on |C|, column generation is

typically applied to solve its linear relaxation. The pricing subproblem depends on the considered

variant, but it can often be modeled as the Elementary Resource Constrained Shortest Path

Problem (ERCSPP). In ERCSPP, we are given a directed graph G′ = (V ′, A′) with vertex set V ′

and arc set A′; source and sink nodes s ∈ V ′ and t ∈ V ′, respectively; and a set of resources R.

Each arc (i, j) has an associated cost cij ∈ R and consumes a predefined amount wr
ij ∈ R>0 of

resource r, for each r ∈ R. Moreover, for each i ∈ V ′ and r ∈ R, let lri and uri be, respectively,
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the minimum and the maximum consumption of resource r in any partial path from s to i. The

task is to find the least-cost path from s to t satisfying the resource constraints and containing

no cycles. Note that, in order to satisfy minimum consumption, it is possible to “drop resources”

at no cost. See (Di Puglia Pugliese and Guerriero, 2012) for further details on ERCSPP.

From now on, for ease of presentation, we assume the case related to MLP, where a single

discrete resource is present. The consumption of this single resource by an arc (i, j) will be

denoted as wij ∈ Z>0 and the lower and upper bounds on its consumption when reaching vertex i

as li ∈ Z≥0 and ui ∈ Z≥0. In the graph G′ for MLP, nodes in {1, . . . , n} represent customers, while

source and sink nodes are associated with the depot. The single resource indicates the number

of arcs in a partial path, and hence wij = 1 for any arc (i, j) ∈ A′. Finally, (li, ui) = (1, n) for a

vertex i ∈ {1, . . . , n}; (ls, us) = (0, 0) and (lt, ut) = (n+ 1, n + 1).

ERCSPP is NP-Hard in the strong sense (Dror, 1994) and also a difficult problem to solve

in practice. The “offending” constraint is the one that imposes elementarity, since the Resource

Constrained Shortest Path Problem (RCSPP) can be solved in pseudo-polynomial time. RCSPP

is a relaxation of ERCSPP where a vertex can be visited more than once in an optimal path, as

long as the resource constraints are satisfied. In view of this, several state-of-the-art algorithms

employ some route relaxation as an alternative to elementary routes. The idea is to replace set Ω

by some set also containing non-elementary routes so as to make the pricing subproblem easier. An

ideal relaxation would provide the elementary route bound while keeping the pricing subproblem

tractable. It is worth mentioning that such a relaxation is kind of mandatory in problems where

the optimal solution has exactly one route (e.g., MLP), otherwise the pricing subproblem is as

hard as the original problem, rendering column generation meaningless.

The first route relaxation is just to allow any non-elementary route, as long as it satisfies the

resource constraints. As the elementarity is relaxed, the pricing corresponds to a RCSPP, which

can be solved in pseudo-polynomial time. It was already observed in Christofides et al. (1981)

that it is possible to eliminate routes with 2-cycles (subpaths like i → j → i) without increasing

the complexity. The bounds obtained with 2-cycle elimination may be good in some cases, but

are likely to be poor in other cases, specially in routing problems with many customers per route

(Martinelli et al., 2014). This motivated Irnich and Villeneuve (2006) to propose an algorithm

to forbid cycles of an arbitrary maximum size k. The pricing subproblem now is referred to as

RCSPP with k-cycle elimination. Theoretically, the proposed algorithm can be used for pricing

elementary routes, but only small values of k can be efficiently used in practice. This is because the

complexity of the algorithm grows by a factor of up to k2.k!. Nevertheless, k-cycle elimination for

small values of k proved to be useful at that time, improving column generation based algorithms

for several VRP variants. For example, the branch-cut-and-price for MLP in (Abeledo et al.,

2013) uses k = 5.

Later, Baldacci et al. (2011) introduced a new kind of elementarity relaxation, the so-called

ng-routes. Extensive experiments on several VRP variants show that ng-routes are almost al-
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ways more efficient than routes without k-cycles, in the sense of providing better bounds in

less computational time. In contrast to previous relaxations, cycles eliminated by ng-routes are

not distinguished by size. Instead, a cycle H = (i0, i1, . . . , ip = i0) is forbidden if all vertices

i1, . . . , ip−1 are able to “remember” vertex i0. Formally speaking, we define an ng-set Ni for each

vertex i. We assume that i ∈ Ni. Typically, Ni contains the vertices that are likely to appear

close to vertex i in low-cost paths, e.g., nearest customers in VRPs to take advantage of a locality

principle that is often present in those problems. In case j ∈ Ni, we say that i remembers j or

equivalently that j is remembered by i. Then, each path P = (s = i0, i1, . . . , ip) has an associated

set of forbidden extensions Π(P ) that is computed based on the ng-sets:

Π(P ) =
{

ik ∈ C(P ) \ {ip} : ik ∈

p
⋂

s=k+1

Nis

}

∪ {ip} (4)

where C(P ) is the set of vertices visited by P . In words, a vertex ik 6= ip belongs to Π(P ) if

it is remembered by all vertices is with k < s ≤ p. Therefore, path P is ng-feasible if ik /∈

Π(Pk−1 = (i0, i1, . . . , ik−1)), 1 ≤ k ≤ p. Alternatively, one can define the ng-path relaxation

in terms of the ng-memory Mi of a vertex i, which is the set of vertices that remember i, i.e.,

Mi = {j ∈ V : i ∈ Nj}. In this case, the set of forbidden extensions for path P is computed as

in Equation (5). Moreover, path P is ng-feasible iff between two visits to a vertex i, some vertex

j /∈ Mi is visited. In this paper, both concepts (ng-sets and ng-memories) are used. Clearly, the

greater the ng-memories, the closer to elementary are the ng-paths.

Π(P ) =
{

ik ∈ C(P ) \ {ip} : is ∈Mik , s = k + 1, . . . , p
}

∪ {ip} (5)

The RCSPP with ng-routes is commonly solved by means of a labeling algorithm. In this

kind of algorithm, a label L(P ) = (c(P ), w(P ), v(P ),Π(P )) represents a partial path P ending at

vertex v(P ) with cost c(P ), resource consumption w(P ) (we are assuming a single-resource), and

set Π(P ) of forbidden extensions. A single label representing the path defined only by the source

vertex s is present in the beginning, and new labels are generated by extending existing ones along

all possible arcs. In order to the algorithm to be correct, it is sufficient to process existing labels

in increasing order of resource consumption. Dominance rules are applied to eliminate labels not

leading to optimal paths, where a label L(P1) dominates a label L(P2) if the cost of P1 is less

than or equal to the cost of P2 and any feasible completion to P2 into a feasible s− t path is also

feasible to P1. The general scheme of labeling algorithms with ng-paths is shown in Algorithm 1,

where Lj and Uj denote, respectively, the set of processed and unprocessed labels that correspond

to paths ending at vertex j.

