
MISTA 2013

Parallel Machine Scheduling with Generalized Precedence
Relations

Jinil Han · Ruslan Sadykov · François

Vanderbeck

1 Introduction

Parallel machine scheduling entails assigning jobs to identical machines, k ∈ {1, . . . ,m},
and deciding on their start time. Each job j ∈ {1, . . . , n} requires a given processing

time pj . Its starting time is denoted by Sj (its completion time is then Cj = Sj +

pj). The objective is typically some regular function of the completion times. Here,

we additionally consider generalized precedence relations between jobs, which can be

represented as

Sj ≥ Si + lij , (1)

where lij is the lag between job i and j which can be positive or negative. This con-

straint can be used to model various types of temporal dependencies between jobs

such as the requirement of synchronization, precedence, and overlap between jobs by

assigning appropriate values to lij ’s. The set ∆ defines all job pairs (i, j) for which a

generalized precedence relation exists.

For this problem, the time-indexed formulation introduced in [1] can be extended

to include (1):

[P] min

n�

j=1

T−pj+1�

t=1

cjtxjt, (2)

T−pj+1�

t=1

xjt = 1, j = 1, . . . , n, (3)

n�

j=1

t�

s=t−pj+1

xjs ≤ m, t = 1, . . . , T, (4)

T−pi+1�

s=t−lij+1

xis +
t�

s=1

xjs ≤ 1, (i, j) ∈ ∆, t = 1, . . . , T − pj + 1, (5)

xjt ∈ {0, 1}, j = 1, . . . , n, t = 1, . . . , T − pj + 1, (6)

INRIA team RealOpt and Mathematics Institute, University of Bordeaux, France

E-mail: jinil.han@inria.fr, ruslan.sadykov@inria.fr and fv@math.u-bordeaux1.fr



where the binary variable xjt = 1 if job j is to start in period t, and 0 otherwise. Note
that constraint (5) is one of the strongest way to express precedence relations between
jobs, but it entails a large number of constraints. Moreover, by replacing constraint (4)
with the following flow conservation constraints we can get a variant which is known
to be computationally more efficient [2]:

n�

j=1

xj1 + y1 = m, (7)

n�

j=1

(xjt − xj,t−pj ) + yt − yt−1 = 0, t = 2, . . . , T (8)

yt ∈ Z+, t = 1, . . . , T (9)

where the integer variable yt indicates the number of idle machines in period t. Let
[F] be the formulation defined by (2)-(3) and (5)-(9). Its feasible solutions correspond
to flows with value m in a network N whose nodes represent periods and where a job
j is represented by arcs (t, t + pj), and idle times by arcs (t, t + 1). The important
advantage time-indexed formulations [P] and [F] is that they provide tight LP bounds.
Their drawback is the large number of variables, especially when processing times
become large.

2 Column-and-row generation approach

One possible approach to overcome the large size of [P] and [F] is to handle the variables
and constraints dynamically by applying a column generation paradigm to these ex-
tended formulations [3]. In this approach, constraints (3) and (5) form the master prob-
lem, and the flow constraints (7)-(8) go to pricing subproblem. For each machine, the
pricing subproblem amounts to generating a pseudo-schedule, i.e., a schedule in which
jobs can be processed more than once. Solving the pricing subproblem corresponds to
finding the shortest path in acyclic network N . Then, each generated pseudo-schedule
is split into individual x and y variables, which are then added to the master. Once
the LP relaxation of the master is solved, the most violated precedence constraints are
added to it, and the process is repeated. The procedure terminates when no improv-
ing columns (variables) and no violated constraints are found. The reasoning behind
adding each variable by splitting pseudo-schedule unlike standard column generation is
to allow for the recombination of previously generated pricing problem solutions, and
thus to accelerate the convergence of column generation. For a detailed explanation,
see [3], where parallel machine scheduling is one of the test problem. However, here,
the presence of the large number of additional precedence constraints reduces the great
performance of the algorithm compared to a direct MIP-solver approach for [P] or [F].

