
MISTA 2017

On the exact solution of a large class of parallel machine
scheduling problems

Teobaldo Bulhões · Ruslan Sadykov ·
Eduardo Uchoa · Anand Subramanian

1 Introduction

We consider the problem of scheduling a set of jobs J (n = |J |) on a set of machines

of different types k ∈ M (m = |M |) without preemption. A job j is not allowed to

be processed before its release date rj , and its processing time on a machine of type

k ∈ M is denoted as pkj . Also, skij denotes the setup time required to process job j

immediately after job i on a machine of type k. Each job j is associated to a cost

function fj(Cj) defined over its completion time Cj . The objective function is to min-

imize
∑
j∈J fj(Cj). This function is very general and can model many criteria. For

example, suppose each job has an earliness Ej = max{dj − Cj , 0} and a tardiness

Tj = max{Cj − dj , 0} that is computed based on its due date dj . A classical objective

is to minimize the total weighted earliness and tardiness given by
∑
j∈J (w′jEj+wjTj),

where w′j and wj are penalty coefficients associated with job j. Remark that cost func-

tions that include earliness penalties are not regular and may have optimal solutions

that include idle times between jobs. In this work we present a novel exact algorithm

that is capable of solving problem R|rj , skij |
∑
fj(Cj) and the large class of problems

that can be derived as particular cases from it. The proposed algorithm consists of a

branch-cut-and-price approach that combines several features such as non-robust cuts,

strong branching, reduced cost fixing and dual stabilization. To our knowledge, this is

the first exact algorithm for unrelated machines with earliness and/or tardiness that

can solve consistently instances with more than 20 jobs. We report improved bounds

for instances of problems R|rj , skij |
∑
w′jEj + wjTj and R||

∑
w′jEj + wjTj with up

to 80 and 120 jobs, respectively.

Teobaldo Bulhões, Eduardo Uchoa
Universidade Federal Fluminense, Niterói, Brazil
E-mail: tbulhoes@ic.uff.br, uchoa@producao.uff.br

Ruslan Sadykov
Inria Bordeaux - Sud Ouest, France
E-mail: Ruslan.Sadykov@inria.fr

Anand Subramanian
Departamento de Sistemas de Computação, UFPB, João Pessoa, Brazil
E-mail: anand@ci.ufpb.br

2 Mathematical formulation

We start by defining some notation required to introduce the mathematical formulation.

Let T be an upper bound on the maximum completion time of a job in some optimal

solution. Let Nk = (Vk = Rk ∪ Ok, Ak = A1
k ∪ A

2
k ∪ A

3
k ∪ A

4
k) be the acyclic graph

associated with each machine type k ∈ M , where set Rk = {(j, t, k) : j ∈ J, t =

rj +pj , . . . , T} contains the vertices associated with the jobs. We adopt the convention

that idle times only occur after the job has been processed. We assume that job j has

been processed when arriving at vertex (j, t, k), but note that j did not necessarily

finished at time t because of the existence of idle times. Set Ok = {(0, t, k) : t =

0, . . . , T} contains the vertices associated with a dummy job 0. For brevity, we denote

arc ((i, t, k), (j, t + skij + pkj , k)) as (i, j, t, k). Set A1
k = {(i, j, t, k) = ((i, t, k), (j, t +

skij + pkj , k)) : (i, t, k) ∈ Rk, (j, t + skij + pkj , k) ∈ Rk, j ∈ J \ {i}} contains the arcs

connecting the vertices of Rk. Set A2
k = {(0, j, t, k) = ((0, t, k), (j, t + sk0j + pkj , k)) :

(j, t+sk0j +pkj , k) ∈ Rk, j ∈ J} contains all arcs connecting the vertices from Ok to Rk.