The feasibility test in Line 5 of Algorithm 1 takes into account the resource constraints and the

extensions forbidden by ng-sets. More precisely, the new path P+k is feasible if lk ≤ w(P )+wik ≤

uk and k /∈ Π(P ). Regarding the dominance checks performed in lines 7 and 10, the following
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Algorithm 1 General Labeling Algorithm with ng-paths

1: Initialize Lj and Uj as empty sets, for all j ∈ V
2: Add the initial label to Us

3: while
⋃

j∈V

Uj 6= ∅ do

4: Choose a label L(P ) ∈
⋃

j∈V

Uj with minimum resource consumption and let i = v(P )

5: for each (i, k) ∈ A such that P + k is feasible do
6: Define label L(P + k) = (c(P ) + cik, w(P ) + wik, k, (Π(P ) ∩Nk) ∪ {k})
7: if L(P + k) is dominated by any label in Lk ∪ Uk then
8: continue
9: else

10: Remove labels in Uk dominated by L(P + k)
11: Uk ← Uk ∪ {L(P + k)}
12: Ui ← Ui \ {L(P )}
13: Li ← Li ∪ {L(P )}
14: return best label in Lt

conditions are sufficient and necessary to verify that a label L(P ′) dominates a label L(P ).

(I) v(P ′) = v(P )

(II) c(P ′) ≤ c(P )

(III) w(P ′) ≤ w(P )

(IV) Π(P ′) ⊆ Π(P )

3. New Features for the ng-Path Relaxation

This section presents new contributions on the use of the ng-path relaxation. Such contribu-

tions are not built over any strong assumption regarding MLP and can be used in several other

problems.

3.1. Multiple Partial Label Dominance

We will now introduce a stronger dominance rule called multiple partial label dominance

(MPLD). Suppose that condition (IV) of the classical dominance rule discussed in Section 2

is the only one not satisfied by P and P ′. Therefore, label L(P ) is not dominated by label L(P ′)

because there exists a vertex i such that P + i is ng-feasible, whereas P ′ + i is not. While com-

pletely disregarding label L(P ) because of label L(P ′) is not correct, some extensions for the

former may be unnecessary. That is, label L(P ) may be partially dominated by label L(P ′).

Proposition 1. Let L(P ) and L(P ′) be two labels such that

• v(P ′) = v(P ) = i

• c(P ′) ≤ c(P )
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• w(P ′) ≤ w(P )

• Π(P ′) 6⊆ Π(P )

Then any extension to a vertex j /∈
⋃

k∈Π′ Mk can be safely disregarded for L(P ), where Π′ =

Π(P ′) \ Π(P ).

Proof. Let j be a vertex such that (i, j) ∈ A and j /∈
⋃

k∈Π′ Mk. Since we have assumed that

l ∈ Ml for every l ∈ V , we have that j /∈ Π′. Hence, if P + j is ng-feasible, so is P ′ + j and

clearly v(P ′ + j) = v(P + j), c(P ′ + j) ≤ c(P + j) and w(P ′ + j) ≤ w(P + j). Furthermore, as

j /∈
⋃

k∈Π′ Mk, any vertex k ∈ Π′ is forgotten by P ′+ j and P + j, and thus Π(P ′+ j) ⊆ Π(P + j).

Therefore, label L(P ′ + j) dominates label L(P + j).

In view of Proposition 1, a label L(P ) should also store a set ξ(P ) representing the extensions

that can be avoided because of partial dominance, which we call dominated extensions. Let L(P )

be the set of all labels L(P ′) that together with label L(P ) satisfy conditions (I), (II) and (III). By

applying the partial dominance from the multiple labels in L(P ), the resulting set of dominated

extensions for label L(P ) is:

ξ(P ) =
⋃

L(P ′)∈L(P )

{

j ∈ V : j /∈
⋃

k∈Π(P ′)
k/∈Π(P )

Mk

}

(6)

A small example of MPLD is presented in Figure 1. In this example, we have six nodes

(besides source and sink nodes) and all labels ending at vertex 1 are depicted in the figure. Sets

of dominated extensions for these labels are defined as ξ(P1) = ∅, ξ(P2) = V \ M2, ξ(P3) =

(V \M5) ∪ (V \ (M2 ∪M5)) and ξ(P4) = (V \M5) ∪ (V \M3). All extensions for label L(P4)

are either forbidden because of ng-sets or dominated because of labels L(P1), L(P2) and L(P3),

therefore L(P4) can be removed. This illustrates a situation where MPLD results in complete

dominance.

in
cr
ea
si
n
g
co
st

M1 = {1, 2, 3, 4, 5, 6}

M2 = {1, 2, 5}

M3 = {1, 3, 4}

M4 = {1, 2, 3, 4}

M5 = {1, 2, 5, 6}

M6 = {1, 6}

L(P4)

P4 = (s, 4, 2, 1) Π(P4) = {1, 2, 4} ξ(P4) = {2, 3, 4, 5, 6}

L(P3)

P3 = (s, 3, 4, 1) Π(P3) = {1, 3, 4} ξ(P3) = {3, 4}

L(P2)

P2 = (s, 5, 1) Π(P2) = {1, 5} ξ(P2) = {3, 4, 6}

L(P1)

P1 = (s, 2, 5, 1) Π(P1) = {1, 2, 5} ξ(P1) = {}

Figure 1: An example of MPLD. Left: ng-memories. Right: labels representing paths ending at
vertex 1, all of them with the same resource consumption.
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3.2. Arc-Based ng-Path Relaxation

The main idea exploited by the ng-path relaxation is that, in many problems, cycles are often

confined to small “neighborhoods” of the graph: once a new visit to a node i is performed by a

partial path P , any node j that is not a neighbor of i is forgotten. The set of nodes remembered

by P is computed as a function of ng-memories defined over the set of vertices V . In this section,

we show a generalized definition of the ng-path relaxation where ng-memories are defined in terms

of arcs instead of nodes. The inspiration for this new definition comes from the arc-based limited

memory technique developed by Pecin et al. (2017) in order to reduce the impact of the non-robust

Rank-1 Chvátal-Gomory cuts on the labeling algorithm.

