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Abstract

In this paper, we address a multi-activity tour scheduling problem with time
varying demand. The objective is to compute a team schedule for a fixed
roster of employees in order to minimize the over-coverage and the under-
coverage of different parallel activity demands along a planning horizon of
one week. Numerous complicating constraints are present in our problem:
all employees are different and can perform several different activities during
the same day-shift, lunch breaks and pauses are flexible, demand is given
for 15 minutes periods. Employees have feasibility and legality rules to be
satisfied, but the objective function does not account for any quality mea-
sure associated with each individual’s schedule. More precisely, the problem
mixes simultaneously days-off scheduling, shift scheduling, shift assignment,
activity assignment, pause and lunch break assignment.

To solve this problem, we developed four methods: a compact Mixed
Integer Linear Programming model, a branch-and-price like approach with
a nested dynamic program to solve heuristically the subproblems, a diving
heuristic and a greedy heuristic based on our subproblem solver. The com-
putational results, based on both real cases and instances derived from real
cases, demonstrate that our methods are able to provide good quality so-
lutions in a short computing time. Our algorithms are now embedded in a
commercial software, which is already in use in a mini-mart company.
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1. Introduction

Employee scheduling is an important issue in retail (see [1]), as person-
nel wages account for a large part of their operational costs. This problem
raises considerable computational difficulties, especially when certain fac-
tors are considered, such as employee availability, fairness, strict labor rules,
highly variable work demand, mixed full and part-time contracts, etc. Since
the seminal work of Dantzig [2], a large quantity of research papers have
developed models and methods to assist managers and planners in their em-
ployee scheduling tasks (more than 300 papers published between 2004 and
2012 were surveyed in [3]). For a comprehensive literature review of classical
studies on this problem, we refer to [4].

In this paper, we study a real-life multi-activity tour scheduling problem
with highly heterogeneous employees and flexible working hours. Given a
fixed set of employees, the objective is to construct their work schedule or
planning that minimizes the distance to the ideal coverage of the demand.
Numerous complicating factors described in the literature are taken into ac-
count and, to the best of our knowledge, this paper is one of the first attempts
(in parallel with [5]) to combine days-off scheduling, shift scheduling, shift
assignment, activity assignment, pause and lunch break assignment.

Several features of our problem are still considered as major issues in
the recent literature [3]: individual constraints and flexibility of employees,
integrated days-off, shift scheduling and assignment [6] and multi-activity as-
signment [7, 8, 9]. Although the lunch break assignment between two times-
lots is taken into account in most research papers, pause assignment during
activities themselves remains a gap in the academic literature (see [10]). To
our knowledge, only [11] deals with both types of breaks at the same time.

Although integer linear programming (ILP) models exist for this family
of problems, they cannot be used directly to solve large scale problems with
many constraints. Therefore, several works propose heuristics based on those
ILP models to reduce their computational burden. Heuristic methods can
be obtained by applying a hierarchical decomposition (see e.g. [12]). First,
good shifts are computed, and then employees are assigned to the shifts in a
second phase. Unfortunately, this technique cannot be applied directly to our
problem, where each employee can change activity during his shift and has his
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very specific features such as availabilities, skills and pre-assignments. When
the time horizon is large, and the problem can be solved for a smaller time
horizon (typically one week) without risking infeasibilities for the planning,
an interesting approach [13] is to use a rolling horizon heuristic, where the
problems related to smaller time horizons are solved in an iterative manner.
In our problem, the total number of worked hours for each employee is fixed,
which may lead such method to unfeasible schedules.

Many algorithms for solving such employee scheduling problems are based
on the column-generation approach (see for example [14]). Recent papers ad-
dress shift or tour scheduling problems with branch-and-price methods. Côté
et al. [15], Boyer et al. [16] and Restrepo et al. [5] use branch-and-price to
solve very general multi-activity shift scheduling problems. Their approaches
rely on the description of shifts using a context-free grammar. Another re-
cent work on the subject was realized by Brunner and Stolletz [17]. They
use an ad-hoc branch-and-price method to solve a tour scheduling problem.
The main ingredients of their approach are the use of variables related to
day-shifts, which are recombined in the master problem, and stabilization
strategies to reduce the number of column generation iterations. Another re-
cent work [18] uses branch-and-price in the context of employee-scheduling.
They use a nested dynamic programming approach, which is well-suited to
the structure of their problem.

Our approach is also based on a branch-and-price algorithm. However,
the problem settings do not allow us to use directly the algorithms from
[15, 16, 5]. In our problem, each employee is different, the time horizon
is much larger than the ones in [16, 15], and many constraints restrict the
construction of the shifts. This leads to a prohibitively large pricing problem
solution time. Since our aim is to handle real-life instances, we had to use a
heuristic version of the branch-and-price, where some constraints are treated
heuristically in the subproblem. The hierarchical structure of our shifts called
for an ad-hoc specific nested dynamic program (like [18]), which proves to be
much more efficient than a straightforward dynamic programming approach.

An important practical requirement is to find a good solution in a short
amount of time (a few seconds for 100 employees). To respect this time
limit, we designed a greedy algorithm based on our dynamic program. Also,
a diving heuristic is proposed for cases when we have several minutes of
computational time. Our algorithms have been implemented and are now
embedded in a commercial software. They are able to find feasible solutions
with good quality in a small or reasonable time for all test cases that were
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provided by our industrial partner. Our algorithms are now in use in a mini-
mart company.

In Section 2, we describe formally our problem. Our column generation
framework is presented in Section 3, followed by the nested dynamic program
used to solve the pricing problem in Section 4. Our heuristic algorithms
based on column generation are presented in Section 5, while computational
experiments on real and generated instances are reported in section 6.

2. Problem description

The problem consists in scheduling a fixed workforce to maximize the fit to
a given time-varying demand. The planning horizon consists of D consecutive
days. Each day is divided into the same number of successive time periods of
equal length (15 minutes in this paper). Set T represents the different time
periods in the discrete planning horizon. The set of heterogeneous employees
is denoted by E .

The whole set of activities that employees can carry out is divided into
two distinct groups: production activities A, related to work demands, and
pause activities P , related to non-productive activities. In our retail context,
a production activity can represent, for example, the welcome desk, a cash
desks line or a meat counter. Each employee e ∈ E has a set of produc-
tion activities A(e, t) that he/she can perform at time period t. Set P(e, t)
contains a pause if employee can take it at time period t; this set is empty
otherwise. The beginning and the length of a pause are strictly constrained
by the personalized pause policy of the company agreement. An employee
e is unavailable at time period t if A(e, t) ∪ P(e, t) = ∅. In this case, the
planning computed for employee e cannot contain any activity at time t.
Note that if an employee is unavailable the entire day, then a day-off has to
be scheduled. Some employees may be pre-assigned to activities for certain
time periods. In this case, finding a schedule that respects this pre-assigned
tasks is a part of the problem.

