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Abstract

We consider the flowshop problem on two machines with sequence-independent setup times to minimize
total completion time. Large scale network flow formulations of the problem are suggested together with
strong Lagrangian bounds based on these formulations. To cope with their size, filtering procedures are
developed. To solve the problem to optimality, we embed the Lagrangian bounds into two branch-and-
bound algorithms. The best algorithm is able to solve all 100-jobs instances of our testbed with and
without setup times, thus significantly outperforming the best algorithms in the literature.
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1. Introduction

Problem description.. We consider the problem of scheduling a set of jobs J = {1, . . . , n} in a two-
machine flowshop with the objective of minimizing the sum of completion times of jobs. The jobs are
available at time zero and they should be processed first on machine 1, and then on machine 2. Each
machine can process at most one job at a time. Let pmj denote the processing time of job j on machine
m, where m = 1, 2. All processing times are integer. Preemption of the processing of the jobs in not
allowed on either machine. Let Cmj denote the completion time of job j on machine m. According to
the scheduling classification, the problem is denoted by F2||

∑
Cj . It is known to be NP-hard in the

strong sense [11]. It has been shown by Conway et al. [7] that there exists at least one optimal solution
where both machines have the same sequence of jobs. Thus, we may restrict the search to permutation
schedules only.

In addition to this classic two-machine flowshop problem, we also consider its extension in which
every job should be set up on each machine before being processed. Let smj denote the setup time of
job j on machine m. Setup of a job on machine 2 and processing of the same job on machine 1 can be
performed in parallel. Note that setup times do not depend on the job processed just before job j, i.e.
the setup times are sequence independent. This generalisation of the problem has been treated previously
by Gharbi et al. [12]. It can be denoted as F2|STsi|

∑
Cj in the scheduling classification. The set of

permutation schedules remains dominant for this generalization as indicated in [5].

Literature review.. The problem F2||
∑
Cj has been studied in the literature for many years. First lower

bounds and the branch-and-bound algorithms based on them were proposed by Ignall and Schrage [18],
Ahmadi and Bagchi [2], and Della Croce et al. [9]. In these papers, instances with 10, 15, and 30 jobs,
respectively, have been solved to optimality. Note that the processing times of jobs here are quite short
and do not exceed 20 time units (even 10 in [9]).

Several Lagrangian relaxation-based lower bounds have been proposed for the problem. van de
Velde [26] relaxed precedence constraints between operations of the same job to obtain a lower bound. The
Lagrangian relaxation subproblem is difficult in the case where the schedule is restricted to be a permuta-
tion one. However, this subproblem becomes polynomially solvable when we further restrict Lagrangian
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multipliers to a same value. This restriction makes the Lagrangian bound weaker but computable in a
short time. A perturbation procedure is used to improve this bound which consists in modifying the
Lagrangian multipliers so as not to break the optimality of the current solution. Instances with up to 20
jobs have been solved to optimality using this bound. Hoogeveen and van de Velde [16] have improved
this lower bound by adding slack variables to the precedence constraints and by transforming these con-
straints to equalities. However, this improved lower bounds has not been tested inside an enumeration
algorithm. Della Croce et al. [8] used the same Lagrangian lower bound, but improved the perturbation
procedure used by [26]. They also introduced some dominance relations to reduce the enumeration in
the branch-and-bound algorithms. Instances with up to 45 jobs with short processing times (up to 10)
and up to 30 jobs with long processing times have been solved to optimality.

A positional (assignment) formulation for the problem F2||
∑
Cj has been proposed independently by

Akkan and Karabati [3] and Hoogeveen et al. [15]. In both works, the authors use the notion of waiting
time of a job before its processing starts on the second machine. The formulation has O(n2) variables and
O(n) constraints. In [15], it was shown experimentally that the lower bound one can obtain by solving
the linear relaxation of the positional formulation is stronger than any other bound proposed previously
in the literature. It was also shown that any Lagrangian relaxation does not improve this bound. In [3],
a network flow formulation for the problem was also suggested. In this network, each node corresponds
to a position in the schedule and the waiting time of the job on this position. The network was then
reduced by finding bounds on waiting times of jobs on different positions. To find a lower bound and
design a branch-and-bound, the Lagrangian relaxation is used, in which job occurrence constraints are
relaxed. Here the subproblem is the shortest path problem, and the Lagrangian dual problem is solved
using a subgradient method. The branch-and-bound algorithm which uses this Lagrangian relaxation is
able to solve instances with up to 60 jobs with small processing times (up to 10) and up to 45 jobs with
large processing times (up to 100).

Haouari and Kharbeche [13] proposed valid inequalities for the positional formulation. They experi-
mentally showed that the dual bound of the linear relaxation of the positional formulation is improved
when these inequalities are added. However, these improved dual bounds were not embedded in any
exact algorithm for the solution of the problem.

Hoogeveen and Kawaguchi [14] considered several special cases of the problem F2||
∑
Cj . They

proposed approximation algorithms for the general case of the problem as well as for a special case which
they proved to be NP-hard. Three special cases of the problem were proved to be polynomially solvable.

There were two most important recent contributions to the problem F2|STsi|
∑
Cj with sequence-

independent setup times. Allahverdi [4] proposed two dominance relations and a branch-and-bound
algorithm based on them. With this algorithm, all instances with up to 20 jobs with large processing and
setup times (up to 100) were solved to optimality.

Gharbi et al. [12] proposed several dual bounds for the problem F2|STsi|
∑
Cj . Some of the suggested

lower bounding procedures are similar to those used for the problem without setup times. One lower
bound is based on solving the linear relaxation of a positional formulation. Another lower bound is based
on Lagrangian relaxation similar to one used in [26]. Best exact algorithms based on the proposed dual
bounds allowed the authors to solve all instances with up to 30 jobs and the majority of instances with
35 jobs with large processing and setup times (up to 100).

Our contribution.. In this work, we propose improved branch-and-bound algorithms for the problem
F2||

∑
Cj as well as for its extension F2|STsi|

∑
Cj . Our approach is based on the network flow for-

mulation from [3]. To obtain stronger dual bounds, we use a larger network than the one used in [3].
Different dominance rules and filtering techniques are exploited in order to cope with the size of the
network. The structure of the network allows us to compute an expensive Lagrangian dual bound only
once at the root node, and then recompute the bound in linear time at every node of the enumeration
tree. Thus, millions of nodes can be checked in a reasonable time. Using the proposed algorithm, we are
able to solve all instances of both problems F2||

∑
Cj and F2|STsi|

∑
Cj with up to 100 jobs with large

processing times.
The outline of the paper is as follows. In Section 2, we give the classic assignment MIP formulation of

the problem. Different dominance rules, which are both from the literature and new ones, are described
in Section 3. In Section 4, we present network flow formulations for the problem, as well as a subgradient
algorithm with embedded filtering procedures to obtain Lagrangian dual bounds. Two improved branch-
and-bound algorithms for the problem are suggested in Section 5. Results of computational experiments
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with these algorithms are given in Section 6. Finally, in Section 7, conclusions are drawn.