We denote the arc-based ng-memory of vertex j as
→
M j , which is the set of arcs that remember

vertex j. Let P = (a0, a1, . . . , ap) be a partial path composed of arcs a0 = (s = i0, i1), a1 =

(i1, i2), . . . , ap = (ip, ip+1). Similarly to Equation (5), we now define the set of forbidden extensions

for path P as:

→
Π(P ) =

{

ik ∈ C(P ) \ {ip+1} : as ∈
→
M ik , s = k, . . . , p} ∪ {ip+1} (7)

Sets Π(P ) and
→
Π(P ) are equivalent if one defines

→
Mk = {(i, j) ∈ A : i ∈ Mk ∧ j ∈ Mk} for

every vertex k ∈ V . This generalized definition is particularly useful in the context of dynamically

defined ng-memories. In this setting, one wants to augment current ng-memories in order to

forbid a given cycle H = (a0 = (i0, i1), a1 = (i1, i2), . . . , ap = (ip, ip+1 = i0)). For doing so,

vertices i1, . . . , ip should be added to the vertex-based ng-memory Mi0 . However, this forbids not

only H, but any cycle H ′ = (i0, . . . , i0) passing through a subset of {i0, i1, . . . , ip}, which may

represent a considerable impact on the labeling algorithm. On the other hand, the impact of

adding a0, . . . , ap−1 to
→
M i0 is much less considerable since only cycles H ′ = (i0, . . . , iq, i0), with

q = 1, . . . , p, are forbidden — notice that it is not necessary to add (iq, i0) to
→
M i0 to forbid a cycle

H ′ = (i0, . . . , iq, i0) because i0 ∈
→
Π((i0, i1, . . . , iq)) if a0, . . . , aq−1 ∈

→
M i0 . We will show in our

computational experiments that this reduced impact is crucial for solving hard MLP instances.

Hereafter, the term ng-memory refers to arc-based ng-memory and we will explicitly indicate

if we refer to vertex-based ng-memory.

3.3. Fully Dynamic ng-Path Relaxation

Let us consider (arc-based) ng-memories
→
M and define Ω(

→
M) as the set of all feasible ng-

routes w.r.t
→
M. Notice that Ω ⊆ Ω(

→
M). As we have discussed before, the following relaxation

of formulation (1)-(3), hereafter denoted LP (
→
M), is the basis of several state-of-the-art column

generation based algorithms for vehicle routing problems.

LB(
→
M) = min

∑

r∈Ω(
→

M)

crλr (8)
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s.t.
∑

r∈Ω(
→

M)

airλr = 1, ∀i ∈ C, (9)

λr ≥ 0, ∀r ∈ Ω(
→
M). (10)

The quality of the bound LB(
→
M) depends on the ng-memories

→
M. Ideally, one should define

→
M so as to guarantee that LB(

→
M) corresponds to the bound attained if Ω(

→
M) is replaced by Ω

in the formulation, i.e., if only elementary routes are generated in the pricing subproblem. This

may require large ng-memories, and thus advanced techniques are needed for solving the pricing

subproblem in reasonable computational times. For example, Martinelli et al. (2014) described

an algorithm based on the decremental state-space relaxation (DSSR) technique suggested by

Righini and Salani (2008) where ng-memories are iteratively augmented while the best column

generated in the pricing subproblem is not ng-feasible w.r.t some large ng-memories.

Good bounds can also be obtained if ng-memories are very well chosen, but not necessarily

large. In this regard, Roberti and Mingozzi (2014) introduced the dynamic ng-path relaxation,

which is roughly a sequence of non-decreasing lower bounds LB(M1), LB(M2), . . . , LB(Mk)

associated with dynamically defined vertex-based ng-memories M1,M2, . . . ,Mk. Initial ng-

memories M1 correspond to the ∆1 nearest customers, and memories Mt+1 are computed by

extending memories Mt, t ∈ {1, . . . , k − 1}, in order to forbid the smallest cycle of the column

with the largest primal value in a near-optimal solution of the linear relaxation of LP (Mt). A

limit of ∆2 is imposed for the size of each ng-memory, and the method stops when no cycle can be

forbidden. The interested reader should consult (Roberti and Mingozzi, 2014) for further details.

In this section, we propose improvements to the dynamic ng-path, the main difference being the

possibility to also reduce the ng-memories. This reduction is carried out if the pricing subproblems

in the previous iteration of the method have been considered expensive. However, the role of this

reduction is not only to make the pricing subproblem easier, but also to allow one a better choice

of ng-memories. Finally, instead of forbidding cycles of a single column, we employ a potentially

more aggressive algorithm for augmenting the ng-memories. The fully dynamic ng-path relaxation

is outlined in Algorithm 2, and its main ingredients are described next.

Algorithm 3 presents the procedure adopted to augment ng-memories. Up to two phases are

executed for each ng-route R ∈ R: first, the procedure attempts to forbid all cycles H ∈ H(R)

with at most α vertices, where H(R) denotes the set of all cycles of R (Phase 1); if no cycle could

be forbidden in Phase 1, then all cycles H ∈ H(R) are considered, regardless of size, and R is

skipped after one cycle could be forbidden (Phase 2). We prioritize small cycles because they

require less augmentations to be forbidden and many of them are likely to appear repeatedly in

low-cost ng-routes. The ng-routes are sorted in a non-increasing order of primal value or non-

decreasing order of reduced cost, depending on where the procedure is called from (Algorithm 2

or Algorithm 4, respectively). The procedure stops if β ng-routes have been explicitly forbidden.

Notice that parameters α and β control the aggressiveness of the ng-memories augmentation. The
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Algorithm 2 Fully Dynamic ng-Path Relaxation

1: procedure fullyDynNgPath(
→
M, ∆max, αI , βI , αR, βR)

2: k ← 1,
→
M1 ←

→
M

3: repeat

4: Compute (λ̄k, π̄k), an optimal primal-dual solution pair of LP (
→
Mk)

5: if ng-memories reduction condition is satisfied then

6:
→
Mk ← reduceNGMemories(

→
Mk, π̄k, αR, βR)

7: Let R be the set of ng-routes associated with the primal solution λ̄k

8:
→
Mk+1 ← augmentNgMemories(R,

→
Mk, ∅, ∆

max, αI , βI , agressive)
9: until stop condition is met

other parameters of this procedure — namely A, ∆max and mode — will be explained later in

this section.

Quickly, some augmentations performed in previous iterations may become unnecessary

to guarantee the bound of the current iteration k. Therefore, we propose Algorithm 4 to

reduce ng-memories
→
Mk. This algorithm is based on the same DSSR technique suggested

by Righini and Salani (2008), and also implemented by Martinelli et al. (2014). A problem-

dependent condition (pricing time, number of non-dominated labels, etc.) is used to trigger

such reductions. Initially empty ng-memories are iteratively augmented in order to forbid the

columns with the best reduced costs w.r.t π̄k. Of course, those improvements are confined to
→
Mk

and new iterations are performed as long as the best column generated is not ng-feasible w.r.t
→
Mk. The algorithm ends up with a set of reduced ng-memories

→
M such that LB(

→
M) = LB(

→
Mk).

Even though the final ng-memories are not necessarily minimal, in practice we have observed that

Algorithm 4 often reduces significantly the size of the ng-memories.