3 Preliminary computational results

We performed the preliminary computational tests to see how well a column-and-row
generation approach is in comparison with other four approaches: solving [P] directly
using CPLEX([P]-d); solving [F] directly using CPLEX([F]-d); solving [P] and [F]



by cut generation approach based on CPLEX where the precedence constraints being
generated as cuts, denoted respectively ([P]-c) and ([F]-c). Column-and-row gen-
eration algorithm was implemented using BapCod, a generic Branch-and-Price code
developed by the INRIA RealOpt team in Bordeaux, and all LP problems were solved
using CPLEX 12.4. All tests were performed on Intel 2.50 GHz PC with 4GB RAM.

Table 1 shows the performance comparison between our column-and-row generation
approach and other approaches on instances with 25 jobs and a total weighted tardiness
objective function. Test instances were generated using the procedure from [4] which
is the most used in the literature. We report average results over 5 instances with 25
jobs since most of instances with 50 jobs cannot be solved within a hour. We consider
single and two machine cases. Instance classes (given in the column num) vary by the
parameters RDD and TF . For each pair of job i and j such that i < j, the precedence
constraint are randomly imposed with probability p in percent. We only considered the
case of lij = pi.

The headings of Table 1: %var, %cut, #itr, mast, sub, and total. They refer respec-
tively to the percentage of generated variables, the percentage of generated constraints
of type (5), the number of iterations, the time spent in solving master problems (in
seconds), the time spent in solving pricing subproblems, and the total solution time,
respectively. For direct cplex approach and cut generation approach, we only report
total time. The fastest approach among the five is highlighted in bold type.

The case where %p = 0 represents the standard parallel machine scheduling prob-
lem without any precedence constraint. When the number of precedence relations
gets larger, the number of variables and constraints generated increases rapidly, which
leads to reducing the performance of column-and-row generation approach compared
to CPLEX. Indeed, as the master becomes large, the column-and-row generation ap-
proach spent a great deal of time solving it at each iteration. We can also observe that
the column-and-row generation approach seems to perform better compared to other
approaches for most of tested instances, whereas the CPLEX solver performs better
for several instances for which the relatively large number of precedence constraints
are generated.

In other words, when there are few precedence constraints, the dynamic approach
is performing better than solving the formulation directly with a MIP solver, or than
only handling precedence constraints dynamically. But the reverse can sometimes be
observed when the precedence graph is dense. Our future research plan is to examine
special precedence graph as those arising in applications with synchronization con-
straints.

References

1. M.E Dyer, L.A. Wolsey, Formulating the single machine sequencing problem with release

dates as a mixed integer problem, Discrete Applied Mathematics, vol.26, pp.255-270 (1990)

2. Y. Pan, L. Shi, On the equivalence of the max-min transportation lower bound and the time-

indexed lower bound for single-machine scheduling problems, Mathematical Programming,

vol.110, pp.543-559 (2007)

3. R. Sadykov, F. Vanderbeck, Column Generation for Extended Formulations, EURO Journal

on Computational Optimization, vol.1, pp.81-115 (2013)

4. C.N. Potts, L.N. Van Wassenhove, A branch and bound algorithm for the total weighted

tardiness problem, Operations Research, vol.33, pp.363-377 (1985)



Table 1 Computational results

Instance column-and-row generation CPLEX

m n num %p %var %cut #itr mast sub total [P]-d [P]-c [F]-d [F]-c

1 25 1 0 5.0 0.3 0.1 0.4 8.5 23.1
1 4.6 0.2 8 0.5 0.1 0.7 1630.8 119.3 >1h 256.5
3 5.2 0.3 11 2.0 0.1 2.2 >1h >1h >1h 1452.7
5 3.8 0.3 11 0.6 0.1 0.9 >1h >1h >1h >1h