Set A3
k = {(j, 0, t, k) = ((j, t, k), (0, T, k)) : (j, t, k) ∈ Rk} contains all arcs connecting

the vertices from Rk to Ok. Set A4
k = {(j, j, t, k) = ((j, t, k), (j, t + 1, k)) : (j, t, k) ∈

Rk ∪Ok, (j, t+ 1, k) ∈ Rk ∪Ok} contains the arcs associated with idle times. Let fa be

the cost of an arc a = (i, j, t, k) ∈ A1
k ∪A

2
k , which is the cost incurred if job j finishes

to be processed at time t + skij + pkj . Note that fa = 0, ∀a ∈ A3
k ∪ A

4
k. Moreover, let

set Rjk = {(i, t, k) ∈ Rk : i = j} denote the vertices associated with job j. Finally, for

each subset S ⊆ Vk, let δ−(S) and δ+(S) be the sets representing the arcs entering

and leaving S, respectively. The proposed arc-time-indexed formulation is as follows.

(F1) min
∑
k∈M

∑
a∈Ak

faxa (1)

s.t.
∑
k∈M

∑
a∈δ−(Rj

k)

xa = 1, ∀j ∈ J (2)

∑
a∈A2

k

xa ≤ mk, ∀k ∈M (3)

∑
a∈δ−({v})

xa −
∑

a∈δ+({v})

xa = 0, ∀k ∈M,∀v ∈ Vk \ {(0, 0, k), (0, T, k)} (4)

x ≥ 0, x integer (5)

Objective function (1) minimizes the completion time dependent costs. Constraints

(2) state that each job j ∈ J must be processed exactly once. Constraints (3) impose

that at most mk machines of type k ∈ M can be used. Constraints (4) are related to

the flow conservation. Define Pk as the set of paths in graph Nk that start at vertex

(0, 0, k) and end at vertex (0, T, k). Let bap be the number of times path p traverses

a ∈ Ak and let λp be a binary variable that assumes value 1 if p is in the solution.

Formulation F1 can be rewritten in terms of variables λp by means of a Dantzig-Wolfe

decomposition as follows.

(DW-F1) min
∑
k∈M

∑
p∈Pk

(∑
a∈Ak

bpafa

)
λp (6)

s.t.
∑
k∈M

∑
p∈Pk

(∑
a∈δ−(Rj

k)

bpa

)
λp = 1, ∀j ∈ J (7)

∑
p∈Pk

(∑
a∈A2

k

bpa

)
λp ≤ mk, ∀k ∈M (8)

λ binary (9)

3 Branch-cut-and-price algorithm

This section briefly describes the proposed branch-cut-and-price (BCP) algorithm over

formulation DW-F1. The solution of every node has the following three steps. (i)

A lower bound for the problem is obtained by solving the linear relaxation of DW-

F1 (possibly with cuts and branching constraints) through column generation. The

pricing subproblem for a machine type k ∈M corresponds to finding a least-cost path

in graph Nk where arc costs are associated with reduced costs. In this step, the pricing

subproblem is solved by a labeling algorithm and a dual stabilization technique is

applied. (ii) A reduced cost fixing procedure is executed for every machine type k ∈M
to remove from graph Nk the arcs that can not be in a solution that improve the

current upper bound. (iii) Cuts are separated and added to the master problem. Steps

(i), (ii) and (iii) are repeated as long as a tailing off condition is not reached and

the pricing time is smaller than a predefined threshold, after which a strong branching

technique is applied. The cuts adopted are obtained by a Chvátal-Gomory rounding of

the n constraints (7). Such cuts are often referred to as non-robust, since each single

cut requires additional states in the dynamic programming algorithm used for solving

the pricing subproblem. Therefore, those cuts should be added in a limited fashion

to avoid combinatorial explosion. To mitigate the impact of the Rank-1 cuts on the

pricing subproblem, we have adopted the limited arc memory technique described in

[4].

4 Computational results

Table 1 reports preliminary results obtained by the proposed BCP over the

R|rj , skij |
∑
w′jEj + wjTj instances of [3] and the R||

∑
w′jEj + wjTj instances of [1].