Remark that we have adopted the same algorithm for augmenting ng-memories (i) in the main

loop of proposed relaxation, and (ii) inside the ng-memories reduction algorithm, but with different

parameters. In case (i), more aggressive augmentations are needed for the sake of convergence,

whereas in case (ii) moderate augmentations are performed in order to get smaller final ng-

memories. This is mainly controlled by parameter mode of procedure forbidCycle(·). Let us

consider cycle H = (a0 = (i0 = v, i1), a1 = (i1, i2), . . . , ap = (ip, ip+1 = v)). In moderate mode,

only the cycles H = (v, i1, . . . , ik, v), with k = 1, . . . , p, are explicitly forbidden, i.e., we add

arcs a0, . . . , ap−1 to
→
M v. On the other hand, in aggressive mode, any cycle starting and ending

at v and passing through a subset of {i1, . . . , ip} is explicitly forbidden, hence we add any arc

between nodes in {v, i1, . . . , ip} to
→
Mv (see Algorithm 6). We should also point out that even

though arc-based ng-memories are used, the complexity of the labeling algorithm is still somewhat

vertex-dependent. As usual, let δ−(j) denote the set of arcs entering vertex j and let γ(j) be the

number of ng-memories arcs δ−(j) belong to. The number of non-dominated labels representing

paths ending at a vertex j may be exponential on γ(j). Thus, procedure cycleCanBeForbidden(·),
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Algorithm 3 ng-Memories Augmentation Algorithm

1: procedure augmentNgMemories(R,
→
M, A, ∆max, α, β, mode)

2: input R: set of target ng-routes,
→
M: current ng-memories, A: set of forbidden augmen-

tations, ∆max: maximum value allowed for γ(·), α: maximum cycle size in Phase 1, β:
maximum number of ng-routes explicitly forbidden, mode: mode of augmentation.

3: output: new ng-memories
4:

5: FH ← ∅, FR ← ∅
6: for each R ∈ R do
7: phase← 1
8: for each H = (v, . . . , v) ∈ H(R) in non-decreasing order of size do
9: if |H| > α and phase = 1 then

10: if H(R) ∩ FH = ∅ then
11: phase← 2
12: else
13: break

14: if cycleCanBeForbidden(H,
→
M, ∆max, A) then

15:
→
M← forbidCycle(H,

→
M, mode)

16: FH ← FH ∪ {H}, FR ← FR ∪ {R}
17: if phase = 2 then
18: break
19: Stop if |FR| ≥ β

20: return
→
M

described in Algorithm 5, considers a maximum value ∆max allowed for γ(·). Additionally, it also

considers a set A of forbidden augmentations, which is used in the context of the ng-memories

reduction algorithm.

4. Branch-and-Price Algorithm

In this section, we describe the proposed branch-and-price algorithm (BP) for MLP. The

solution of a node in our algorithm, outlined in Algorithm 7, is an iterative approach based on

the fully dynamic ng-path relaxation described in Section 3.3. At each iteration k, we first solve

LP (
→
Mk) by means of a two-stage column generation. Of course, branching constraints may also

be present in this linear program. In Stage 1, dominance tests take into account only conditions

(I), (II) and (III), thus a single ng-path is kept for a given vertex i and resource consumption

w, which is the one with minimum reduced cost. This is a heuristic pricing intended to quickly

generate good ng-paths. When Stage 1 fails to find a ng-path with negative reduced cost, we switch

to Stage 2, where the exact pricing is solved. In both phases, the dual stabilization technique

of Pessoa et al. (2013) is applied for the sake of convergence. Stage 1 (2) is solved by a mono-

directional (bidirectional) labeling algorithm that returns at most 50 (300) ng-paths. Details on
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Algorithm 4 ng-Memories Reduction Algorithm

1: procedure reduceNGMemories(
→
M, π∗, α, β )

2: input:
→
M: current ng-memories, π∗: dual solution of LP (

→
M), and parameters to

augmentNgMemories(·)
3: output: new ng-memories
4:

5:
→
Mori ←

→
M,

→
M← ∅, ng-feasible ← false

6: while not ng-feasible do

7: R ← LabelingAlgorithm(
→
M, π∗)

8: if best route in R is ng-feasible w.r.t
→
Mori then

9: ng-feasible ← true
10: else

11: Define A as the set of augmentations that are not confined to
→
Mori

12:
→
M← augmentNgMemories(R,

→
M, A, ∞, α, β, moderate)

13: return
→
M

such algorithm will be given in Section 4.1.

If the node is the root, the first memories
→
M1 are equivalent to ng-sets of size 8 defined

according to the classical distance-based rule — time-based for the case of MLP. Otherwise, they

correspond to the final memories of the parent node, which are inherited by the child. In any node,

a hybrid strategy for augmenting ng-memories may be used. Initially, we set mode← agressive.

The method switches to moderate mode if the computational time of a single call to the labeling

algorithm exceeds a threshold value tred = 100 seconds. In this case, column generation is

interrupted and the ng-memories reduction algorithm (see Section 3.3) is called with αR = 5

and βR = 200; afterwards, the current iteration is restarted with the new augmentation mode.

Regardless of mode, we have adopted αI = 5, βI = 200 and ∆max = 63.

As we have already discussed, the pricing problem corresponds to finding a least-cost ng-path

in the resource constrained network G′ defined in Section 2. However, in practice, we work with

an extended network Gext = (V ext, Aext), where:

V ext = {(i, w) : i, w ∈ {1, . . . , n}} ∪ {(s, 0), (t, n + 1)}

Aext = {((i, w), (j, w + 1)) : (i, j) ∈ A, (i, w) ∈ V ext, (j, w + 1) ∈ V ext}

Network Gext is defined in such a way that resource constraints are naturally satisfied by any

ng-path. Once an optimal dual solution π̄k is available, a reduced cost fixing procedure is used to

remove from Aext the arcs that can not participate in a solution that improves the current upper

bound. For fixing an arc ((i, w), (j, w + 1)), one should prove that the minimum reduced cost

of a ng-path traversing this arc is above a given threshold. To compute this cost, the minimum

reduced cost of a partial path ending at (i, w) and of a partial path from (j, w+1) to the sink node
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Algorithm 5 Test for Cycle Elimination

1: procedure cycleCanBeForbidden(H,
→
M, A, ∆max)

2: input: H = (a0 = (v = i0, i1), a1 = (i1, i2), . . . , ap = (ip, ip+1 = v)): target cycle,
→
M:

current ng-memories, A: set of forbidden augmentations, ∆max: maximum value allowed
for γ(·).