10 10.7 0.9 53 155.6 0.2 156.7 >1h >1h >1h >1h

1 25 7 0 4.1 0.2 0.1 0.3 16.8 20.5
1 16.7 4.7 100 167.9 1.1 171.0 452.3 218.6 >1h 598.0
3 >1h >1h >1h >1h >1h
5 >1h >1h >1h >1h >1h

10 >1h >1h >1h >1h >1h

1 25 13 0 5.3 0.5 0.1 0.8 9.5 22.4
1 4.5 0.1 12 0.9 0.2 1.4 57.9 25.0 471.1 30.9
3 9.1 1.6 104 27.3 1.0 29.5 217.9 122.0 2213.9 166.9
5 >1h >1h >1h >1h >1h

10 >1h >1h >1h >1h >1h

1 25 19 0 6.6 0.3 0.1 0.5 9.7 20.6
1 6.1 0.7 53 2.9 0.4 3.6 52.9 21.2 615.0 47.1
3 10.0 2.0 115 16.1 0.6 18.4 249.0 101.5 1159.4 240.8
5 18.6 5.8 178 665.8 3.0 671.5 587.5 1030.4 >1h 1055.4

10 21.8 4.5 204 1527.9 4.6 1543.1 >1h >1h >1h >1h

1 25 25 0 6.2 0.7 0.1 1.0 35.8 45.5
1 5.5 0.0 1 4.5 0.3 5.0 125.0 77.5 1141.4 143.9
3 4.6 0.0 1 0.4 0.1 0.6 128.6 276.9 1159.0 455.0
5 10.7 1.9 79 70.3 1.2 73.9 1186.5 1672.6 >1h 2188.9

10 21.0 3.9 177 2082.1 4.8 2096.6 >1h >1h >1h >1h

2 25 1 0 5.6 0.1 0.0 0.2 7.5 3.6
1 6.9 0.8 13 1.0 0.1 1.2 116.6 24.3 1133.9 41.8
3 9.4 0.8 17 5.2 0.9 5.5 482.5 114.7 >1h 1462.4
5 16.4 3.8 76 125.1 0.6 126.7 1113.1 2493.4 >1h 1840.4

10 >1h >1h >1h >1h >1h

2 25 7 0 3.3 0.0 0.1 0.2 5.2 4.3
1 19.2 13.7 168 242.3 4.6 254.7 158.6 41.7 1350.4 528.5
3 23.2 11.7 176 1265.8 9.0 1288.1 238.2 160.3 1796.2 844.6
5 25.6 10.0 191 2441.5 14.4 2471.1 527.3 553.8 >1h 3397.2

10 >1h >1h >1h >1h >1h

2 25 13 0 5.5 0.2 0.1 0.4 4.3 4.0
1 9.1 3.0 58 2.2 0.2 3.0 26.0 10.1 424.7 9.7
3 10.7 2.8 84 6.5 0.7 8.1 49.6 15.0 117.9 15.9
5 17.0 3.6 92 25.5 0.9 28.4 97.9 102.2 316.7 147.8

10 12.8 1.9 51 10.8 0.6 13.1 137.6 175.2 445.4 272.1

2 25 19 0 5.0 0.1 0.1 0.3 2.5 3.1
1 7.2 0.6 12 0.5 0.1 0.8 22.5 9.8 39.6 7.5
3 10.1 1.1 60 1.8 0.1 2.5 40.7 11.6 96.1 14.5
5 16.3 5.8 112 35.8 0.8 39.3 133.1 156.3 423.2 216.8

10 16.0 3.7 92 33.0 1.0 36.6 254.6 277.4 611.7 363.2

2 25 25 0 4.1 0.2 0.0 0.3 18.3 6.0
1 6.2 0.7 13 0.6 0.1 0.8 31.5 38.3 107.5 14.8
3 8.3 1.4 62 2.8 0.2 3.6 47.8 54.9 242.3 44.5
5 11.3 1.7 35 3.8 0.6 5.3 132.2 179.1 523.9 314.1

10 13.8 2.5 55 27.1 0.8 29.6 250.6 457.8 952.3 1459.3