The work demand DEa,t represents the ideal number of employees needed
to realize production activity a in the best possible conditions during time
period t (see the representation given in Figure 1). Satisfying exactly the
demand is not mandatory : in most cases it is not possible. In this case,
either an under-coverage, or an over-coverage is produced. Furthermore, if
over-coverage (respectively under-coverage) exceeds the given threshold OVa,t

(respectively UNa,t), then it becomes critical and indicates that too many
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t

number of
employees

Figure 1: representation of the workload for a production activity : the ideal number of
employees required to cover the demand is in gray, the thresholds of critical undercoverage
and overcoverage are given respectively in black and white.

(respectively too few) employees have been assigned to activity a during
time period t.

Our objective is to construct a feasible team schedule that minimizes the
sum of the over-coverage and under-coverage costs for the whole planning
horizon and all production activities.

2.1. A hierarchical structure of a team schedule

A feasible solution follows a hierarchical structure (see Figure 2). For
each level of the hierarchy, there is an associated set of constraints. This
flexible structure does not rely on the use of a pre-computed day-shift or
individual planning library, since the number of possibilities is far too large.

team schedule

individual
planning

day-off

day-shift timeslot task
time

period

Figure 2: Hierarchical structure of a team schedule.

• A team schedule consists of a set of |E| valid employee plannings.
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• An individual planning for employee e is a set of successive day-shifts
and days-off over a week. Two consecutive day-shifts are separated by
a rest break.

• A day-off represents a special day when employee e does not participate
in any activity. Deciding whether or not an employee takes a day-off
is part of the optimization process (but some days-off are mandatory
if the employee is unavailable).

• A day-shift consists of one timeslot or two timeslots separated by a
lunch break.

• A timeslot is a non-empty sequence of tasks where different activities
are carried out successively and continuously. Two consecutive tasks
cannot be related to the same activity. The set of possible beginning
times of all timeslots of employee e is denoted as Be. This set contains
disjoint intervals, some of them are for the first timeslot of a day, others
are for the second.

• A task is a time interval where a single activity a is performed over
contiguous time periods. Activity a can be either a production activity
or a pause.

Example 1. For a given day, an employee works from 8.00 AM to 12.30
AM during his first timeslot, then takes a one-hour lunch break, and finally
does his second timeslot from 2.00 PM to 5.00 PM. During the first timeslot,
three tasks are performed : from 8.00 to 9.00 in activity a, then from 9.00 to
11.00 in activity b, and finally from 11.00 to 12.30 in activity c. His second
timeslot is devoted to the single task with activity b. According to the pause
policy, a single pause is assigned from 9:00 AM to 9.15 AM during the first
timeslot.

2.2. Planning constraints

In this paper, we take into account constraints that we have encountered
in real-life customer contexts. Each employee has his own set of planning
constraints and each constraint has its own parameters.

At each level of the team schedule hierarchy, duration and numerical con-
straints have to be satisfied. In Table 1, we list these constraints grouped by
levels of the hierarchy. Note that duration of entities possibly include breaks
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(pauses and lunches), whereas working time equals to the “net duration”
that excludes the breaks. Furthermore, an important feature in this problem
is that each employee has a target of weekly working time LEe that must be
met exactly.

We stress the fact that each employee is different: he/she has his own
skills, potential pre-assignment and availability for each time period, etc. A
day-shift designed for an employee e is not likely to be valid for another
employee e′.

A task of employee e ∈ E performing activity a ∈ A
duration ∈ JDK−e,a,DK+

e,aK

A timeslot of employee e ∈ E beginning at time b

beginning time b ∈ Be
finishing time ∈ JFO−eb,FO+

ebK
number of tasks ∈ JNO−eb,NO+

ebK

A day-shift of employee e ∈ E on day d

beginning time ∈ JBD−ed,BD+
edK

finishing time ∈ JFD−ed,FD+
edK

working time ∈ JLD−ed,LD+
edK

duration ≤ DD+
ed

number of timeslots ∈ J1, 2K
rest (lunch) duration
between timeslots ∈ JRD−ed,RD+

edK
minimum working time of
at least one timeslot ≥ TD−ed

A weekly individual planning of employee e ∈ E
target working time = LEe

number of day-shifts ∈ JNE−e ,NE+
e K

number of consecutive
day-shifts ≤ ME+

e

rest duration between
consecutive day-shifts ≥ RE−e

Table 1: Planning constraints over an horizon of one week
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2.3. Pause assignment policy

There are numerous pause assignment policies in practice. In this work,
we use the following rules. First, pauses are not included in the working time.
There is at most one pause assigned per timeslot. The pause is assigned if
and only if the duration of the timeslot is at least four hours (including the
pause duration). A pause must be located in the second third of its timeslot,
and its duration is exactly one time period. Some pauses can be initially set
at some time periods as pre-assignment constraints.

In our settings, each pause is positioned inside an existing task k. The
two parts of task k before and after the pause are considered as a unique
task, i.e. the two constitute a single task with one begining and one end.
Note that pauses are different from lunch breaks in our models: a lunch break
separates the day-shift into two timeslots.

3. Our column generation approach

The Dantzig-Wolfe decomposition [19] is well adapted to our scheduling
problem, since it consists of disjoint subproblems (one per employee) that are
linked by demand constraints. Similarly to [2], the subproblem for employee
e consists in designing a valid individual planning respecting the specific set
of constraints of employee e, but disregarding the requirements dealing with
the others plannings. The master problem combines the employee plannings
(columns) to minimize the total cost of over-coverage and under-coverage.

Another version of the set-covering model for the tour scheduling was pro-
posed by Stolletz [20]. Instead of using variables representing plannings, the
author uses (day-)shift variables that are combined in the master problem to
form valid plannings. Our problem settings do not allow easy recombinations
of shifts: all employees are different and therefore each planning is associ-
ated to exactly one employee, and the total number of working periods in a
planning is a fixed parameter. In our model, we keep the original planning
variables, similar to what is done in [2].

3.1. Master problem

Let X (e) denote the set of individual plannings (or columns) for employee
e and C(e) its column index set: X (e) = {Xc}c∈C(e). Each column Xc is
represented by a vector [xc,a,t]t∈T ,a∈A where:
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Objective
Value

under-coverage over-coverage

OVa,tUNa,t

ova,t ovcrita,t
una,tuncrita,t

Figure 3: Piecewise-linear objective function for a given production activity and time
period

xc,a,t =

{
1 if employee is assigned to activity a at time period t in planning c,

0 otherwise.

A binary variable qc, c ∈ C(e), e ∈ E , determines whether individual
planning Xc is chosen for employee e. Continuous variables ova,t, una,t, ov

crit
a,t ,

and uncrita,t , t ∈ T , a ∈ A, represent, respectively, over-coverage, under-
coverage, critical over-coverage, and critical under-coverage of the demand
of activity a at time period t.

The cost function is piecewise linear and its structure is represented in
Figure 3. It depends on slack variables related to demand constraints. For
a given solution {qc : c ∈ C(e), e ∈ E}, for a given production activity
a and a time period t, the coverage of the demand can be computed as
DEa,t −

∑
c xc,a,tqc. We distinguish over-coverage ova,t (resp. under-coverage

una,t) from critical over-coverage ovcrita,t (resp. critical under-coverage uncrita,t )
that occurs when the over-coverage (resp. under-coverage) is greater than
OVa,t (resp. UNa,t). When critical over/under-coverage is reached, a larger
unit cost has to be paid.