2. Mixed-integer linear programming formulation

This section introduces a mixed-integer linear programming formulation for the problem F2|STsi|
∑
Cj ,

which generalizes the positional formulation proposed in [3].
Note that the setup time of any job on machine 1 can be integrated into its processing time on

machine 1. This follows from the fact that there exists an optimal schedule in which machine 1 process
jobs without idle time. So, without loss of generality, for all j ∈ J , we can set s1j = 0, and adjust
appropriately processing times p1j .

In the following, [k] denotes the index of the job in position k. The completion times Cm[k] of the job
in position k, k ∈ J , on machines m = 1, 2 can be computed as:

C1
[k] = C1

[k−1] + p1[k]. (1)

C2
[k] = max{C1

[k], C
2
[k−1] + s2[k]}+ p2[k]. (2)

In [3], the authors introduced the notion of time lag between the processing of the same job on both
machines to write a positional model and a network flow model for the problem. This kind of models is
also called waiting time-based [models] in [12].

The completion-to-completion lag Lck of the job in position k, k ∈ J is defined as the time elapsed
between the completion of the job on machine 1 and its completion on machine 2:

Lck = C2
[k] − C

1
[k]

= max{0, Lck−1 + s2[k] − p
1
[k]}+ p2[k].

The completion-to-start lag Lsk of the job in position k, k ∈ J , is defined as the time elapsed between
the completion of the job on machine 1 and its start on machine 2:

Lsk = Lck − p2[k] = max{0, Lsk−1 + p2[k−1] + s2[k] − p
1
[k]}.

In order to write a convenient MILP model, the objective function is rewritten as:∑
k

C2
[k] =

∑
k

(C1
[k] + Lck)

=
∑
k

(
(n− k + 1)p1[k] + Lsk + p2[k]

)
.

Let a binary variable xjk, j, k ∈ J , determine whether job j is processed in position k in the schedule.
Let a continuous variable Lsk, k ∈ J , represent the completion-to-start lag of the job in position k in the
schedule. We now write the positional formulation for the problem F2|STsi|

∑
Cj .

min

n∑
k=1

(n− k + 1)

 n∑
j=1

p1jxjk

+

n∑
k=1

Lsk +

n∑
j=1

p2j , (3)

s.t. Ls1 ≥
n∑
j=1

(s2j − p1j )xj1, (4)

Lsk ≥ Lsk−1 +

n∑
j=1

p2jxj,k−1 +

n∑
j=1

(s2j − p1j )xjk, k = 2, . . . , n, (5)

n∑
j=1

xjk = 1, k = 1, . . . , n, (6)

n∑
k=1

xjk = 1, j = 1, . . . , n, (7)

Lsk ≥ 0, k = 1, . . . , n, (8)
xjk ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , n. (9)
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Table 1 reports results obtained using Cplex 12.6 on a laptop with 16 GB RAM and an Intel i7
2.7 GHz processor. In order to keep the analysis concise, we only report in this section results for the
problem without setup times. The test bed is composed of 20 instances (without setup times) for each
combination (# of jobs, duration range) (see section 6 for details about the instances). The scalability
of this straightforward approach is clearly limited.

Durations n=10 n=30 n=40 n=50 n=60

[1, 10] 20 20 20 8 2
[1, 100] 20 20 8 0 1

Table 1: Number of instances of F2||
∑

Ci solved to optimality within 1000 seconds using the model (3)-(9).

3. Dominance rules

This section introduces dominance rules which allow us to speed up the solution process. As specified
in the corresponding sections, they are used in the branch-and-bound procedures to avoid exploring the
set of solutions which are proved to be dominated, and in network reduction procedures to shrink the
size of the networks.

The next proposition gives a generalization of the dominance rule from [26] for the problem F2||
∑
Cj .

Proposition 1 ([4]). If jobs i and j satisfy p1i + s2j ≤ p1j + s2i , p2i + s2i ≤ p2j + s2j , and p2j ≤ p2i , then there
exists an optimal schedule in which job i precedes job j.

In our solution methods, Proposition 1 is used as preprocessing to determine a set of predecessors Γ−i
and successors Γ+

i for each job i. The next proposition is an extension of the dominance rule of [9] to the
case with sequence-independent setup times.

Proposition 2. Let σ be a partial schedule, and i and j two jobs not in σ. If p1i ≤ p1j , p2i ≥ p2j , s2i ≥ s2j ,
and

max{C1
σ + p1i , C

2
σ + s2i }+ p2i ≤ max{C1

σ + p1j , C
2
σ + s2j}+ p2j , (10)

then there exists an optimal solution not headed by σj, where σj denotes σ immediately followed by j.

Proof. Suppose there exists an optimal schedule S headed by σj. Let K be the set of positions of jobs
scheduled between jobs j and i in S. Let A be the set of positions of all jobs scheduled after job i
(including job i itself) in S. We denote by C(S)m[k] the completion time of the job in position k on
machine m in schedule S.

We now interchange jobs j and i in S to obtain another schedule S′. Then, from p1i ≤ p1j , we have

C(S′)1[k] ≤ C(S)1[k], ∀k ∈ J. (11)

Now, from (10) and (11) we can conclude that

C(S′)2[k] ≤ C(S)2[k], ∀k ∈ K. (12)

Finally, from (12), p2i ≥ p2j , and s2i ≥ s2j it follows that C(S′)2[k] ≤ C(S)2[k], for all k ∈ A.

Proposition 2 can be translated in terms of completion-to-completion lag, by substituting Lcσ =
C2
σ − C1

σ:

Proposition 3. Let σ be a partial schedule, Lcσ the corresponding completion-to-completion lag, and i
and j two jobs not in σ. If p1i ≤ p1j , p2i ≥ p2j , s2i ≥ s2j , and max(p1i , L

c
σ + s2i ) + p2i ≤ max(p1j , L

c
σ + s2j ) + p2j ,

then there exists an optimal solution not headed by σj.