3: output: a flag indicating whether H can be forbidden or not
4:

5: for q = 0 to p− 1 do

6: if aq /∈
→
Mv then

7: γ(iq+1)← |{j ∈ V \ {v} : δ−(iq+1) ∩
→
M j 6= ∅}|

8: if γ(iq+1) ≥ ∆max or (
→
Mv, aq) ∈ A then

9: return false
10: return true

Algorithm 6 Cycle Elimination

1: procedure forbidCycle(H,
→
M, mode)

2: input: H = (a0 = (v = i0, i1), a1 = (i1, i2), . . . , ap = (ip, ip+1 = v)): target cycle,
→
M:

current ng-memories, mode: mode of augmentation.
3:

4: for q = 0 to p− 1 do
5: if mode = moderate then

6:
→
Mv ←

→
Mv ∪ {(iq, iq+1)}

7: else
8: for t = q + 1 to p do

9:
→
Mv ←

→
Mv ∪ {(iq, it), (it, iq)}

are computed by a forward and a backward labeling algorithms, respectively. Such a procedure is

well-known in the literature and have been applied in many routing problems (see, for instance,

(Roberti and Mingozzi, 2014; Pecin et al., 2016)). Dual solution π̄k is also used in an enumerative

procedure that tries to finish the node. As implemented by Roberti and Mingozzi (2014), the

enumeration is performed by a mono-directional labeling that computes only elementary paths,

using completion bounds associated with ng-paths to prune unpromising partial paths. However,

we abort the enumeration if the number of non-dominated labels is greater than 10 millions. If

enumeration finishes, either a single path representing the best integer solution for the node is

returned, or all labels are dominated, meaning that this solution does not improve the current

upper bound.

Besides the obvious stop conditions (node is solved or pruned), Algorithm 7 stops if:

• Stop condition I: Labeling algorithm time has exceeded the threshold value tred twice.

• Stop condition II: No column could be forbidden by augmentNgMemories(·) because of
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Algorithm 7 Solution of a node

1: procedure solveNode(
→
M, B)

2: k ← 1,
→
M1 ←

→
M

3: mode← agressive

4: repeat

5: Compute (λ̄k, π̄k), an optimal primal-dual solution pair of LP (
→
Mk) + branching con-

straints B
6: if ng-memories reduction condition is satisfied then

7:
→
Mk ← reduceNGMemories(

→
Mk, π̄k, 5, 200)

8: mode← moderate

9: continue
10: Apply reduced cost fixing
11: Try to finish the node by enumeration
12: Let R be the set of ng-routes associated with the primal solution λ̄k

13:
→
Mk+1 ← augmentNgMemories(R,

→
Mk, ∅, 63, 5, 200, mode)

14: k ← k + 1
15: until stop condition is met

∆max.

• Stop condition III: For 5 times, the gap of the current iteration is less than 2% smaller

than the one of the previous iteration.

We branch on an edge {i, j} defined by a 3-phase strong branching mechanism in the spirit

of the works of Røpke (2012) and Pecin et al. (2016). Hence, vertices i and j must appear

consecutively (either i → j or j → i) in the solution of one child and must not be consecutive

in the solution of the other child. In Phase 0, we define min{100, TS(v)} candidate edges, where

TS(v) is an estimation for the size of the tree rooted at node v. Such estimation takes into account

the average bound improvement in the branch history, following the model of Kullmann (2009).

TS(v) = ∞ if v is the root node. First, we select up to half of the edges from a pool containing

the candidates evaluated in previous executions of Phase 2 in the whole branch history. The other

candidates are the edges whose values are the closest to 0.5 in the current fractional solution. For

each candidate selected in Phase 0, we perform a rough evaluation of both children by solving

the master LP of node v with the corresponding branching constraint, but without any column

generation. This is Phase 1, where the best min{5, TS(v)/10} candidates are selected, according

to the product rule of (Achterberg, 2007), to go to the last phase. Phase 2 uses the same approach

as for Phase 1, but heuristic column generation (Stage 1) is applied when evaluating the children.

The selected edge is the one with the best score in Phase 2, also according to the product rule.

We now provide more information on the implementations of the labeling algorithm and of

MPLD.
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4.1. Labeling Algorithm

Following many related works in the literature — for instance, (Martinelli et al., 2014) and

(Pecin et al., 2016) — we have adopted the concept of bucket in our implementation of the general

method described in Algorithm 1. A forward bucket
→
B(j, w) is data structure that stores all non-

dominated labels associated with forward s − j paths with resource consumption w. Therefore,

for each vertex j we define buckets
→
B(j, w), ∀w ∈ {lj , . . . , uj}. To accelerate the algorithm, labels

in a bucket are kept sorted by non-decreasing order of cost and dominance checks are performed

only between labels of the same bucket, just as implemented by Pecin et al. (2016). Buckets are

considered by the algorithm in a non-decreasing order of resource consumption. When a bucket
→
B(j, w) is reached, we extend all labels in

→
B(j, w) over all arcs (j, k) ∈ A. At the end, the optimal

s− t paths will be stored in the buckets associated with the sink node t.

The algorithm outlined above is called mono-directional since all labels kept correspond to

partial paths from the source node to some node j and arcs are traversed in their regular directions.

However, in our implementation we have used a bidirectional labeling algorithm, which generates

more diversified set of s− t paths and is typically faster than its mono-directional counterpart. A

backward path corresponds to a partial path from the sink to some node j obtained by traversing

arcs in their reverse directions. Labels corresponding to such paths are stored in backward buckets
←−
B (j, w). In the forward (backward) labeling algorithm, one computes non-dominated labels for

buckets
→
B(j, w) (

←−
B (j, w)) such that w ≤ w∗ (w ≥ w∗), where w∗ is a threshold value that ideally

should be defined so as to balance the computational effort of the forward and the backward

labeling algorithms. Then, a concatenation procedure is execute to build complete s − t paths

from the partial forward and backward paths. The reader is referred to (Righini and Salani, 2006)

for further references on bidirectional labeling.

4.2. Multiple Partial Label Dominance

Let us consider again labels L(P ′) and L(P ) such that conditions stated in Proposition 1

are satisfied, and define Π′ = Π(P ′) \ Π(P ). As we have discussed, the extensions to vertices

j ∈ V \
⋃

k∈Π′ Mk can be avoided for label L(P ). For example, in Figure 1, one can verify that

any extension to vertices j /∈M3 can be avoided for label L(P4) because of label L(P3), and thus

set ξ(P4) is increased as ξ(P4)← ξ(P4) ∪ {2, 5, 6}. Such an operation is performed several times

during the course of the labeling algorithm and an efficient implementation is required, otherwise

the gains incurred by MPLD will not pay off. In what follows, we will describe two approaches

that we have tried to take advantage of this new dominance rule.

4.2.1. Explicit Representation of ξ(·)

We first tried an explicit representation of sets ξ(·) inside each label L.

• Bitmap representation: Sets ξ(·) are represented as bitmaps implemented over 64-bit

integers. For each vertex i ∈ V , MPLD can avoid the extension of labels L(P ) ∈ Ui only
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over a set Ei of at most 63 arcs. This set is composed of arcs (i, j) ∈ A with the smallest

costs, and the 64th bit of the bitmaps are always set to zero to indicate that arcs (i, j) /∈ Ei

are not handled by MPLD. In practice, 63 is a reasonable number of arcs tracked and allows

very quick operations since a single 64-bit integer is needed to represent a bitmap. The

bit corresponding to arc (i, j) is checked in constant time through bitwise operations before

extending labels L(P ) ∈ Ui over (i, j).