The former instances were derived from the instances of [1] by adding two types of

sequence-dependent setup times: small and large. All experiments were conducted on a

Intel Xeon E5-2680 v3, running at 2.5 GHz with a single thread and a time limit of 12

hours. In this table, Improv (%) denotes the average percentage improvement over

the best known solution (BKS) which were obtained by running the methods devised

in [1,2], and #New corresponds to the number of new improved solutions. Regarding

the R|rj , skij |
∑
w′jEj + wjTj instances, it can be observed that most of them were

solved to optimality and several new improved solutions were found. Also, it appears

that the instances with large setup times are harder to be solved. More precisely, we

can verify that the quality of the lower bound obtained by BCP as well as the upper

bound found by running the heuristic proposed in [2] are worse for such instances.

On the other hand, only 8 R||
∑
w′jEj + wjTj instances considered were not solved to

optimality. In contrast, 497 such instances were not solved by the method presented

in [1]. Moreover, the use of Rank-1 cuts improved significantly the performance of our

method, resulting in much smaller BCP trees and CPU times.

Table 1 Average results for R|rj , skij |
∑

w′
jEj + wjTj and R||

∑
w′

jEj + wjTj

Instances BCP BKS [1]

Gap Time Improv. Gap Time
n m Setups #Solved

(%) (s)
#Nodes

(%)
#New #Solved

(%) (s)

40 2 small 60/60 0.00 224 1.10 0.120 22 - - -

60 2 small 60/60 0.00 1695 3.53 0.330 42 - - -

60 3 small 60/60 0.00 2109 10.6 0.408 47 - - -

80 2 small 60/60 0.00 5832 5.70 0.136 41 - - -

80 4 small 48/60 0.52 16368 91.93 0.264 50 - - -

40 2 large 60/60 0.00 931 2.80 0.760 46 - - -

60 2 large 58/60 0.06 10589 23.16 1.340 58 - - -

60 3 large 45/60 1.21 20691 85.76 1.560 55 - - -

80 2 large 28/60 1.32 35368 48.76 0.798 54 - - -

80 4 large 10/60 3.91 39479 120.43 0.385 27 - - -

40 2 no 60/60 0.00 312 3.37 0.000 0 26/60 0.16 52

60 2 no 60/60 0.00 708 3.27 0.001 1 7/60 0.89 109

60 3 no 60/60 0.00 428 2.93 0.010 5 7/60 0.82 120

80 2 no 59/60 0.00 2425 5.36 0.003 3 2/60 0.90 134

80 4 no 60/60 0.00 964 3.86 0.063 15 0/60 4.54 228

90 3 no 60/60 0.00 2018 4.70 0.033 20 1/60 2.52 153

100 5 no 59/60 0.02 3397 26.73 0.103 27 0/60 8.83 297

120 3 no 56/60 0.04 10775 16.72 0.072 22 0/60 4.12 165

120 4 no 58/60 0.007 7944 17.66 0.171 31 0/60 6.98 217

As for future work, we intend to test our algorithm on other particular cases such

as the single and parallel machine problems studied in [6] and [5], respectively.

References

1. H. Şen and K. Bülbül, A Strong Preemptive Relaxation for Weighted Tardiness and Earli-
ness/Tardiness Problems on Unrelated Parallel Machines, INFORMS Journal on Comput-
ing. 27 (2015) 135–150.

2. A. Kramer and A. Subramanian, A unified heuristic and an annotated bibliography for
a large class of earliness-tardiness scheduling problems, Journal of Scheduling. (2017)
accepted.

3. A. Kramer, Um método heuŕıstico para a resolução de uma classe de problemas de sequen-
ciamento da produção envolvendo penalidades por antecipação e atraso, Master’s Thesis,
Universidade Federal da Paráıba, Brazil (2015). In Portuguese.

4. D. Pecin, C. Contardo, G. Desaulniers, E. Uchoa, New enhancements for the exact solution
of the vehicle routing problem with time windows, INFORMS Journal on Computing. 29
(2017) 489–502.

5. A. Pessoa, E. Uchoa, M. de Aragão, R. Rodrigues, Exact algorithm over an arc-time-
indexed formulation for parallel machine scheduling problems. Mathematical Programming
Computation. 2 (2010) 259–290.

6. S. Tanaka, M. Araki, An exact algorithm for the single-machine total weighted tardi-
ness problem with sequence-dependent setup times. Computers & Operations Research.
40 (2013) 344–352.