Let us consider a partial schedule, built up to position k − 1. For a position k, two jobs a and b and
l ∈ {k, k + 1}, let Lcl (k, a → b) denote the time lag between the completion times of [l] on machines 1
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and 2, under the assumption that a is processed at position k and b at position k + 1 (i.e. [k] = a and
[k + 1] = b):

Lck(k, a→ b) = max{p1a, Lck−1 + s2a}+ p2a − p1a (13)
Lck+1(k, a→ b) = max{p1b , Lck + s2b}+ p2b − p1b (14)

Let us define f(k, a → b) as the cost generated by jobs a and b scheduled at positions k and k + 1
respectively:

f(k, a→ b) = (n− k + 1)p1a + Lck(k, a→ b) + (n− k)p1b + Lck+1(k, a→ b) (15)

In the same way, one can define Lcl (k, σ) and f(k, σ), which are the completion-to-completion lag in
position l and the partial cost, respectively, when scheduling a sequence of jobs σ starting at position k.

The next proposition may be useful to improve a bound and/or to reduce the size of networks which
will be presented below. It shows that, under some conditions, schedules in which a job j at position k
precedes a job i can be discarded.

Proposition 4 (Dominance on two consecutive jobs). If f(k, i→ j) < f(k, j → i) and Lck+1(k, i→ j) ≤
Lck+1(k, j → i), then jobs j and i are not processed at positions k and k + 1, respectively, in any optimal
solution.

Proof. f(k, i → j) < f(k, j → i) means that the partial schedule up to position k + 1 is more costly
when jobs j and i are processed in positions k and k + 1, respectively, than when their positions are
interchanged.

In the partial schedules, the completion time of the job in position k+1 on machine 1 is C1
[k−1]+p

1
i +p1j

regardless of the processing order of jobs i and j. It follows that Lck+1(k, i→ j) ≤ Lck+1(k, j → i) implies
C2

[k+1](k, i→ j) ≤ C2
[k+1](k, j → i). As the cost function is non-decreasing, the partial schedule starting

at position k + 2 will not be more costly than when job j is processed before job i.

The next proposition is utilized in our branch-and-bound procedures, as well as for removing edges
in the networks (see Section 4). In the latter context, the constraint specifying that each job must be
scheduled not more than once is relaxed. Hence, Proposition 5 is described in such a form that job
repetition is allowed in partial sequences.

Proposition 5 (Dominance on K consecutive jobs). Let σ = (σ1, . . . , σl) be a partial sequence of jobs
starting at position k, and let σ′ be a permutation of σ. If at least one of these conditions hold, then no
optimal schedule contains partial sequence σ of jobs starting at position k:

• σi = σj for some i 6= j.

• σj ∈ Γ−σi
for some i < j.

• f(k, σ′) < f(k, σ) and Lck+|σ|−1(k, σ′) ≤ Lck+|σ|−1(k, σ).

Proof. Similar to the proof of Proposition 4.

Consistency of the different rules. We should be careful in applying several dominance rules at the
same time so that their consistency is ensured. For example, it can happen that one rule eliminates such
schedules where job i precedes job j, whereas another rule forbids job j to precede job i. To ensure that at
least one optimal schedule is not eliminated, we use a modified version of Proposition 3 where the condition
max(p1i , L

c
σ+s2i )+p2i ≤ max(p1j , L

c
σ+s2j )+p2j is replaced by max(p1i , L

c
σ+s2i )+p2i < max(p1j , L

c
σ+s2j )+p2j .

That way, any deduction made by Propositions 3, 4 or 5 removes only non-optimal schedules. Thus, when
applying Proposition 1, we can safely break ties according to the index of the jobs.

4. Network flow formulations and lower bounds

In this section, we introduce two minimum cost flow formulations to obtain tight lower bounds. The
first one is very similar to the one proposed in [3]. In order to get stronger bounds and solve larger
instances, we also design an extended network.
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4.1 Basic network G1

Our first lower bound is based on a transshipment type network, which is a directed graph G1 =
(V1, A1) whose structure is identical to the one proposed in [3]:

• Each node vk,l ∈ V1 of the network is associated with a position k in the sequence, and a value
l of the completion-to-completion lag of the job in position k − 1. Node v1,0 is the source of the
network. A sink node vn+1,0 is also added, which represents the end of the schedule.

• For each combination of job j, position k, and completion-to-completion lag l, there is an arc
(vk,l, vk+1,l′ , j) ∈ A1 from node vk,l to node vk+1,l′ . Here l′ = max{0, l+ s2j − p1j}+ p2j if k < n, and
l′ = 0 if k = n. This arc represents the processing of job j in position k, when the completion-to-
completion lag of the previous job is equal to l, so that job j ends with a completion-to-completion
lag equal to l′. Note that multiple arcs representing different jobs may connect the same pair of
nodes. Following the expression of the objective function given by (3), the cost c(vk,l, vk+1,l′ , j) of
using this arc is (n− k+ 1)p1j + l′ when k < n, and c(vn,l, vn+1,0, j) = p1j + max{0, l+ s2j − p1j}+ p2j .

Basic network flow formulation. The scheduling problem can be seen as the problem of finding a minimum
cost flow of value 1 (a path) from the source node to the sink node, going through exactly one arc
associated with each job, leading to the following ILP model:

min
∑

(v,w,j)∈A1

c(v, w, j) · xv,w,j (16)

s.t.
∑

(v,w,j)∈A1

xv,w,j =
∑

(w,v,j)∈A1

xw,v,j ∀v ∈ V1 − {v1,0, vn+1,0} (17)

∑
(v,w,j)∈A1

xv,w,j ≤ 1 ∀j = 1, . . . , n (18)

∑
(v1,0,w,j)∈A1

xv1,0,w,j = 1 (19)

xv,w,j ∈ {0, 1} ∀(v, w, j) ∈ A1 (20)

Network reduction during its creation. In order to reduce the size of the network, we use a procedure
similar to the one described in [3]:

• An upper bound z̄ on the optimum value of the problem is computed. Instead of the meta-heuristic
of [9], we use the iterated enhanced dynasearch heuristic of [23], with a straightforward adaptation
to handle setup times. The time taken by this heuristic is given in Table 2.

• A modified version of the positional model (3)-(9) is used to derive upper bounds on the lag values at
each position, in all schedules whose cost is not larger than z̄. Bounds on completion-to-completion
lags allow one to remove dominated nodes. Bounds on completion-to-start lags and on the sum of
those for consecutive pairs of positions allow one to remove dominated arcs. See [3] for details. In
our implementation, the bounds are improved by removing variables xjk from the model when job
j cannot be processed in position k from the dominance rules, that is, k ≤ |Γ−j | or k ≥ n− |Γ

+
j |.