• Precomputed union of memories: The number of different possible sets Π(P ) for a path

P ending at vertex i is 2|Ni|. Thus, for two labels L(P1) and L(P2) such that v(P1) = v(P2) =

i, the number of different possible sets Π′ = Π(P1)\Π(P2) is also 2|Ni|. For reasonable values

of |Ni|, it is practical to precompute sets V \
⋃

k∈Π′ Mk for every possible Π′. In fact, we

have observed that gains of MPLD are diminished if these sets are not precomputed. When

testing the dominance of label L(P2) by label L(P1), a bitmap representing V \
⋃

k∈Π′ Mk

is retrieved and used to update ξ(P2) in constant time through bitwise operations. Notice

that in our implementation such dominance checks are performed within a same bucket.

Computational experiments showed that the computational time speed-up incurred by this

approach is not significant. The main limitation is that one needs to restrict the cardinality of

sets ξ(·) to at most 63 in order to quickly manipulate the bitmaps representing them. In this

case, MPLD is not completely explored. Moreover, we have adopted a distance-based criterion

to decide the 63 extensions tracked, which may be a very crude criterion in some cases. For

example, an extension over a long arc (i.e., an arc connecting two customers that are far away

from each other) will probably generate a label L(P ) with a large cost, but with few customers in

set Π(P ). This latter attribute makes very hard to dominate label L(P ), increasing the number

of dominance checks in the destination bucket. A dynamic definition of tracked extensions would

probably improve results, but the following approach is simpler and mitigates all aforementioned

problems.

4.2.2. Implicit Representation of ξ(·)

Recall that, in our implementation of the labeling algorithm, buckets are considered in a

predefined order and labels of a same bucket are extended in a non-decreasing order of cost.

Moreover, we extend all labels of a bucket over an arc, then over another arc and so on. Let

us consider a (forward or backward) bucket B(i, w) and an arc (i, j). Suppose that a label

L(P ′) ∈ B(i, w) has already been extended to a label L(P ′ + j). Now let L(P ) ∈ B(i, w) be a

label that has not yet been extended over (i, j) such that Π(P ′ + j) ⊆ Π(P + j). Since its cost

is larger, L(P + j) will be dominated by label L(P ′ + j) and thus one can avoid the extension of

L(P ) over (i, j) — this is just an example of MPLD. In general, for each bucket B(i, w) and arc

(i, j), we keep a list of bitmaps representing sets Π(·) of already extended labels. Then, before

extending a label L(P ) ∈ B(i, w) over (i, j), we first compute Π(P +j) and check if it is a superset

of some Π(P ′ + j) contained in the list. If so, the extension is not necessary and we proceed to
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the next label, otherwise we complete the extension of the label and update the list. Of course,

if Π(P + j) = {j}, then we can stop extending labels in B(i, w) over (i, j). Furthermore, there

is no need to keep the list after considering the extension of all labels in B(i, w) over (i, j). This

approach better explores the potential of MPLD and typically yields a significant speed up in the

pricing time, as will be seen in next section.

5. Computational Experiments

This section reports our computational experiments over 40 TSPLIB instances with up to

200 vertices. The proposed BP algorithm was implemented in C++ over the BaPCod platform

of (Vanderbeck et al., 2017). The LP solver adopted is IBM CPLEX Optimizer version 12.6.0.

All experiments were conducted on an Intel Xeon E5-2680 v3, running at 2.5 GHz with a single

thread. We will compare our results to those obtained by the algorithm of Roberti and Mingozzi

(2014) on an Intel Xeon X7350, running at 2.93 GHz. According to the CPU benchmark website

www.cpuboss.com, the single thread performance of our CPU is about 1.5 times better than the

one of Roberti and Mingozzi (2014). Therefore, our computational times are increased by this

factor in Table 1.

5.1. Main Results

Table 1 presents the main results of the proposed BP and the results of Roberti and Mingozzi

(2014) over instances with up to 152 vertices. In this case, we set a time limit of 2 days for BP.

For what concerns the results of Roberti and Mingozzi (2014), we report the following data: lb,

the final lower bound; tlb, the computational time to obtain such lower bound; ttot, the total

computational time; and gap, the percentage gap before applying enumeration. A symbol “-”

in column ttot indicates that enumeration failed to find the optimal solution. The results of the

proposed method are divided into root node and complete BP. For the root node, we report

the first and last lower bounds obtained, lb0 and lbk, where k is the number of ng-memories

augmentations performed. Further, we present the average and maximum values of γ(·) and the

time spent at the root node. We also indicate if the method has switched to moderate mode in

the root node. For the complete BP, we report the final bounds and gap, the total computational

time and the number of nodes solved. All computational times in Table 1 are given in seconds.

We can observe in Table 1 that the proposed BP outperforms the method of

Roberti and Mingozzi (2014) in most instances. In particular, 6 instances were solved for the

first time and the BKS for instance kroA150 was improved from 1831766 to the optimal value

1825769. The main advantage of our method is the possibility of dealing with larger ng-memories

without combinatorial explosion. For example, for the 6 instances solved only by BP, the maxi-

mum values of γ(·) are greater than 30, reaching 62 in eil101. This is possible only because of the

proposed generalized definition of ng-sets in terms of arcs. Moreover, our computational experi-

ence shows that the hybridization of agressive and moderate modes is crucial for the robustness
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Table 1: Results of BP over TSPLIB instances used by Roberti and Mingozzi (2014). Computational times are normalized according
to the CPU benchmark website www.cpuboss.com.

Roberti and Mingozzi (2014) Proposed Method

Root Node B&P

switched Max. Avg.
Instance z∗

lit
lb tlb ttot gap lb0 lbk k mode γ(·) γ(·) troot lb ub gap nodes ttot

dantzig42 12528 12528 5 5 0.00 12528 12528 0 no 8 8.0 4.7 12528 12528 0.00 1 4.7

swiss42 22327 22327 3 3 0.00 22327 22327 0 no 8 8.0 2.1 22327 22327 0.00 1 2.1

att48 209320 209320 7 7 0.00 209320 209320 0 no 8 8.0 8.5 209320 209320 0.00 1 8.5

gr48 102378 102378 15 15 0.00 102378 102378 0 no 8 8.0 7.2 102378 102378 0.00 1 7.2

hk48 247926 247926 19 19 0.00 247926 247926 0 no 8 8.0 10.1 247926 247926 0.00 1 10.1

eil51 10178 10178 10 10 0.00 10178 10178 0 no 8 8.0 6.5 10178 10178 0.00 1 6.5

berlin52 143721 143721 10 10 0.00 143721 143721 0 no 8 8.0 10.1 143721 143721 0.00 1 10.1

brazil58 512361 512361 36 36 0.00 512361 512361 0 no 8 8.0 17.7 512361 512361 0.00 1 17.7