The master problem can be formulated as follows:
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min
∑
a∈A

∑
t∈T

COa · ova,t + COcrit
a · ovcrit

a,t + CUa · una,t + CUcrit
a · uncrit

a,t (1)

s.t.
∑
e∈E

∑
c∈C(e)

xc,a,t qc − (ova,t + ovcrit
a,t ) + (una,t + uncrit

a,t ) = DEa,t

∀t ∈ T ,∀a ∈ A(2)

∑
c∈C(e)

qc = 1 ∀e ∈ E (3)

una,t ≤ UNa,t, ∀t ∈ T ,∀a ∈ A (4)

ova,t ≤ OVa,t, ∀t ∈ T ,∀a ∈ A (5)

qc ∈ {0, 1} ∀e ∈ E ,∀c ∈ C(e) (6)

una,t, ova,t ∈ R+ ∀t ∈ T ,∀a ∈ A (7)

uncrit
a,t , ov

crit
a,t ∈ R+ ∀t ∈ T ,∀a ∈ A (8)

The piecewise objective function (1) minimizes the total cost of over-
coverage and under-coverage over the planning horizon and production ac-
tivities. Constant values COa ∈ R+ and CUa ∈ R+ represent, respectively,
the unitary costs of over-coverage and under-coverage for production activ-
ity a. Constant values COcrit

a ∈ R+ and CUcrit
a ∈ R+ represent respectively

the costs of critical over-coverage and under-coverage for production activ-
ity a. Critical over-coverage and critical under-coverage have larger costs:
CUa < CUcrit

a and COa < COcrit
a .

Constraints (2) link the decision variables and calculate the gap between
the produced work and the work demand DEa,t for each time period and each
production activity. Constraints (3) assign exactly one individual planning
to each employee e.

3.2. Pricing subproblems

The pricing problem decomposes into |E| independent subproblems (one
for each employee). Let [πa,t]t∈T ,a∈A be the dual values related to master
problem constraints (2) and [πe]e∈E be the dual values related to master
problem constraints (3). The subproblem for employee e consists in finding
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a feasible individual planning (denoted by vector X = [xa,t]t∈T ,a∈A) with the
minimum reduced cost. We use variables xa,t, which will be used to construct
the constant column descriptors xc,a,t in the master problem. Recall that
X (e) denotes the set of individual planning (or columns) for employee e.
The subproblem for employee e can be stated as follows.

min −πe −
∑
t∈T

∑
a∈A(e,t)

πa,t xa,t (9)

s.t. X ∈ X (e) (10)

3.3. Acceleration strategies

Acceleration techniques are key elements for the efficiency of our column
generation approach. Several papers list strategies for this purpose (see e.g
[21]), and more specifically for employee scheduling problems in [17] and [22].
We used the following strategies.

1. Instead of adding one column with the best reduced cost, we add to
the restricted master problem several negative reduced cost columns
at each iteration. Practically speaking, at each ieration of the column
generation method, we add the best column found for each employee
if it has a negative reduced cost. This means that at most |E| columns
are added at each iteration. This method dramatically decreases the
number of column generation iterations.

2. After solving a restricted master problem, if the number of variables
exceeds a given threshold (more than 5000 columns in practice), then
we delete all variables with a reduced cost exceeding 10−12.

3. The lagrangian lower bound is computed at each iteration to stop the
algorithm earlier if this bound and the solution value of the restricted
master are equal. The lagrangian lower bound is computed as follows.
Let OPT (RMP ) be the optimum of the current reduced master prob-
lem and RC(SPe) be the best reduced cost of a variable generated by
subproblem e at the current iteration. The lagrangian lower bound is
equal to OPT (RMP )−

∑
e∈E RC(SPe).

We have also tried to apply dual price smoothing stabilization [23] in
order to accelerate column generation. However, it did not have a clear posi-
tive impact on the solution time. Note that [17] reports very good speed-ups
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from stabilized column generation in a branch-and-price algorithm for a sim-
ilar shift scheduling problem. We conjecture that the explanation for this
different stabilization impact comes from the presence of the total work-
ing time constraint in our variant of the problem. Preliminary experiments
showed that the dual price smoothing stabilization improves a lot the column
generation solution time once this constraint is removed.

We also tried to solve only one pricing subproblem at each step (by con-
sidering only one employee), or to add only the column of best reduced cost
among all subproblems. In both cases, the method was less efficient. This
can be explained by the fact that solving the master problem takes a large
amount of time. Moreover, several subproblems are solved in parallel, which
helps reducing the time spent to solve all subproblems.

4. A nested dynamic program for the pricing subproblem

A pricing subproblem corresponds to finding the best individual planning
for one employee according to his set of constraints. In this section, we discuss
two possible ways from the literature to formulate this problem. Then we
present our nested dynamic programming algorithm.

4.1. Limits of the resource constrained shortest path formulation

The pricing subproblem can be formulated as a resource-constrained short-
est path problem (RCSPP) in a directed acyclic graph (DAG). In this DAG,
each arc is characterized by a cost to use it and a set of resource consump-
tions while each node is characterized by a position in time and an amount of
resource consumption already used for each resource. The objective is to find
a path from a source node to a sink node that minimizes the overall cost and
satisfies the resource consumption bounds. In [24], the authors present an
exact dynamic programming algorithm based on relaxations and alternated
forward and backward searches to solve shortest path problems involving
a huge number of local resource constraints. This algorithm is much more
efficient when only upper bounds are considered. When both lower and up-
per bounds co-exist, the dominance relations, used to reduce enumeration,
are weaker. Another recent work [25] propose an exact method capable of
handling large-scale networks in a reasonable amount of time.

In our problem, we have a large number of lower and upper bounds for the
resource consumption, and some arc costs are negative. This weakens con-
siderably the dominance rules used in the solution methods for the resource-
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constraint shortest path problem. Preliminary experiments confirmed that
this approach was not efficient for our problem.

4.2. Limits of the grammar-based formulation

The structure of individual plannings makes the subproblem suitable for
a solution method that uses context-free grammars, like it is done in [15, 16]
for a shift scheduling problem (horizon with a single day) and in [5] for a tour
scheduling problem (horizon of 7 days). Namely, for each employee e ∈ E
we can define a grammar which describes the set of all valid plannings for
e. Based on this grammar, a directed acyclic hyper-graph (called graph with
or-nodes and and-nodes in [16]) can be constructed. Every unit flow in this
hyper-graph defines a feasible individual planning for e. So the search for an
individual planning with the best reduced cost can be done using a dynamic
programming algorithm that seeks a min cost unit flow in the hyper-graph.

We have performed preliminary experiments with this approach and ob-
tained the following results. A considerable number of bound constraints
(presented in Table 1) and a long time horizon result in a huge hyper-graph.
Therefore, the construction of this hyper-graph takes a large amount of time,
making it impossible to embed the grammar-based dynamic program in a fast
heuristic. Moreover, even if the graph is constructed, this algorithm takes
too much time to be called at every column generation iteration to solve the
subproblem.

Therefore, we designed a nested dynamic programming algorithm. In
order to reduce its running time, we heuristically remove some states, as it
is explained below.