• For each node v, we keep track of the set of jobs P(v) that exist in all paths from the source node
to v, and utilize it when creating arcs out of v as follows:

– Similar to [3], if j ∈ P(v), then no arc is created for job j out of v.
– If i ∈ P(v) and j ∈ Γ−i , then no arc is created for j out of v.

• For each node v, we keep track of the set of jobs P̄(v) that exist in at least one path from the source
to v, and utilize it when creating arcs out of v as follows:

– If i /∈ P̄(v) and i ∈ Γ−j , then no arc is created for j out of v.

– If i /∈ P̄(vk,l) and j is dominated by i at lag l and position k in the sense of Proposition 3,
then no arc is created for j out of v.
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Table 2: Time (in seconds) required for computing the initial upper bound using heuristic from [23].

F2||
∑
Ci F2|STsi|

∑
Ci (instances of [12])

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 3.8 13.2 29.1 59.5
[1− 100] 5.2 16.6 38.1 80.0 27.5 43.4 65.4 129.4

As a preliminary experiment, we directly apply an MILP solver to formulation (16)–(20) based on
network G1 which is reduced as described just above. Table 3 reports the number of solved instances
(without setup times) within the time limit. Table 6 reports the average number of nodes and arcs in
graph G1. It can be seen from the results that the network flow formulation is not much better than the
positional formulation from Section 2.

Durations n=10 n=30 n=40 n=50 n=60

[1, 10] 20 20 20 19 18
[1, 100] 20 15 2 0 0

Table 3: Number of instances of F2||
∑

Ci solved to optimality within 1000 seconds using formulation (16)-(20) based on
G1.

Lagrangian lower bound. The authors of [3] computed a Lagrangian lower bound based on a similar
network. It is used within a branch-and-bound procedure, as well as some dominance rules to solve
the problem. Relaxing the constraints (18) to the objective function leads to the following Lagrangian
subproblem:

L1(π) = min

 ∑
(v,w,j)∈A1

(c(v, w, j) + πj)xv,w,j −
n∑
j=1

πj

∣∣∣(17), (19), (20)
 (21)

For any non-negative vector of Lagrange multipliers π, L1(π) is a Lagrangian lower bound on the optimum
of the problem, which can be computed by solving a simple shortest path problem in G1 with modified
costs c(v, w, j) + πj . This problem can be solved in O(|A1|)-time complexity.

To improve bound L1(π), the constraint forbidding immediate repetition of a same job is added to
the Lagrangian subproblem. We can take into account this constraint without increasing the complexity
of the shortest path algorithm [1, 20].

Like in [24], we obtain near-optimal Lagrangian multipliers employing the conjugate subgradient
algorithm [22, 21]. At each iteration k of the procedure, given current Lagrangian multipliers πk, we first
compute L1(πk). We denote by x∗k the corresponding optimal solution of the Lagrangian subproblem.
We choose the subgradient vector as (gkj = 1−

∑
(v,w,j)∈A1

x∗kv,w,j)j∈{1,...,n}. The Lagrangian multipliers
are updated by

dk = gk + ξkdk−1

πk+1 = πk + γk
UB − L1(πk)

||dk||2
dk

Following [22, 21], we choose ξk = ||gk||/||dk−1||. The choice of the step size parameter γk obeys these
rules:

• The initial value is γ0 = γini.

• It is decreased by ξk = κSγ
k−1 if the best lower bound is not updated for δS successive iterations.

• It is increased by ξk = κEγ
k−1 if the best lower bound is improved at iteration k.

The algorithm is terminated if the best lower bound does not increase by 100ε/(1 − ε)% and the gap
between the best lower and upper bounds does not decrease by 100ε% in δT successive iterations, but
not before miniter iterations have been completed.
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4.2 Filtering procedure for G1

In order to reduce further the size of network G1, we developed Lagrangian cost variable fixing [17, 24].
Given a vector of Lagrange multipliers π,

• let F 1(v, π) be the cost of the shortest path from the source to node v in G1 with modified costs;

• let B1(v, π) be the cost of the shortest path from node v to the sink in G1 with modified costs.

Given π, values F 1(v, π) for all nodes v ∈ V1 can be found using the forward dynamic programming
algorithm, and all values B1(v, π), v ∈ V1 can be found using backward dynamic programming algo-
rithm. Then an arc (v, w, j) ∈ A1 can be removed from G1 if F 1(v, π) + c(v, w, j) + πj + B1(w, π) ≥ z̄.
Furthermore, a node v ∈ V1 can be removed from G1 if it does not have any incoming or any outgoing arc
anymore. For a fixed vector π, the time complexity of this filtering procedure remains equal to O(|A1|).
The filtering procedure is called at every iteration of the conjugate subgradient algorithm.

The running time of the subgradient algorithm is presented in Table 4. The relative gaps obtained
after the subgradient algorithm are shown in Table 5. The gap is computed as UB−LB

LB , where UB is
the upper bound given by the heuristic [23], and LB is the best Lagrangian bound obtained during the
subgradient algorithm. One can see from the results that a very tight lower bound is obtained in small
running time, which is 25 seconds for the largest instances without setup times. The computing time is
twice larger for instances with setup times. This is explained by the slightly degraded performance of
the dynasearch procedure for this class of problems to compute an upper bound (the root gap is twice
larger). Hence, the network cannot be reduced as much in this case (as can be seen from Table 6), so
that solving the subproblem at each iteration of the subgradient procedure takes more time.

Table 4: Average running time (in seconds) for the subgradient procedure on network G1.

F2||
∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.2 0.4 0.8 1.7
[1− 100] 1.1 4.2 10.5 23.5 9.0 16.1 24.7 55.9

Table 5: Average duality gap produced by the subgradient procedure on network G1.

F2||
∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.13% 0.11% 0.10% 0.08%
[1− 100] 0.16% 0.18% 0.12% 0.10% 0.21 % 0.22 % 0.20 % 0.20 %

From Table 6 it can be seen that the filtering procedure reduces the size of the graph G1 significantly:
the number of arcs is decreased by a factor of 5 on large instances without setup times, and by more than
2 on instances with setup times. Once again, the degraded results can be attributed to the quality of the
upper bound used in the filtering procedure.