st70 20557 20557 61 61 0.00 20557 20557 0 no 8 8.0 24.0 20557 20557 0.00 1 24.0

eil76 17976 17976 91 91 0.00 17976 17976 0 no 8 8.0 26.6 17976 17976 0.00 1 26.6

pr76 3455242 3423016 169 223 0.93 3375941 3455242 2 no 11 8.6 169.1 3455242 3455242 0.00 1 169.3

gr96 2097170 2087792 365 369 0.45 2061228 2097170 2 no 11 8.7 215.3 2097170 2097170 0.00 1 215.3

rat99 57986 57541 540 - 0.77 57064 57623 17 yes 38 25.7 1467.9 57986 57986 0.00 3 3180.4

kroA100 983128 980428 679 688 0.27 968668 983128 3 no 15 10.3 337.2 983128 983128 0.00 1 337.2

kroB100 986008 986008 197 197 0.00 986008 986008 0 no 8 8.0 75.2 986008 986008 0.00 1 75.2

kroC100 961324 957564 409 428 0.39 939298 961324 5 no 22 14.7 815.7 961324 961324 0.00 1 815.9

kroD100 976965 972814 708 729 0.42 957467 976965 2 no 13 9.2 290.0 976965 976965 0.00 1 290.0

kroE100 971266 971266 266 266 0.00 971266 971266 0 no 8 8.0 87.7 971266 971266 0.00 1 87.7

rd100 340047 339919 317 317 0.04 337230 340047 1 no 10 8.2 213.1 340047 340047 0.00 1 213.3

eil101 27513 27235 630 - 1.01 26892 27319 17 yes 62 35.1 4943.9 27513 27513 0.00 3 6238.9

lin105 603910 603910 154 154 0.00 603910 603910 0 no 8 8.0 85.5 603910 603910 0.00 1 85.5

pr107 2026626 2026626 246 246 0.00 2007255 2026626 2 no 12 9.1 470.9 2026626 2026626 0.00 1 470.9

gr120 363454 360460 4685 - 0.82 353054 359970 18 yes 41 25.2 10532.0 363454 363454 0.00 11 79351.6

pr124 3154346 3154346 14080 14080 0.00 3001043 3154346 21 yes 31 20.2 58283.6 3154346 3154346 0.00 1 58283.6

bier127 4545005 4545005 723 723 0.00 4513768 4545005 1 no 12 8.3 307.7 4545005 4545005 0.00 1 307.7

ch130 349874 348015 2385 - 0.53 341809 348013 16 yes 43 25.7 3767.8 349874 349874 0.00 3 7810.0

pr136 6199268 6160253 17190 - 0.63 5908131 6155720 23 yes 31 22.7 15845.4 6175226 6199268 0.39 7 259200.0

gr137 4061498 4025358 7844 - 0.89 3952022 4017150 15 yes 33 19.8 12140.2 4061498 4061498 0.00 15 65614.2

pr144 3846137 3841847 8043 8061 0.11 3671878 3846137 4 no 13 9.9 6101.5 3846137 3846137 0.00 1 6101.6

ch150 444424 444118 2585 2588 0.07 438450 444424 6 no 22 12.6 1742.6 444424 444424 0.00 1 1743.0

kroA150 1831766 1818024 5187 - 0.75 1794351 1813870 13 yes 33 17.4 7250.5 1825769 1825769 0.00 15 93566.8

kroB150 1793204 1775914 20120 - 0.96 1720498 1752709 17 yes 42 24.7 12265.3 1766343 1793204 1.52 19 259200.0

pr152 5064566 4931382 31218 - 2.63 4803249 4984428 15 yes 18 13.2 127472.1 4988337 5064566 1.53 3 259200.0
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of proposed method. Even though some instances are better solved if only slower arc-based ng-

memories augmentations are performed (e.g. eil101 and gr120), others instances, such as pr124,

could not be solved without agressive mode. Instances pr136, pr152 and kroB150 could not

be solved, but we remark that “pr” instances have a special structure with a lot of symmetry

(see Figure 2). However, we will show in the next section that a specific parameterization of our

method is capable of solving those 3 instances.
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Figure 2: Optimal solution of pr136.

Table 2 shows the results of BP over large TSPLIB instances with up to 200 vertices. To our

knowledge, this is the first time that such large instances are considered by an exact method for

MLP. The upper bounds were computed by the method of Silva et al. (2012). Instances u159,

si175, brg180 and rat195 were solved in reasonable computational times and small BP trees, but

BP finished with considerable gaps for the other instances. For rat195, BP found an optimal

solution with cost 218632, an improvement of 43 units over the heuristic solution found by the

method of Silva et al. (2012). In spite of the new contributions presented in this paper, MLP

instances with about 200 vertices still seem to be very challenging.

5.2. Longer runs with moderate mode

Here we show that our method can solve some more hard instances by using a different

parameterization. The idea of this parameterization is to augment ng-memories very slowly and

over a large number of iterations. More precisely, we adopt moderate mode in all iterations of

Algorithm 7, set a time limit of 5 days for BP and change stop conditions I and III as below.
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Table 2: Results of BP over large TSPLIB instances

Root Node B&P

switched Max. Avg.
Instance z∗

lit
lb0 lbk k mode γ(·) γ(·) troot lb ub gap nodes ttot

u159 2972030 2892904 2960764 25 yes 43 26.65 19881.7 2972030 2972030 0.00 3 21437.5

si175 1808532 1801860 1808195 20 yes 38 22.04 22874.3 1808532 1808532 0.00 3 24004.1

brg180 174750 164672 174750 8 no 18 13.42 3353.6 174750 174750 0.00 1 3353.7

rat195 218675 216725 217830 13 yes 50 25.50 3529.6 218632 218632 0.00 11 55814.8

d198 1186049 1128131 1144047 12 yes 23 10.97 30457.7 1147364 1186050 3.37 7 172800.0

kroA200 2672437 2600209 2631523 15 yes 45 24.39 20536.9 2637610 2672438 1.32 17 172800.0

kroB200 2669515 2580374 2636041 15 yes 30 15.08 13809.2 2643616 2669516 0.98 13 172800.0

Table 3: Results of BP over hard instances with a different parameterization

Root Node B&P

Max. Avg.
Instance z∗

lit
lb0 lbk k γ(·) γ(·) troot lb ub gap nodes ttot

pr136 6199268 5908131 6182837 125 52 37.43 45071.2 6199268 6199268 0.00 15 187356.3

kroB150 1793204 1720498 1760182 103 63 44.98 13371.8 1786546 1786546 0.00 23 293479.1

pr152 5064566 4803249 4980497 110 26 17.22 38839.8 5064566 5064566 0.00 3 281061.9

d198 1186049 1128131 1145300 101 31 17.68 27433.4 1152702 1186050 2.89 17 432000.0

kroA200 2672437 2600209 2639043 100 63 48.40 32154.6 2651933 2672438 0.77 18 432000.0

kroB200 2669515 2580374 2646679 115 63 39.91 61444.4 2653034 2669516 0.62 15 432000.0

• Stop condition I: Labeling algorithm time has exceeded the threshold value tred = 150.