4.3. A nested dynamic programming algorithm

The specific structure of our problem leads to the following observations.

• There are a large number of resource constraints, but only a subset of
them are active at a given node.

• Many paths share identical subpaths. Due to the hierarchical structure
of the planning, the best day-shift for a given day is likely to be used
in many non-dominated partial solutions.

This led us to design an alternative approach based on a nested dynamic
program. A relevant and similar approach is described by [18] to find the
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individual
planning

day-off

day-shift timeslot task
time

period

Figure 4: Nested dynamic programming segmentation.

best individual plannings in a nurse rostering problem by using 3 levels and
2 segmentations. We call segmentation the phase where levels k and k − 1
are combined. If the number of levels is z, then the number of segmentations
should be z − 1. In the first segmentation, the method combines day-shifts
to design the best feasible sequence, this sequence is completed at the end
with days-off to find the best feasible blocks of workdays. In the second
segmentation, it combines the block of workdays to get the best individual
planning.

We have adapted the nested method to the specific features of our prob-
lem by using 5 levels and 4 segmentations (Figure 4). For each employee e,
we build an individual planning Xc ∈ X (e) by combining day-shifts consti-
tuted by one or several timeslots, themselves composed of tasks. To manage
easily path dominance rules and symmetries, the dynamic programming al-
gorithm is segmented into several sub-problems according to the hierarchical
structure of the planning. At each level, the design of a given entity consists
in combining the valid entities of the level immediately below.

The bottom-up presentation of the method consists in calculating the
best reduced costs of the following entities: task, timeslot, day-shift and
individual planning.

4.3.1. Reduced cost of a task

For an employee e ∈ E , let αe(b, f, a) be the reduced cost of the task in
which the employee starts activity a ∈ A at period b, and finishes it at period
f . Note that this task is valid for the employee, if it respects the duration
bounds and employee skills and pre-assignments. We set the reduced cost of
an invalid task to +∞. Then, the formula for the reduced cost calculation
is:
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αe(b, f, a) =


−
∑f

t=b πa,t, if {f − b+ 1} ∈ [DK−ea,DK+
ea],

a ∈ A(e, t),∀t ∈ [b, f ];

+∞, otherwise.

(11)

4.3.2. Reduced cost of a timeslot

For an employee e ∈ E , let β̄e(b, f, n, a) be the best reduced cost of a
partial timeslot, which starts at period b, finishes at period f , contains a
sequence of n consecutive tasks, the first of which does not perform activity
a. The following recursion formula is used for the reduced cost calculation:

β̄e(b, f, n, a) =


min
a′ 6=a
{αe(b, f, a′)}, if n = 1;

min
f ′∈[b,f−1],

a′ 6=a

{αe(b, f ′, a′) + β̄e(f
′ + 1, f, n− 1, a′)} otherwise.

We denote β̄e(b, d, n,−) the best reduced cost without imposing the con-
straint on the first task activity:

β̄e(b, f, n,−) = min
a∈A

βe(b, f, n, a).

Let now β̂e(b, f) be the best reduced cost of a complete timeslot, which
starts at period b and finishes at period f . Note that this timeslot is valid
for the employee, if its starting time is in Be, it respects the completion and
duration bounds, and the bounds on the number of tasks it contains. We
set the reduced cost of an invalid timeslot to +∞. Then, the formula for the
reduced cost calculation is:

β̂e(b, f) =

{
min

n∈[NO−eb,NO+
eb]
{β̄e(b, d, n,−)}, if b ∈ Be, f ∈ [FO−eb,FO+

eb],

+∞, otherwise.
(12)

Note that at this moment the pause policy may not be respected, as until
now pauses are not included in timeslots. After calculating values β̂, every
timeslot without a pause and lasting more than four hours is replaced by
one timeslot with a pause. For practical purposes, this is done in a greedy
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manner: we put the pause to a period in the second third of the timeslot
such that its reduced cost is minimized. The pause replaces the corresponding
work period such that the duration of timeslot is not increased. Note that this
greedy approach for inserting pauses makes the whole dynamic programming
procedure heuristic (sub-optimal solutions may be generated).

If a pre-assigned pause is contained inside a timeslot, and it is not posi-
tioned in the second third of it, such a timeslot is declared invalid, and its
cost is set to +∞. The same happens if the employee cannot take any pause
(P(e, t) is empty for all time moments in the second third of the timeslot).

Let βe(b, f) be the best reduced cost of a timeslot, which starts at period
b, finishes at period f , and respects the pause policy. Let `(b, f) be this
timeslot’s working time, which can be uniquely determined from its duration
(f − d+ 1) according to the pause policy.

4.3.3. Reduced cost of a day-shift

For an employee e ∈ E , let δκe (d, b, f, `) be the best reduced cost of a
day-shift of day d that starts at period b, completes at period f , contains
κ timeslots and ` working periods. A valid day-shift should satisfy starting,
completion, working time bounds and the daily pre-assignments. Let set Ωed

contain the set of valid triples (b, f, `):

Ωed =

{
(b, f, `) :

b ∈ [BD−ed,BD+
ed], f ∈ [FD−ed,FD+

ed],
` ∈ [LD−ed,LD+

ed], f − b+ 1 ≤ DD+
ed

}
.

The formula for the day-shift containing one timeslot is:

δ1
e(d, b, f, `) =


βe(b, f), if (b, f, `) ∈ Ωed, ` = `(b, f);

+∞, otherwise.
(13)

The formula for the day-shift containing two timeslots separated by a
lunch break is:

δ2
e(d, b, f, `) = min

f ′,b′



βe(b, f
′) + βe(b

′, f), if (b, f, `) ∈ Ωed,
` = `(b, f ′) + `(b′, f),
{b′ − f ′ − 1} ∈ [RD−ed,RD+

ed],
`(b, f ′) ≥ TDed or
`(b′, f) ≥ TDed;

+∞, otherwise.

(14)

16



The best reduced cost δe(d, b, f, `) of a day-shift with one or two timeslots
can now be computed :

δe(d, b, f, `) = min
{
δ1
e(d, b, f, `), δ

2
e(d, b, f, `)

}
.

4.3.4. Reduced cost of an individual planning

In this step, we seek the best combination of day-shifts and days-off that
designs a valid individual planning for employee e given its total working
time LEe and its number of day-shifts in [NE−e ,NE+

e ]. This is also called a
tour scheduling problem for a single employee.

For an employee e ∈ E , let η̄0
e(d, n, `) be the best reduced cost of a par-

tial employee planning for the first d days, which contains n day-shifts and
` working periods, and ends with a day-off. Let also η̄1

e(d, f, n, `) be the
best reduced cost of a partial employee planning for the first d days, which
contains n day-shifts and ` working periods, and ends at period f with a
day-shift. These reduced costs are calculated using the following recursions.
We set η̄0

e(0, 0, 0) = 0, all other values η̄0
e(0, f, `) are set to +∞. Also we set

η̄1
e(d, f, n, `) = +∞ if d ≤ 0 or f 6∈ [FD−ed,FD+

ed].
The formula for η̄0

e(d, n, `) is the following:

η̄0
e(d, n, `) = min

{
η̄0
e(d− 1, n, `),min

f

{
η̄1
e(d− 1, f, n, `)

}}
The formula for η̄1

e(d, f, n, `), f ∈ [FD−ed,FD+
ed], is:

η̄1
e(d, f, n, `) = min

{
η̂0
e(d, f, n, `), min

f ′∈[FD−e,d−1,FD+
e,d−1]

{
η̂1
e(d, f

′, f, n, `)
}}

, (15)

where η̂0
e(d, f, n, `) is the best reduced cost with the condition that the em-

ployee had a day-off on day d−1, and η̂1
e(d, f, f

′, n, `) is the best reduced cost
with the condition that the employee had a day-shift of day d − 1 finishing
at time f ′.