We applied an MILP solver to formulation (16)–(20) based on filtered network G′1. Table 7 reports
the number of solved instances (without setup times) within the time limit. Again the improvement of
results in comparison with the network flow formulation based on G1 is very limited despite a significant
reduction of the graph size.

4.3 Expanded network G2

Although lower bounds obtained using Lagrangian relaxation of the network flow formulation based
on G1 are already very tight, we can improve them by adding another dimension to G1. It results in a
larger network G2, which allows us to eliminate more dominated subsequences of jobs in the Lagrangian
subproblem and thus to improve the lower bound.
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Table 6: Average size of network G1 before and after filtering.

Number of nodes in G1, thousands
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.8 1.3 2.0 2.8
[1− 100] 8.0 14.6 21.3 30.4 20.3 26.1 31.9 46.3

Number of arcs in G1, thousands
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 21.9 59.3 119.0 213.9
[1− 100] 258.3 731.7 1451.6 2635.2 1026.4 1553.3 2189.3 4030.1

Number of nodes in G1 after filtering, thousands
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.5 0.9 1.4 1.9
[1− 100] 4.4 9.1 14.2 21.0 14.9 20.3 24.9 38.6

Number of arcs in G1 after filtering, thousands
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 3.4 11.3 26.2 47.0
[1− 100] 30.9 129.8 264.0 520.6 311.6 567.6 828.6 1813.3

Table 7: Number of instances of F2||
∑

Ci solved to optimality within 1000 seconds using formulation (16)-(20) based on
G′1.

Durations n=10 n=30 n=40 n=50 n=60

[1, 10] 20 20 20 19 19
[1, 100] 20 19 9 2 1

Network structure of G2.. The network is a directed graph G2 = (V2, A2) with the following structure.

• Each node vk,l,i ∈ V2 of the network is associated with a position k in the sequence, a job i, and a
value l of the completion-to-completion lag of the job in position k− 1. Node v0,0,0 is the source of
the network. An additional sink node vn+1,0,0 is added, which represents the end of the schedule.

• For each combination of jobs i, j, i 6= j, position k, and completion-to-completion lag l, there is an
arc (vk,l,i, vk+1,l′,j) ∈ A2, with:

l′ =

{
0 if k = 0
max{0, l + s2i − p1i }+ p2i otherwise

This arc represents the processing of job i in position k, when the completion-to-completion lag
of the job in position k − 1 is equal to l, the completion-to-completion lag of job i is equal to l′,
and job j is processed at position k + 1. When 0 < k < n, the cost c(vk,l,i, vk+1,l′,j) of using
this arc is (n − k + 1)p1i + l′. For the first position, c(v0,0,0, v1,0,j) = 0. For the last position,
c(vn,l,i, vn+1,0,0) = p1i + max{0, l + s2i − p1i }+ p2i .

Network reduction during its creation..

• A node vk,l,i in G2 is created only if an arc (vk,l, vk+1,l′ , i) exists in filtered network G′1.

• Arc (vk,l,j , vk+1,l′,i) is not created if scheduling job j is dominated at lag l by Proposition 3.
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• Arc (vk,l,j , vk+1,l′,i) is not created if scheduling of jobs j and i at positions k and k+1, respectively,
is dominated by Proposition 4.

• Arc (vk,l1,j1 , vk+1,l2,j2) is not created if, for all arcs (vk−1,l0,j0 , vk,l1,j1), the sequence of jobs (j0, j1, j2)
is dominated at lag l0 and position k − 1 according to Proposition 5.

4.4 Filtering procedure for G2

We developed a filtering procedure embedded in the subgradient algorithm. The procedure is similar
to the one described in Section 4.2, but has the following differences.

• The Lagrangian lower bound is improved using 3-cycle elimination by forbidding such partial se-
quences of job as (i, j, i) (adding this constraint does does change the time-complexity of the La-
grangian subproblem [1, 20]).

• Similar to the filtering procedure in Section 4.2, Lagrangian cost fixing is performed by computing
the following values.

– F 2(v, π) is the cost of the shortest path from the source to node v in G2 with modified costs;

– B2(v, π) is the cost of the shortest path from node v to the sink in G2 with modified costs.

An arc (v, w) ∈ A2 can be removed from G2 if F 2(v, π) + c(v, w) + πj + B2(w, π) ≥ z̄, where j is
the index of the job represented by w.

• In addition, Proposition 5 is applied to perform what we call 3-consecutive-jobs filtering. It removes
arc (vk,l1,j1 , vk+1,l2,j2) if one of these conditions holds:

– for all arcs (vk−1,l0,j0 , vk,l1,j1) in G2, the sequence of jobs (j0, j1, j2) is dominated at lag l0 and
position k − 1 according to Proposition 5 ;

– for all arcs (vk+1,l2,j2 , vk+2,l3,j3) in G2, the sequence of jobs (j1, j2, j3) is dominated at lag l1
and position k according to Proposition 5.

This 3-consecutive-jobs filtering is costly. Therefore, it is not applied at every iteration of the
subgradient procedure, but each time the number of arcs in the graph is reduced by 5% using the
Lagrangian cost fixing since the last time 3-consecutive-jobs filtering was used.

• The lower bound is improved using Proposition 5 by removing dominated sequences of three jobs
which are part of the Lagrangian subproblem solution. More precisely, at each iteration of the
subgradient procedure, the Lagrangian subproblem solution is inspected. Assume that a subse-
quence of jobs (j1, j2, j3) starting at lag l1 and position k is part of the solution and dominated. Let
(vk,l1,j1 , vk+1,l2,j2 , vk+2,l3,j3) be the corresponding sequence of nodes. This path is removed from
the network using the following procedure (see Figure 1):

1. Identify the set V ∗(k, l1, j1, l2, j2) of nodes v′ which are successors of vk+1,l2,j2 and such that
sequence (vk,l1,j1 , vk+1,l2,j2 , v

′) is not dominated (by inspection).

2. Create a new node v′′, which is a duplicate for node vk+1,l2,j2 .

3. For each node v′ ∈ V ∗(k, l1, j1, l2, j2), create an arc (v′′, v′), which is a duplicate for (vk+1,l2,j2 , v
′).

4. Create an arc (vk,l1,j1 , v
′′).

5. Remove arc (vk,l1,j1 , vk+1,l2,j2).

The Lagrangian subproblem is then solved again, on the modified network and with the same
Lagrange multipliers. This procedure is repeated until there exist no dominated sequences of three
jobs in the Lagrangian subproblem solution. This solution is then returned to the sub-gradient
procedure.