• Stop condition III: For 100 times, the gap of the current iteration is less than 2% smaller

than the one of the previous iteration.

Table 3 shows the results obtained. For the first time, instances pr136, pr152 and

kroB150 were solved to optimality. Therefore, we solved all instances that were not solved by

Roberti and Mingozzi (2014). Furthermore, the BKS for kroB150 was improved from 1793204

to the optimal value 1786546, an improvement of 0.03%. Still, we should point out that such a

parameterization is useful only for hard instances. In general, BP has a worse performance if a

weaker tailing off condition is used.

5.3. Multiple Partial Label Dominance

Table 4 shows the performance of the labeling algorithm with and without MPLD. The average

results presented in that table concern the exact calls to the labeling algorithm in the first descent

of column generation with ng-sets of a given fixed size in {8, 12, 16}. A representative subset of

the instances was used. With ng-sets of size 16, instances pr124, pr144 and pr152 exceeded a time

limit set for this experiment, thus no results are reported in those cases. It can be seen in Table

4 that the new dominance rule has a significant impact on the labeling algorithm. The average

number of extensions decreased by an order of magnitude for any tested instance. This allowed

the algorithm to achieve remarkable average speedups of 4.37, 6.01 and 7.28 in computational
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time for ng-sets of sizes 8, 12 and 16, respectively. Of course, with good lower and upper bounds

and some rounds of reduced cost fixing, the pricing networks gets sparser and those speedups are

smaller, but still considerable. Surprisingly, for most instances, the percentage of non-dominated

labels that are never extended — column MPLD (%) — is significantly large. This means that

not rarely a label is completely dominated by a set of two or more labels, but not by a single label

as required by the classical dominance rule.

Table 4: Performance of the labeling algorithm with/without multiple partial label dominance

Avg. time (s) Avg. number of extensions MPLD

Instance |Ni| without with factor without (×106) with (×106) factor (%)

gr120 8 1.16 0.33 3.51 17.90 1.97 9.08 24.54

pr124 8 1.83 0.48 3.82 30.38 2.60 11.68 7.76

bier127 8 1.78 0.42 4.23 28.37 2.56 11.07 11.56

ch130 8 1.78 0.42 4.25 27.06 2.58 10.47 16.83

pr136 8 2.35 0.55 4.26 36.67 3.08 11.89 19.58

gr137 8 1.63 0.46 3.53 28.54 2.99 9.55 17.73

pr144 8 8.51 1.28 6.64 108.24 5.38 20.11 2.01

ch150 8 2.26 0.61 3.71 36.25 3.75 9.66 24.69

kroA150 8 2.74 0.69 3.98 42.51 3.90 10.89 18.29

kroB150 8 2.96 0.73 4.07 44.23 3.97 11.14 17.64

pr152 8 7.77 1.27 6.11 108.04 5.87 18.41 5.08

Average for ng 8 4.37 12.18 15.06

gr120 12 4.74 0.82 5.76 53.77 2.98 18.04 19.40

pr124 12 38.77 15.66 2.48 203.96 9.73 20.96 4.03

bier127 12 8.40 1.46 5.77 85.20 4.24 20.09 11.58

ch130 12 7.60 1.14 6.68 81.84 3.98 20.58 16.33

pr136 12 11.40 1.80 6.32 120.52 5.44 22.17 13.50

gr137 12 7.87 1.41 5.59 95.40 4.93 19.33 13.96

pr144 12 174.41 33.38 5.23 555.34 19.80 28.05 1.62

ch150 12 8.55 1.27 6.72 102.46 5.09 20.11 22.03

kroA150 12 12.12 1.62 7.48 129.82 5.82 22.32 16.56

kroB150 12 14.06 2.04 6.90 140.31 6.37 22.02 15.14

pr152 12 212.33 29.70 7.15 731.47 23.54 31.08 2.28

Average for ng 12 6.01 22.25 12.40

gr120 16 28.68 5.21 5.50 158.58 6.84 23.18 12.30

pr124 16 - - - - - - -

bier127 16 57.66 8.99 6.42 256.19 9.41 27.22 9.46

ch130 16 35.69 4.35 8.21 210.17 7.62 27.58 13.70

pr136 16 65.27 8.96 7.29 334.53 13.12 25.51 10.41

gr137 16 48.09 8.84 5.44 286.45 11.56 24.78 10.08

pr144 16 - - - - - - -

ch150 16 40.89 5.12 7.98 279.85 9.47 29.55 16.99

kroA150 16 66.00 6.69 9.86 360.41 11.21 32.16 13.62

kroB150 16 89.06 11.86 7.51 409.30 13.98 29.28 12.40

pr152 16 - - - - - - -

Average for ng 16 7.28 27.41 12.37

6. Conclusions

This paper dealt with the Minimum Latency Problem (MLP), a variant of the Traveling

Salesman Problem (TSP) where the objective is to minimize the sum of waiting times of customers.
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A branch-and-price (BP) algorithm over a set partitioning formulation was introduced, where

columns are ng-paths. As implemented by Roberti and Mingozzi (2014), our algorithm is based

on dynamically defined ng-memories. The proposed BP benefits from well-known elements of

efficient exact method for routing problems, such as dual stabilization, reduced cost fixing, route

enumeration and strong branching.

Although those elements are very important for the good performance of BP, the main sources

of efficiency of our method are the new features for the ng-path relaxation. For example, the new

dominance rules typically speeds the labeling algorithm by factors between 4 and 8. Furthermore,

the proposed generalized definition of ng-sets in terms of arcs opened the way for less harm-

ful augmentations of ng-memories, in contrast to the vertex-based augmentations introduced by

Roberti and Mingozzi (2014). Nevertheless, our experiments showed that the best strategy for

augmenting ng-memories is instance-dependent: some of them are better solved with arc-based

augmentations, others with vertex-based augmentations. For example, pr124 could not be solved

in 2 days using only arc-based augmentations, while pr136, pr144 and p152 were solved for the

first time mainly because of them. Hence, for the sake of robustness, the solution of a node in our

BP starts with vertex-based augmentations, switching to arc-based ones if the computational time

of the labeling algorithm is too large. The proposed ng-memories reduction algorithm is crucial

in this transition, reverting previous augmentations that are not needed to attain the current

bound. We should mention that we did try to use this reduction of ng-memory more frequently,

but it is time-consuming for large instances and affects the convergence of Algorithm 7. Still, we

believe that the combination of augmentations and reductions of ng-memories deserves further

investigation.

All the 9 instances not solved by Roberti and Mingozzi (2014) were solved. Also, BP could

solve the larger instances u159, si175, br180 and rat195, but could not solve d198, kroA200 and

kroB200. In general, MLP instances with about 150 vertices (or more) are still very challenging.
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