η̂0
e and η̂1

e are computed as follows:

η̂0
e(d, f, n, `) = min

b∈[BD−ed,BD+
ed],

`′∈[LD−ed,LD+
ed]

{
η̄0
e(d− 1, n− 1, `− `′) + δe(d, b, f, `

′)
}
,

η̂1e(d, f ′, f, n, `) = min
b∈
[
max{f ′+RE−e , BD−ed}, BD+

ed

]
,

`′∈[LD−ed,LD+
ed]

{
η̄1e(d− 1, f ′, n− 1, `− `′)
+δe(d, b, f, `

′)

}
. (16)
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During this step, the algorithm deals also with the maximum number of
successive day-shifts without day-off. In recursion (15), η̄1

e(d, f, n, `) should
be written η̄1

e(d, f, n,m, `), where m is the number of consecutive day-shifts
ending at day d such that m ≤ ME+

e . However, we decided to omit the full
recursion for the sake of simplification.

The best reduced cost ηe of an individual planning for employee e can be
computed using the following formula:

ηe = min
n∈[NE−e ,NE+

e ]

{
η̄0
e(D, n,LEe), min

f∈[FD−D,FD+
D]
η̄1
e(D, f, n,LEe)

}
.

4.3.5. Accelerating the algorithm heuristically

Our pricing algorithm is already a heuristic because of the simplified
handling of the pauses. We now introduce a slight restriction of the state
space, which also makes the method heuristic. As was mentioned above, the
nested dynamic programming algorithm takes too much time because of a
large number of states. In order to accelerate the algorithm, we heuristically
delete some states. Namely, the set of states {δe(d, b, f, `)}∀d,b,f,` is reduced
to the set of states {δe(d, b, `)}∀d,b,` in the following way:

δe(d, b, `) = min
f∈[FD−ed,FD+

ed]
δe(d, b, f, `).

Let f ∗(d, b, `) = argminf δe(d, b, f, `). Then the formula (16) is changed
to

η̂1
e(d, f

′, f, n, `) = min
b∈
[

max{f ′+RE−e , BD−ed}, BD+
ed

]
,

`′∈[LD−ed,LD+
ed]: f∗(d,b,`′)=f

{
η̄1
e(d− 1, f ′, n− 1, `− `′)

+δe(d, b, f, `
′)

}
.

5. Column-generation based algorithms

At the end of the column generation method, the obtained solution may
be non-integer. To get a good integer solution, we use an enumerative
branch-and-price like method. By abuse of language, we will use the term
branch-and-price even if the pricing subproblem is solved heuristically. Our
branch-and-price is not always able to terminate within the time limit. Since
our algorithms are designed for practical use, we also propose two different
heuristics to find good solutions in less time.
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5.1. Branch-and-price algorithm

Our branching scheme consists in fixing a variable xc,a,t for all candidate
columns Xc related to a given employee e. In the formulation, this branching
is accomplished as follows:

• xc,a,t = 0 forbids employee e to be assigned to activity a at time period
t. We delete all columns Xc, c ∈ C(e), in which activity a is per-
formed during period t. In the pricing subproblem for employee e, the
corresponding transition is forbidden.

• xc,a,t = 1 assigns employee e to production activity a at time period t.
We delete all columns Xc, c ∈ C(e), in which activity a is not performed
at period t. The subproblem for employee e is modified by assigning a
very large negative cost to the corresponding transition.

When branching, we choose the triplet (employee e, production activ-
ity a and time period t) which is the most fractional, i.e. for which |0.5 −∑

c∈C(e) xc,a,tqc| is minimum (where qc is determines whether individual plan-

ning Xc is chosen for employee e, as defined above). We use a depth-first
strategy to explore the search tree. We tried different strategies (sometimes
mixed together): branching on the slack variables (under or over-coverage
variables), or branching on entities (forcing/forbidding an employee to work
during a given day or time-slot). However, we do not have convincing results
which show an advantage of these strategies over the scheme above.

The time allowed at each node of the branch-and-bound tree was limited
to one hour. In rare cases, this results in premature termination of column
generation at some nodes. In that case, our heuristic branch-and-price con-
tinues and carries out its branching strategy.

The heuristic dynamic programming algorithm for the subproblem makes
our branch-and-price algorithm also heuristic. This means that theoretically
there exist test instances for which the solution found is not optimal even
after termination of the branch-and-price. However, for our test instances
that are solved both by the branch-and-price and the MIP solver applied to
the compact formulation, the obtained solution values are equal.

5.2. Diving heuristic

The diving heuristic is an algorithm in which the branch-and-price tree is
searched partially (see [26] for details). As usually done in diving heuristics,
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we use a different branching strategy for the diving, as the goal here is not
to have a balanced search tree, but a good feasible solution quickly. As
suggested in [26], at each node, after the termination of column generation,
we select and fix a columnXc′ , i.e. we select a complete planning for employee
e′ such that c′ ∈ C(e′). After that, all columns Xc, c ∈ C(e′), are excluded
from the problem, demands DEa,t are updated according to the fixed partial
solution. Then, the subproblem for employee e′ is not called in descendant
nodes.

As no backtracking occurs, the method stops after at most |E| nodes. In
our algorithm, we select the column related to the variable with the largest
value in the solution of the master problem.

To obtain a fast heuristic, we introduce the time limit for column gener-
ation at each node of the diving heuristic. When this time limit is reached,
we use the current master solution values for fixing the next column, even if
this solution is not optimal.

5.3. Greedy heuristic based on the nested dynamic program

When the time limit is set to a handful of seconds, the diving heuristic
may not be able to terminate. We propose a simple heuristic based on our
pricing subproblem to find good solutions in a small amount of time. In
this heuristic, the employee plannings are still computed by our dynamic
program, but the plannings are individually generated one by one and added
iteratively to the solution. Here, the objective function of the subproblems is
based on the residual work demand REa,t, which corresponds to the remaining
work demand, taking into account the individual plannings already in the
current partial solution. Each time an individual planning is computed, the
residual work demand REa,t is updated, and the method is run again with
the remaining set of employees.