• At the end of the subgradient procedure, the following additional filtering procedure is used, as
in [10]. Given a vector of Lagrange multipliers π,
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– let F 2
j (v, π) (resp. B2

j (v, π)) denote the cost of the shortest path from the source to node v
(resp. from node v to the sink) in G2 with Lagrangian costs, such that this path goes through
exactly one arc representing job j;

– let F 2
¬j(v, π) (resp. B2

¬j(v, π)) denote the cost of the shortest path from the source to node
v (resp. from node v to the sink) in G2 with Lagrangian costs, such that this path does not
contain any arc representing job j.

Given π, these values for all jobs and all nodes can be computed in time O(n|A2|) by applying
several times the forward and backward dynamic programming algorithms. Then for each arc
a = (vk,l,j , vk+1,l′,i) ∈ A2, we compute value L2(a, π) as:

L2(a, π) = max


F 2
¬j(vk,l,j , π) + c(a) + πj +B2

¬j(vk,l′,i, π),

max
j′ 6=j

{
min

{
F 2
j′(vk,l,j , π) + c(a) + πj +B2

¬j′(vk,l′,i, π),

F 2
¬j′(vk,l,j , π) + c(a) + πj +B2

j′(vk,l′,i, π)

}}  .

Arc a can be removed from G2 if L2(a, π) > z̄.

The running time of the subgradient algorithm with embedded filtering of graph G2 is presented in
Table 8. The relative gaps obtained after the subgradient algorithm are shown in Table 9. One can
see from the results that the gap is decreased by 30% in comparison with the subgradient procedure on
network G1. However, the running time is increased by a factor of 4.

Table 8: Time in seconds for the subgradient procedure on network G2.

F2||
∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.2 0.7 2.5 8.9
[1− 100] 1.3 9.8 38.1 94.1 68.0 167.7 291.0 913.5

Table 9: The duality gap produced by the subgradient procedure on network G2.

F2||
∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.07% 0.05% 0.06% 0.06%
[1− 100] 0.09% 0.07% 0.08% 0.07% 0.19% 0.20 % 0.19 % 0.19%

From Table 10 it can be seen that, again, the filtering procedure reduces the size of the graph sig-
nificantly for instances without setup times: the number of arcs is decreased by a factor of 4 on large
instances. For instances with setup times, the number of arcs is still very large. In Section 5, we show
that filtering is also efficient for this class of instances when used with a tighter upper bound.

vk1,l1
j1

vk1,l2
j2

vk1,l3
j3

vk2,l4
j4

vk3,l5
j5

vk3,l7
j1

vk3,l6
j6

vk1,l1
j1

vk1,l2
j2

vk1,l3
j3

vk2,l4
j4

vk3,l5
j5

vk3,l7
j1

vk3,l6
j6

v′′

Figure 1: On the left side, assume that the bold dashed path (vk1,l2,j2 , vk2,l2,j4 , vk3,l7,j1 ) is part of the optimal solution of
the current Lagrangian subproblem, and is dominated in the sense of Proposition 5. On the right side, this path is removed
from the graph by adding a duplicate node v′′ for vk2,l2,j4 and rerouting non-dominated paths through the new node. Path
(vk1,l1,j1 , vk2,l2,j4 , vk3,l7,j1 ) is also removed since it is not feasible.
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Table 10: Average size of network G2 before and after filtering. Filtering is performed with the initial upper bound.

Number of nodes in G2, thousands
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 2.3 7.8 17.0 35.8
[1− 100] 26.5 92.7 212.4 391.3 246.7 426.9 608.4 1 234.1

Number of arcs in G2, thousands
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 12.9 68.2 217.6 642.7
[1− 100] 164.2 937.0 2925.4 6431.4 3818.3 8224.6 13 550.5 35 554.8

Number of nodes in G2 after filtering, thousands
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.4 2.2 6.6 13.0
[1− 100] 5.2 35.5 92.5 166.2 163.7 284.8 396.8 766.3

Number of arcs in G1 after filtering, thousands
F2||

∑
Ci F2|STsi|

∑
Ci

Duration n=40 n=60 n=80 n=100 n=60 n=70 n=80 n=100

[1− 10] 0.8 7.6 38.6 99.2
[1− 100] 16.4 170.7 639.0 1465.4 1866.5 4236.0 6931.7 18 544.7

5. Branch-and-bound algorithms

We have implemented two branch-and-bound algorithms.

• Algorithm BB1 is based on network G1 and Lagrangian bound L1(π).

• Algorithm BB2 is based on network G2 and Lagrangian bound L2(π).

The following parts of the algorithm are the same for both BB1 and BB2.

• The initial upper bound is computed by the dynasearch heuristic from [23].

• Network G1 or G2 is constructed and reduced by the corresponding filtering algorithm.

• After the subgradient algorithm, the vector of multipliers π∗ which gives the best Lagrangian lower
bound L1(π∗) or L2(π∗) is fixed till the branch-and-bound termination.

• The set of possible job sequences is explored, by enumerating the set of feasible (with respect to the
job assignment constraint) paths in graph G1 or G2. We proceed from the source to the sink in the
graph. For each node v, the outgoing arcs (v, w) are sorted in non-decreasing order of B1(w, π∗) or
B2(w, π∗). The algorithms use the depth-first-search rule in this order.

• We use Proposition 5 in a Memory Dominance Rule fashion [6, 25, 19]: the set of non-dominated
subsequences explored is maintained in a hash map. At each node of the tree, the current subse-
quence is tested against the subsequences composed of the same set of jobs.

• At each node of the search tree, we maintain incrementally the number of unscheduled predecessors
of each job. An arc in G1 or G2 corresponding to job j is a candidate for branching only if the
number of remaining predecessors of j is zero.

• We branch, i.e. we extend current partial sequence σ with job j, only if the subsequence of the last
K jobs (K = 5 in our implementation) including j is not dominated, according to Proposition 5,
by any permutation of these K jobs.
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• The upper bound may be updated only when a leaf node of the search tree is reached. We do not
use any heuristics within the branch-and-bound algorithm.

5.1 Algorithm BB1

In algorithm BB1, at each non-root node of the search tree corresponding to node v in graph G1, we
compute lower bound L1(v). Let σ be the partial sequence built so far. Then,

L1(v) = cost(σ) +B1(v, π∗)−
∑
j /∈σ

π∗j . (22)

Computation of L1(v) can be done in constant time by incrementally maintaining at each node the current
value of

∑
j /∈σ πj .

