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1 Introduction

In this abstract, we consider a generalization of the one-machine earliness-
tardiness scheduling problem (OMETSP). In the OMETSP settings, the due
dates are constants given in the input, whereas in this generalization, the due
dates depend on the starting time of another job (called reference job). Our
interest in this problem comes from the study of airborne radars: the airborne
radar scheduling problem (ARSP) has been proposed by Winter and Baptiste [3]
and we refer to their paper for the modelization of scheduling tasks on an air-
borne radar. Clearly, ARSP is NP-hard as a generalization of OMETSP [1]. In
the literature, OMETSP is often divided into two subproblems: the sequenc-
ing problem consists of finding an execution order for the jobs, and the timing
problem consists of obtaining an optimal schedule for a given execution order
of the jobs. This latter problem is polynomial. However, it is important to get
an efficient timing algorithm, since most metaheuristics in the scheduling field
rely on neighborhoods based on permutation of jobs in a given sequence and
hence, the timing algorithm must be called very often. The same approach can
be applied to ARSP. In this abstract, we focus on the timing problem of ARSP.

We now provide a formal definition of the problem: we are given a sequence
(0, 1, . . . , n) of jobs which have to be processed on a single machine. In the
following, N denotes the set {1, . . . , n}. Each job j ∈ N has a reference job
b(j) < j, a processing time pj > 0, a due date dj , an earliness penalty per
unit time αj and a tardiness penalty per unit time βj . Moreover, preemption is
not allowed. Sj denotes the starting time of job j. The difference between the
starting times of jobs j and b(j) should ideally be equal to dj . If this difference is
less (respectively more) than dj , we say that the job is early (respectively tardy)
and its earliness (respectively its tardiness) is denoted by Ej = max{0, dj − x}
(respectively Tj = max{0, x − dj}) with x = Sj − Sb(j). Our aim is to find
a schedule S = {Sj}j∈N∪{0} such that 0 ≤ Sj−1 ≤ Sj − pj, j ∈ N , which
minimizes:

F =
∑

j∈N

αjEj + βjTj

In Section 2, we propose two linear programs to represent the problem, then
in Section 3, we propose a combinatorial algorithm based on the dual formula-
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tion of the second linear program. In Section 4, we provide some computational
results.

2 Primal Linear Program

First, we consider an equivalent problem where the processing times of the jobs
can be reduced to zero (see Pan and Shi [2]): instead of considering the starting
time of the jobs, we consider the total idle time before the starting of each job.
However, the due dates should be modified:

d′j = dj −

j−1
∑

i=b(j)

pj ,

and any schedule S such that 0 ≤ Sj−1 ≤ Sj, j ∈ N , becomes feasible.
We now provide a first Linear Programming formulation of the problem: Mj

represents the idle time between jobs j − 1 and j. Observe that this idle time
impacts the cost of all the jobs k ≥ j such that b(k) < j.

(PR1)

min
∑

j∈N

αjEj + βjTj (1)

s.t. Ej +

j
∑

i=b(j)+1

Mi ≥ d′j , j ∈ N, (2)

Tj −

j
∑

i=b(j)+1

Mi ≥ −d′j, j ∈ N, (3)

Ej ≥ 0, Tj ≥ 0, Mj ≥ 0 j ∈ N. (4)

Equations (2) and (3) represent respectively the earliness and tardiness of the
jobs. Observe that the order between the jobs is induces by the non-negativity
of variables M .

The formulation (PR1) can be solved by any LP algorithm (for example, by
the simplex algorithm). Our goal is to find a faster combinatorial algorithm to
solve (PR1). We first propose an equivalent LP formulation:

(PR2)

min
∑

j∈N

(αj + βj)Ej +
∑

j∈N

(

∑

i∈[j,n]:

b(i)<j

βi

)

Mj −
∑

j∈N

d′jβj (5)

s.t. Ej +

j
∑

i=b(j)+1

Mi ≥ d′j , j ∈ N, (6)

Ej ≥ 0, Mj ≥ 0, j ∈ N. (7)

Theorem 1 (PR2) is equivalent to (PR1).
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Sketch of proof. For each job j, the objective function is to minimize (αj +

βj)Ej + βj(
∑j

i=b(j)+1 Mi − d′j). If d′j ≥
∑j

i=b(j)+1 Mi, then Ej = 0 and the

objective function for job j is βj(
∑j

i=b(j)+1 Mi − d′j) which is the tardiness

cost. Else, Ej = d′j −
∑j

i=b(j)+1 Mi and hence the objective function becomes

(αj +βj)(d
′
j −

∑j

i=b(j)+1 Mi)+βj(
∑j

i=b(j)+1 Mi −d′j) = αj(d
′
j −

∑j

i=b(j)+1 Mi)

which is the earliness cost.

3 Dual Linear Program

We define β̄j =
∑

i∈[j,n]:b(i)<j βi. We now look at the dual linear program of

(PR2):

(DU2)

max
∑

j∈N

d′jXj −
∑

j∈N

d′jβj (8)

s.t 0 ≤ Xj ≤ αj + βj , j ∈ N, (9)
∑

j≤i≤n:

b(i)<j

Xi ≤ β̄j , j ∈ N. (10)

Theorem 2 (DU2) can be solved using a minimum cost flow algorithm

Sketch of proof. The matrix of coefficients of the constraints (10) is interval.
Therefore, in the same manner as it has been done in [4], (DU2) can be formu-
lated as a minimum cost flow problem (see Figure 1). In the graph, vertex j

represents job j. For each j ∈ N , there is edge (j, j − 1) with capacity β̄j and
cost 0, and edge (j, b(j)) with capacity αj + βj and cost −d′j . The deficit of

vertex j is β̄j+1 − β̄j =
∑

i∈N :b(i)=j βi − βj .

n j j-1 b(j) 0

−β̄n β̄j+1 − β̄j β̄j − β̄j−1 β̄b(j)+1 − β̄b(j) β̄1

(0, β̄j) (0, β̄1)

(−d′

j , αj + βj)

Figure 1: Minimum cost flow graph

4 Computational results

We have performed a numerical study where we compared the solution times
of the Linear Programming and Minimum Cost Flow algorithms for our timing
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problem. In the experiment, the formulation (PR2) is solved using CPLEX 10.1
(see [5]), and for the minimum cost flow problem, the MCFZIB solver [6] was
used. The solution times are shown in Table 1. As you can notice, the difference
can be clearly seen from n = 500.

n LP MCF
250 0.02s <0.01s
500 0.10s 0.01s

1000 0.44s 0.02s
2500 4.62s 0.05s

Table 1: Numerical study of the Linear Programming (LP) and Minimum Cost
Flow (MCF) solvers

5 Conclusion

In this abstract, we have proposed an efficient combinatorial timing algorithm
for the airborne radars scheduling problem. Subsequent studies will focus on
designing metaheuristics for the general problem.
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