At initialization, REa,t have the same value as the work demand DEa,t

and they are updated each time a planning is added or deleted in the team
schedule. In the objective function of the subproblem for employee e, the
cost π̂a,t of variable xa,t, which determines whether activity a is performed
during time period t, is calculated by the relation:

π̂a,t =

{
−REa,t/DEa,t − 1 if REa,t ≥ 0

−REa,t/DEa,t otherwise
(17)

The greedy heuristic is presented formally in Algorithm 1. The first iter-
ation is complete when the first complete solution is constructed. Then we
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Algorithm 1:

1 Input: work demand DEa,t ;
2 Best found solution is empty: Ωbest ← ∅;
3 cost(Ωbest)← +∞;
4 Partial solution is empty: Ω← ∅;
5 E ′ ← Sort employees set E ;
6 for i = 1, ..., nbIterations do
7 foreach employee e ∈ E ′ do
8 Delete current planning for employee e in partial schedule (if

exists): Ω← Ω \ {Xc}, c ∈ C(e) ;
9 Compute the residual work demands ∀a, t:

REa,t ← DEa,t −
∑

X∈Ω xa,t;
10 Compute π̂a,t ∀a, t, according to (17);
11 Solve subproblem with costs π̂a,t for employee e to obtain a

planning Xc, c ∈ C(e);
12 Assign Xc to partial solution: Ω← Ω ∪ {Xc};
13 end
14 if solution Ω is complete and cost(Ω) < cost(Ωbest) then
15 Ωbest ← Ω;
16 end

17 end
18 return best found solution Ωbest ;

perform additional iterations in which, for each employee, the current individ-
ual planning is deleted from the solution and another planning is computed
based on the updated residual work demand. Initial employees sorting, ob-
jective function costs and the number of iterations are parameters of the
algorithm.

Despite our efforts, we did not find a particular sorting algorithm for
employees that gave better results than others on average. So we use Al-
gorithm 1 several times with different random orders on the employees, and
keep the best result found. Empirical tests suggest that after three iterations,
the solution is usually not improved anymore.
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6. Computational experiments

Our four methods, solving MIP compact model by a commercial solver,
the branch-and-price algorithm, the diving heuristic, and the greedy heuristic
have been tested on both real data coming from a customer and randomly
generated data. The MIP compact model is described in the electronic sup-
plement.

6.1. Customer data

Data |E| |A| LBTriv greedy dive120 dive600 dive1800 B&P LBLagr compact
A1-7 5 1 204 390 335 335 335 325 321,5 325
A1-9 5 1 288 423 299 299 299 299 299 299
A1-0 10 1 334 528 393 393 393 393 393 393
A1-3 10 1 152 326 228 228 228 228 225,55 228
A3-5 25 3 680 1077 832 834 832 824 T 819,7 890 T
A3-9 25 3 866 1181 984 960 987 954 T 951 999 T
A3-1 30 3 880 1285 970 962 954 954 T 935,4 1095 T
A3-2 30 3 358 931 592 551 543 529 T 487,4 739 T
A5-5 42 5 140 1111 918 909 852 852 T 804 3179
A5-6 42 5 303 1254 1029 942 925 925 T 883,6 1298
A5-0 45 5 404 1713 1522 1510 1504 1504 1504 -
A5-1 45 5 412 1793 1529 1525 1533 1513 T 1507,7 -

Table 2: Customer data: solution values obtained by our methods. ”T”: branch-and-price
method and the MIP solver did not terminate within 24 hours of calculation. In this case,
the solution value is the best one found ; ”-”: the MIP solver did not find any feasible
solution within the time limit. The best found dive solution is used for initialisation of
the B&P.

Our customer data comes from a company of mini-marts. All instances
are defined over one week divided into 15 minutes periods. In the customer
data, almost 10% of employees work only on Saturday, while the others may
work at most five days. Around 70% of the employees can only perform one
type of production activity. Most of the employees have a small flexibility
in their schedule: general beginning and finishing time of timeslots can be
shifted by one hour (for instance, the first timeslot of a day-shift starts be-
tween 8.00 AM and 9.00 AM for a given employee, but this range can be
different for another day).
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Data |E| |A| greedy dive120 dive600 dive1800 B&P col. gen. compact
A1-7 5 1 0,3 4,5 3,8 3,8 44,5 2,2 9,2
A1-9 5 1 0,4 6,7 5,7 5,4 11,3 11,3 7,6
A1-0 10 1 0,6 8,4 7,5 7,5 3,9 3,9 31135
A1-3 10 1 0,5 13,6 12,8 12,5 2045 12,5 8962
A3-5 25 3 1,6 118 482 833 T 105 T
A3-9 25 3 2,0 118 574 1164 T 117 T
A3-1 30 3 2,2 119 520 1163 T 546 T
A3-2 30 3 2,2 127 617 1615 T 2642 T
A5-5 42 5 2,8 131 592 1650 T 3663 T
A5-6 42 5 2,7 135 592 1679 T 1244 T
A5-0 45 5 2,3 123 527 1369 2166 2166 -
A5-1 45 5 2,2 125 529 1102 T 177 -

Table 3: Customer Data. Running time (in seconds) of our methods (B&P time does not
include the time needed to find the initial solution). ”T”: our branch-and-price method
and CPlex for solving the compact model did not terminate within 24 hours of calculation.
In this case, the solution value is the best one found ; ”-”: that the MIP solver failed due
to memory issues.

The cost coefficients in the objective function are the following: over-
coverage COa = 1, critical over-coverage COcrit

a = 2, under-coverage CUa =
2, critical under-coverage CUcrit

a = 5. For a work demand of DEa,t, critical
over-coverage occurs when strictly more than OVa,t = DEa,t + 1 employees
are assigned to production activity a at time period t, while critical under-
coverage occurs when strictly less than UNa,t = dDEa,t/2e employees are
assigned to the activity. We use a representative set of twelve customer data.
They have a different number of employees |E|, and a different number of
production activities |A|.

We ran different methods on the customer data: the greedy heuristic
(section 5.3), dive120, dive600 and dive1800 (the diving of section 5.2 with
the cumulated column generation time limit of 120, 600 and 1800 seconds,
respectively) and the branch-and-price algorithm (section 5). In the method
diveT , we limit the column generation time at each node to T/|E| seconds.
As the diving requires at most |E| nodes for a new solution, diveT lasts at
most T seconds (plus additional time for initialization of the different nodes).
The best solution found by heuristics dive120, dive600 and dive1800 is used
for the initialization of the branch-and-price. The time reported for the
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branch-and-price does not include the time spent by the heuristic. All tests
were run using a standard PC of the experimental platform ”Plafrim” (see
Acknowledgement) with 4 GBits of memory over four cores (four subproblems
are solved in parallel). All methods were implemented in Java and IBM Cplex
12.6 was used for solving the MIP and the linear master problems.

Tables 2 and 3 summarize the results obtained (respectively the objec-
tive function value of the solution found, and the execution time) with our
customer data. In column ”LBLagr”, we report the Lagrangian lower bound
(see subsection 3.3) computed at the root node of the B&P. Recall that |E| is
the number of employees, and |A| the number of production activities. Col-
umn ”LBTriv” is a trivial lower bound computed in the following way. Let
L be the cumulated working time of the team (measured in time periods):
L =

∑
e∈E LEe. Let also D be the cumulated demand (measured in time

periods): D =
∑

t∈T
∑

a∈ADEa,t. If D ≥ L then the solution value cannot
be less than LBTriv = mina∈A{CUa} × (D − L). If D < L then the solution
value cannot be less than LBTriv = mina∈A{COa} × (L − D). The trivial
lower bound is quite far from the Lagrangian bound for the customer data
instances with 5 activities.