Note that algorithm BB1 is similar to the branch-and-bound algorithm presented in [3]. The main
differences are that graph G1 is filtered, and we use Proposition 5 as a memory dominance rule. In [3],
other dominance rules are used, but preliminary computational experiments indicated that they do not
improve the performance of our branch-and-bound procedure.

5.2 Algorithm BB2

In algorithm BB2, at each non-root node of the search tree corresponding to node v in graph G2, we
compute lower bound L2(v). Again, let σ be the partial sequence built so far. Then,

L2(v) = cost(σ) + max


B2(v, π∗),
maxj /∈σ B

2
j (v, π∗),

maxj∈σ B
2
¬j(v, π

∗)

−∑
j /∈σ

π∗j . (23)

Computation of L2(v) can be done in time O(n).

Tentative upper bound. As one can expect from Tables 9 and 10, solving large instances of the problem
F2|STSI |

∑
Ci by enumerating the set of paths in network G2 is very time-consuming. The optimal

objective values of medium size instances indicate us that the very large size of the network in this case
compared with the case without setup times clearly comes from a degraded initial upper bound. That
is why, following the idea described in [24], we introduce the use of a tentative upper bound around
algorithm BB2. The overall procedure can be summarize like this:

• Build and filter network G1, to obtain network G′1.

• If the number of arcs in G′1 does not exceed a given threshold (fixed empirically to 300 thousands
arcs in our experiments), then build network G2 from G′1, filter G2 and run algorithm BB2 to solve
the problem to optimality.

• Otherwise, it is very likely that the upper bound significantly over-estimates the optimal objective
value and that it will result in a very large network G2 at the basis of the branch-and-bound
procedure. In this case, perform a major iteration: use a tentative upper bound UBtent to build
and filter network G2 from G′1, and run algorithm BB2. Two outcomes are possible.

– If algorithm BB2 does not improve the upper bound, then UBtent under-estimates the optimal
objective value. In this case, the algorithm performs next major iteration with an increased
value of UBtent.

– If algorithm BB2 completes with a new, improved upper bound, then it is optimal and the
overall procedure terminates.

Table 11 shows the usefulness of the tentative upper bound on instances with setup times: the size
of network G2 once it is filtered during the last major iteration (i.e. with the smallest feasible tentative
upper bound) is more than seven times smaller than when it is filtered with the initial upper bound for
100-job instances. We do not report the corresponding results for instances without setup times since
the impact is very limited for this class of problems.
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Number of nodes in G2 after filtering, thousands
Initial upper bound Best feasible tentative upper bound

n=60 n=70 n=80 n=100 n=60 n=70 n=80 n=100
163.7 284.8 396.8 766.3 63.1 88.4 135.1 237.1

Number of arcs in G2 after filtering, thousands
Initial upper bound Best feasible tentative upper bound

n=60 n=70 n=80 n=100 n=60 n=70 n=80 n=100
1 866.5 4 236.0 6 931.7 18 544.7 344.1 544.5 1013.3 2 237.8

Table 11: Average size of network G2 after filtering, for problem F2|STSI |
∑

Ci, when filtering is performed with the initial
upper bound and the smallest feasible tentative upper bound.

6. Computational results

All the algorithms were coded in C++ and compiled under Microsoft Visual Studio 2012. All the
experiments were conducted on a laptop computer with an Intel i7 2.7 GHz processor and 16GB RAM.
The solver used to solve the MILP and LP models is IBM ILOG Cplex v12.6.

The initial value of the tentative upper bound is chosen as UBtent = α1(UB −LB) +LB, where UB
and LB are, respectively, the initial upper bound obtained by the dynasearch procedure and the best
lower bound at the end of the subgradient procedure applied to filter network G1. If necessary, UBtent
is increased at each major iteration by α2(UB − LB). In our implementation, α1 = 0.4 and α2 = 0.2,
ensuring the convergence of the overall procedure in four major iterations.

We use the same tuning of the different parameters for subgradient procedure for filtering networks
G1 and G2 for both problem types with and without setup times: γini = 1, κS = 0.95, κE = 1.02,
ε = 10−4, δS = 2, δT = n, miniter = 2n.

6.1 Instances without setup times
We first tested our branch-and-bound algorithms on instances without setup times generated similarly

to the instances in [13]. The instance generator takes as input the number of jobs n, and a maximum dura-
tion of operations pmax. The duration of the operations is drawn from the uniform distribution [1, pmax].
We generated 20 instances for each combination of parameters n ∈ {10, 30, 40, 50, 60, 70, 80, 90, 100} and
pmax ∈ {10, 100}.

In Table 12 we report the number of instances solved to optimality within the time limit of 1000
seconds (for the whole method) by both algorithms BB1 and BB2. Algorithm BB2 solves all instances
of the testbed within the time limit. The hardest instance is solved in 602 seconds.

Table 12: F2||
∑

Ci: Number of instances of our testbed solved to optimality within 1000 seconds. The hardest instance is
solved by BB2 in 602 seconds.

Alg. Duration n=10 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100

BB1 [1− 10] 20 20 20 20 20 20 20 18 18
BB1 [1− 100] 20 20 20 20 19 20 20 19 15

BB2 [1− 10] 20 20 20 20 20 20 20 20 20
BB2 [1− 100] 20 20 20 20 20 20 20 20 20

In Table 13 and Table 14 we give, respectively, the average running time of our branch-and-bound
algorithms, and the average number of nodes in the search tree. These average values are computed on
the instances solved to optimality by both methods.

As it can be seems from the results, algorithm BB2 performs better than BB1 in terms of computing
time, and explores up to 70 times less nodes for instances with 100 jobs and large durations. The difference
in the number of nodes can be explained by the fact that lower bound L2 is much stronger than L1 and
reduces the size of the search tree by several orders of magnitude for some instances. Moreover, it allows
an early detection of unfeasible subsequences that cannot be extended to complete sequences with each
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Table 13: F2||
∑

Ci: Average total running time (in seconds) of the algorithms. Time for initial heuristic, network building
and filtering is included. For BB2, the overall time including all major iterations of the tentative upper bound procedure
is reported.

Alg. Duration n=10 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100

BB1 [1− 10] 0.3 2.7 5.7 11.2 19.8 22.7 60.9 62.4 89.6
BB1 [1− 100] 0.2 3.4 8.7 16.9 33.3 60.8 113.6 339.1 455.6

BB2 [1− 10] 0.3 2.2 4.5 8.9 14.8 23.2 35.1 54.6 95.0
BB2 [1− 100] 0.3 3.0 8.2 17.4 34.2 57.3 91.8 153.6 215.8

Table 14: F2||
∑

Ci: Average number of nodes for the branch-and-bound algorithms (K: thousands, M: millions). For BB2,
the total number of nodes explored in all major iterations of the tentative upper bound procedure is reported.