The running time of the greedy heuristic is very small, even for instances
with 45 employees. The difference between the value of the greedy solution
and the optimal one can be large. However, recall that simple constructive
heuristics may fail to find feasible shifts, since assigning too much or too
few hours at the begining of the week may not allow to find a solution that
respects all bound constraints. Moreover, the piecewise linear cost function
will take a large value even if most of the working demand is fulfilled.

The diving heuristics are much more effective to find near optimal solu-
tions for these instances. The relative gap of the dive120 heuristic with the
branch-and-price is greater than 10% only for two instances (A3 2 and A5 6).
It may happen that the diving gives better results when a smaller comput-
ing time is set (A3 5, A3 9 and A5 1). However, different experiments, not
reported here, showed that giving more time to the diving heuristic at each
node generally improves the result.

The branch-and-price method terminates for five instances out of twelve
within 24 hours of computation time. For three instances the bounds are
tight at the root node, for two instances the root ”lower bound” was improved
(recall that the pricing is performed heuristically), for one instance the initial
upper bound was improved, and for one instance both bounds were improved
by branch-and-price. For five instances out of the remaining six, branch-and-

24



price improves the upper bound before hitting the time limit. Note that when
the MIP solver is able to find an optimal solution, its value is equal to the
solution value found by the heuristic branch-and-price.

Over the twelve instances, the compact method gives optimal solutions for
the four smallest ones. Feasible solutions were found within 24 hours for all
instances, except for the two largest ones. Actually, the higher the number of
employees is, the lower is the quality of the found solution. Furthermore, we
note that the MIP solver is outperformed by the heuristic dive120 in terms
of execution time and quality of the solution.

6.2. Generated data

Experiments show that our algorithms have a good behavior on confiden-
tial customer data. In order to allow a fair comparison with our methods, and
push further the analysis, we have designed a random data generator based
on our customer data experience. The setting of parameters is performed
using four following inputs: the number of employees |E|, the number of
production activities |A|, the flexibility index of employees F and the under-
coverage index G.

The planning horizon is fixed to 7 days, and time periods have a length
of 15 min. All employees are multi skilled, i.e. they can work in all pro-
duction activities. Costs of over-coverage (COa, COcrit

a ) and under-coverage
(CUa, CUcrit

a ) and related thresholds (UNa,t, OVa,t) are fixed as in the cus-
tomer data. Flexibility index F of employees affects all employee planning
constraints, limiting the accessible time periods. The higher this index is,
the higher is the number of allowed time periods for a given employee. For
example, all first timeslots must start between J8.00−R1 , 8.30 +R2K where
R1, R2 are random values uniformly distributed in {0, 15, ..., F ∗ 15}. Under-
coverage index G takes a value between 0 and 4 and determines the work
demand DEa,t. To create a work demand, a team with (|E| + G) employees
is initialized and planned in a random order with an initial random work
demand. Obtained plannings are thus used to define the work demand DEa,t

that corresponds exactly to the work capacity of the (|E| + G) employees.
We then randomly remove G employees in the team in such a way that the
work demand could not be covered by the final team of employees: results
will present under-coverage. Note that there exists a solution of value zero if
G = 0.

Tables 4, 5 and 6 sum up the results obtained with the generated data.
The results are reported in the same way as those obtained for the customer

25



D
at

a
|E
|
|A
|

G
F

L
B
T
r
iv

gr
ee

d
y

d
iv

e1
20

d
iv

e6
00

d
iv

e1
80

0
B

&
P

L
B
L
a
g
r

co
m

p
ac

t
d
st

1
10

1
0

0
0

15
0

0
0

0
0

0
d
st

2
10

1
0

8
0

18
7

3
0

0
0

0
0

d
st

3
10

1
1

0
26

0
26

0
26

0
26

0
26

0
26

0
26

0
26

0
d
st

4
10

1
1

8
26

0
32

0
27

2
27

2
27

2
26

0
26

0
26

0
d
st

5
10

1
2

0
36

0
36

0
36

0
36

0
36

0
36

0
36

0
36

0
d
st

6
10

1
2

8
44

0
49

7
44

0
44

0
44

0
44

0
44

0
44

0
d
st

7
25

3
0

0
0

90
27

6
9

6
T

0
L

0
d
st

8
25

3
0

8
0

54
5

27
4

20
8

18
0

18
0

T
0

50
72

T
d
st

9
25

3
1

0
26

0
27

5
26

0
26

0
26

0
26

0
26

0
26

0
d
st

10
25

3
1

8
22

0
59

3
37

3
32

8
28

6
28

6
T

22
0

83
95

T
d
st

11
25

3
3

0
54

0
54

0
54

0
54

0
54

0
54

0
54

0
54

0
d
st

12
25

3
3

8
62

0
85

7
65

0
65

0
65

0
63

5
T

62
3

77
8

T
d
st

13
40

5
0

0
0

18
0

18
0

99
66

66
T

0
12

T
d
st

14
40

5
0

8
0

82
9

58
9

45
1

36
0

36
0

T
0

-
d
st

15
40

5
3

0
58

0
70

9
58

6
58

0
58

0
58

0
58

0
58

9
T

d
st

16
40

5
3

8
46

0
10

08
78

4
64

6
58

9
58

9
M

46
3

-
d
st

17
40

5
6

0
11

60
11

60
11

60
11

60
11

60
11

60
11

60
11

63
T

d
st

18
40

5
6

8
12

00
15

15
13

50
12

27
12

27
12

15
M

12
06

-

T
ab

le
4:

G
en

er
at

ed
d

at
a:

so
lu

ti
on

va
lu

es
ob

ta
in

ed
b
y

o
u

r
m

et
h

o
d

s.
”
T

”
:

b
ra

n
ch

-a
n

d
-p

ri
ce

m
et

h
o
d

a
n

d
M

IP
so

lv
er

d
id

n
o
t

te
rm

in
at

e
af

te
r

24
h
.

In
th

is
ca

se
,

th
e

so
lu

ti
on

va
lu

e
is

th
e

b
es

t
o
n
e

fo
u

n
d

;
”
-”

:
M

IP
so

lv
er

d
id

n
o
t

fi
n

d
a
n
y

fe
a
si

b
le

so
lu

ti
o
n

w
it

h
in

th
e

ti
m

e
li

m
it

;
”L

”:
co

lu
m

n
ge

n
er

at
io

n
a
t

th
e

ro
o
t

n
o
d

e
d

id
n

o
t

co
n
ve

rg
e

w
it

h
in

1
h

o
u

r,
h

ov
ew

er
o
u

r
h

eu
ri

st
ic

b
ra

n
ch

-
an

d
-p

ri
ce

co
n
ti

n
u

es
an

d
ca

rr
y

ou
t

it
s

b
ra

n
ch

in
g

st
ra

te
g
y.

”
M

”
:

b
ra

n
ch

-a
n

d
-p

ri
ce

a
lg

o
ri

th
m

fa
il

ed
d

u
e

to
m

em
o
ry

is
su

es
.

T
h

e
b

es
t

fo
u

n
d

d
iv

e
so

lu
ti

on
is

u
se

d
fo

r
in

it
ia

li
sa

ti
on

o
f

th
e

B
&

P
.

26



D
at

a
|E
|
|A
|

G
F

gr
ee

d
y

d
iv

e1
20

d
iv

e6
00

d
iv

e1
80

0
B

&
P

co
l.

ge
n
.

co
m

p
ac

t
d
st

1
10

1
0

0
0.

3
10

.8
10

.0
10

.0
0.

2
0.

2
11

.1
d
st

2
10

1
0

8
0.

4
90

.1
42

6
80

2
0.

4
0.

3
10

42
d
st

3
10

1
1

0
0.

3
0.

7
0.

4
0.

3
0.

6
0.

6
4.

3
d
st

4
10

1
1

8
0.

4
5.

2
4.

5
4.

4
0

1.
7

49
d
st

5
10

1
2

0
0.

3
0.

6
0.

3
0.

2
0.

4
0.

4
3.

6
d
st

6
10

1
2

8
0.

3
5

4.
2

4.
1

1.
2

1.
2

35
d
st

7
25

3
0

0
0.

5
12

4
58

2
16

66
T

L
88

56
d
st

8
25

3
0

8
1.

0
13

0
62

9
17

73
T

29
83

T
d
st

9
25

3
1

0
0.

5
46

.1
56

56
.2

9
9

23
59

d
st

10
25

3
1

8
0.

9
12

6
60

6
16

74
T

10
3

T
d
st

11
25

3
3

0
0.

5
1.

9
1.

2
1.

2
1.

8
1.

7
24

93
d
st

12
25

3
3

8
0.

9
12

3
32

0
31

9
T

13
.9

T
d
st

13
40

5
0

0
0.

8
3.

4
61

9
17

44
T

27
94

3
T

d
st

14
40

5
0

8
1.

5
13

9
65

4
18

12
T

66
01

1
T

d
st

15
40

5
3

0
0.

9
11

7.
3

11
9

11
9

9.
3

9.
3

T
d
st

16
40

5
3

8
1.

5
14

0
63

5
18

27
M

93
6

T
d
st

17
40

5
6

0
0.

9
3.

3
2.

7
2.

7
3.

3
3.

3
T

d
st

18
40

5
6

8
1.

5
13

6
60

8
13

85
M

51
.3

T

T
ab

le
5:

R
u

n
n

in
g

ti
m

e
(i

n
se

co
n

d
s)

of
ou

r
m

et
h

o
d

s
(B

&
P

ti
m

e
d

o
es

n
o
t

in
cl

u
d

e
th

e
ti

m
e

n
ee

d
ed

to
fi

n
d

th
e

in
it

ia
l

so
lu

ti
o
n

).
S

y
m

b
ol

”T
”

in
d

ic
at

es
th

at
ou

r
b

ra
n

ch
-a

n
d

-p
ri

ce
m

et
h

o
d

a
n

d
C

P
le

x
fo

r
so

lv
in

g
th

e
co

m
p

a
ct

m
o
d

el
d

id
n

o
t

te
rm

in
a
te

w
it

h
in

24
h

ou
rs

of
ca

lc
u

la
ti

on
.

In
th

is
ca

se
,

th
e

so
lu

ti
o
n

va
lu

e
is

th
e

b
es

t
o
n

e
fo

u
n

d
.

S
y
m

b
o
l

”
L

”
in

d
ic

a
te

s
th

a
t

co
lu

m
n

g
en

er
a
ti

o
n

at
th

e
ro

ot
n

o
d

e
d

id
n

ot
co

n
ve

rg
e

w
it

h
in

1
h

ou
r,

h
ov

ew
er

o
u

r
h

eu
ri

st
ic

b
ra

n
ch

-a
n

d
-p

ri
ce

w
il

l
st

il
l

co
n
ti

n
u

e
a
n

d
ca

rr
y

o
u

t
it

s
b

ra
n

ch
in

g
st

ra
te

gy
.

S
y
m

b
ol

”M
”

in
d

ic
at

es
th

at
th

e
b

ra
n

ch
-a

n
d

-p
ri

ce
a
lg

o
ri

th
m

fa
il

ed
d

u
e

to
m

em
o
ry

is
su

es
.

27



cases. It transpires from our results that the structure of the data strongly
impacts the algorithms behavior. As one would expect, the computing time
depends on the number of employees to schedule, and the number of produc-
tion activities. Flexibility is also a difficulty factor: it increases the number
of possible shifts, and makes the dynamic program slower.

The tests on generated data confirm the conclusion drawn on the customer
data. We observe that the ”lower bound” obtained at the root node of the
heuristic branch-and-price still has a very good value, i.e. it is often close
or equal to the optimal solution or the best solution found, and the final
absolute gap is small, except for the instances with a large size, and a large
flexibility (dst8, dst10, and dst16).

The greedy heuristic is fast and the quality of the planning is good but
rarely optimal. The diving heuristic gives results that are close to those of the
branch-and-price in most cases (the results are even optimal for small data).
Similar to what happens with the customer instances, giving more time at
each node of the diving clearly improves the results on average, although it
may happen (dts7) that better results are obtained when less time is allowed.

A specificity of generated data instances is that the trivial lower bound
is very close to the Lagrangian one and the optimal solution. Moreover, the
bounds are equal for most of the instances. When this is the case, it is quite
easy to find an optimal dual solution π (optimal Lagrangian multipliers)
for the column generation algorithm. However, even when an optimal dual
solution is known, it takes a large number of iterations to find an optimal
primal solution of the linear relaxation of the master problem. This fact
explains why known stabilization techniques such as dual smoothing do not
improve convergence of column generation. They are aimed at stabilizing
around the best dual solution. This does not help in our case as the optimal
dual solution is already known.

7. Conclusion

In this paper, we describe efficient strategies for solving a real-life em-
ployee scheduling problem that mixes days-off scheduling, shift scheduling,
shift assignment, activity assignment, pause assignment and break assign-
ment. Our approaches are based on the Dantzig-Wolfe decomposition, and
we have successfully implemented a heuristic branch-and-price algorithm,
from which we derived a diving heuristic and a greedy algorithm. These
methods were tested on both customer and randomly generated data with
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excellent results. The computational experiments show that the proposed
approaches yield optimal or near optimal solutions in many cases.

The behavior of our methods raises several questions. Since classical
stabilization strategies were not able to improve the convergence of the algo-
rithm, we need a deeper analysis of the structure of the problem to come up
with new strategies dedicated to this kind of problems. As explained above,
stabilization techniques acting in the dual space have a limited impact on
the convergence. Therefore, an effort should be done in developing primal
stabilization strategies.

From a customer point of view, it would be interesting to consider the an-
nualized workforce allocation problem, in which employees are scheduled over
the planning horizon of several weeks (up to a year). This problem includes
constraints linking successive weeks of work. Since solving this problem for
one week is already challenging for state-of-the-art methodologies, we plan
to derive heuristics for these very large scale instances.

In this work, we consider independent employees, i.e. they perform ac-
tivities independently of other employees. Another challenge would be to
consider activities or tasks that require simultaneous presence of several em-
ployees with different skills.
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