Alg. Duration n=10 n=30 n=40 n=50 n=60 n=70 n=80 n=90 n=100

BB1 [1− 10] 0.0 K 0.7 K 5.0 K 38.5 K 124.7 K 777.1 K 7.0 M 20.3 M 15.3 M
BB1 [1− 100] 0.0 K 1.7 K 78.0 K 320.6 K 2.6 M 23.3 M 53.0 M 214.0 M 283.5 M

BB2 [1− 10] 0.0 K 0.0 K 0.2 K 2.5 K 2.5 K 45.7 K 236.1 K 1.3 M 8.6 M
BB2 [1− 100] 0.0 K 0.0 K 0.0 K 4.0 K 12.2 K 303.4 K 348.2 K 3.1 M 3.9 M

job processed exactly once. For example, if job j is already scheduled, and no path without job j exists
in G2 from current node to the sink node, then B¬j(v) = ∞ and the branch-and-bound node is pruned
by the bound. In less extreme scenarios, such paths exist but are all relatively costly, and B¬j(v) may
be sufficiently large to prune the node. The difference in the solution times is less. One can remark that
the distribution of the time consumed by each algorithm is not the same: for BB1, most of the time is
spent in the exploration of the search tree, while for BB2 the computational effort is balanced between
the filtering of G2 and the exploration of the search tree. The relatively small difference in solution times
is also due to the fact that calculating L2 takes linear time instead of constant time for bound L1. Note
that both algorithms BB1 and BB2 solved all the instances from the paper [13] (with up to 70 jobs)
within 1000 second.

6.2 Instances with setup times
For the problem F2|STSI |

∑
Ci, our solving methods are tested against the testbed of Gharbi et al.

[12]. Their generator takes as input a number n of jobs, and a factor K for setup times. The processing
time of each operation is drawn from the uniform distribution [1, 100], and one setup time is drawn
for each operation from the uniform distribution [1, 100K]. As mentioned in Section 2, we modify the
instances by integrating the setup time of the first operation of each job into its processing time. The
whole set of instances is composed of 50 instances for each combination of the number of jobs ranging
from 10 to 500, and K ∈ {0.25, 0.5, 0.75, 1}. We restrict our computational study to the 800 instances
with the number of jobs in n ∈ {60, 70, 80, 100} (the test set of [12] does not contain 90-job instances).

Table 15 reports the number of instances solved to optimality by both methods within 1000 seconds.
Algorithm BB2 significantly outperforms BB1. Moreover, algorithm BB2 solves all instances of the
testbed with up to 100 jobs in less than two hours: only four 100-job instances are not solved within one
hour; the hardest instance is solved in 6443 seconds.

The value of parameter K has no significant impact on the performance of algorithm BB1. However,
while BB2 solves 47 out of the 50 100-job instances within 1000 seconds when K = 0.25, it solves
only 26 of the instances when K = 1 in the same time. This can be explained by the wider range of
completion-to-completion lag in the later case, leading to more nodes in both networks G1 and G2. For
large instances, the larger size of G2 implies a consequent computational effort during the first iterations
of the subgradient procedure (when the network is only a little shrunk). This hypothesis is confirmed
by the fact that the root gap is not significantly impacted by parameter K, while the average time for
the subgradient procedure is increased by a factor two for 80-job and 100-job instances when increasing
parameter K from K = 0.25 to K = 1.

In Table 16 and Table 17 we give, respectively, the average running time of our branch-and-bound
algorithms, and the average number of nodes in the search tree. These results emphasize the importance

15



Table 15: F2|STSI |
∑

Ci: Number of instances of the testbed of [12] solved to optimality within 1000 seconds. The hardest
instance is solved by algorithm BB2 in 6443 seconds.

Alg. n=60 n=70 n=80 n=100

BB1 200 190 125 10
BB2 200 200 200 145

of having tight lower and upper bounds in our methods: algorithm BB2 performs two order of magnitude
less nodes than algorithm BB1.

Table 16: F2|STSI |
∑

Ci: Average total running time (in seconds) of the algorithms. Time for initial heuristic, network
building and filtering is included. For BB2, the overall time including all major iterations of the tentative upper bound
procedure is reported.

Alg. n=60 n=70 n=80 n=100

BB1 - Avg. on solved instances 79.6 280.3 393.9 615.8
BB2 - Avg. on instances solved by BB1 99.5 162.6 235.9 478.8

BB2 - Avg. on all instances 99.5 168.6 287.18 935.2

Table 17: F2|STSI |
∑

Ci: Average number of nodes for the branch-and-bound algorithms (K: thousands, M: millions). For
BB2, the total number of nodes explored in all major iterations of the tentative upper bound procedure is reported.

Alg. n=60 n=70 n=80 n=100

BB1 - Avg. on solved instances 30.4 M 142.6 M 216.2 M 301.1 M
BB2 - Avg. on instances solved by BB1 125.7 K 310.6 K 626.1 K 822.0 K

BB2 - Avg. on all instances 125.7 K 369.2 K 2.4 M 42.6 M

7. Conclusions

In this paper, we proposed improved branch-and-bound algorithms for the flowshop problem on two
machines with minimum flow time criterion, as well as for its extension with sequence-independent setup
times. Our algorithms are based on large-scale network flow formulations of the problem. At the root
node, a subgradient procedure is used to compute a very strong Lagrangian dual bound. To reduce
the size of the network and improve the dual bound, a filtering technique (combined with the use of a
tentative upper bound) and dominance rules are exploited (including a memory based dominance rule).
Lagrange multipliers are not updated beyond the root node, which allows us to speed-up the calculation
of the lower bound at non-root nodes of the search tree.

Our best algorithm is able to solve all tested 100-jobs instances coming from the literature or generated
in the same way as in the literature. This is a significant improvement over the best known algorithm
dedicated to the special case without setup times, which cannot solve instances with more than 60 jobs
with small processing times and with more than 45 jobs with large processing times, as well as for the
case with setup times for which the best published method cannot solve instances with more than 35
jobs.

Future research directions include the use of the Successive Sublimation Dynamic Programming [17,
24] algorithm to find an optimal feasible solution instead of branch-and-bound algorithms. It would also
be interesting to investigate the possibility of applying similar approaches to more general problems (for
example with general total cost functions or more machines) using adapted network representations of
the problems.
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