
A Generic Exact Solver for Vehicle Routing and Related

Problems∗

Artur Pessoa†2, Ruslan Sadykov‡1, Eduardo Uchoa§2, and François Vanderbeck¶3

1INRIA Bordeaux – Sud-Ouest 200 Avenue de la Veille Tour, 33405 Talence,
France

2Universidade Federal Fluminense - Engenharia de Produção , Rua Passo da
Pátria 156, Niterói - RJ - Brasil - 24210-240,

3Atoptima, 33000 Bordeaux, France

4 May 2020

Abstract

Major advances were recently obtained in the exact solution of Vehicle Routing Prob-
lems (VRPs). Sophisticated Branch-Cut-and-Price (BCP) algorithms for some of the most
classical VRP variants now solve many instances with up to a few hundreds of customers.
However, adapting and reimplementing those successful algorithms for other variants can
be a very demanding task. This work proposes a BCP solver for a generic model that en-
compasses a wide class of VRPs. It incorporates the key elements found in the best existing
VRP algorithms: ng-path relaxation, rank-1 cuts with limited memory, path enumeration,
and rounded capacity cuts; all generalized through the new concepts of “packing set” and
“elementarity set”. The concepts are also used to derive a branching rule based on accumu-
lated resource consumption and to generalize the Ryan and Foster branching rule. Extensive
experiments on several variants show that the generic solver has an excellent overall per-
formance, in many problems being better than the best specific algorithms. Even some
non-VRPs, like bin packing, vector packing and generalized assignment, can be modeled
and effectively solved.

1 Introduction

Since its introduction by Dantzig and Ramser [30], the Vehicle Routing Problem (VRP) has been
one of the most widely studied in combinatorial optimization. Google Scholar indicates that 691
works containing the exact string “vehicle routing” in the title were published only in 2018. VRP
relevance stems from its direct use in the real systems that distribute goods and provide services,
vital to the modern economies. Reflecting the large variety of conditions in those systems, the
VRP literature is spread into dozens, perhaps hundreds, of variants. For example, there are
variants that consider capacities, time windows, heterogeneous fleets, multiple depots, pickups
and deliveries, optional customer visits, arc routing, etc.

In recent years, big advances in the exact solution of VRPs have been accomplished. A
milestone was certainly the Branch-Cut-and-Price (BCP) algorithm of [61, 63], that could solve

∗A short version of this work was already published in [69].
†artur@producao.uff.br
‡ruslan.sadykov@inria.fr
§uchoa@producao.uff.br
¶fv@atoptima.com

1

Capacitated VRP (CVRP) instances with up to 360 customers, a large improvement upon the
previous record of 150 customers. That algorithm exploits many elements introduced by several
authors, combining and enhancing them. In particular, the new concept of limited memory cut
proved to be pivotal. Improvements of the same magnitude were later obtained for a number
of classical variants like VRP with Time Windows (VRPTW) [62], Heterogeneous Fleet VRP
(HFVRP) and Multi Depot VRP (MDVRP) [67], and Capacitated Arc Routing (CARP) [65].
For all those variants, instances with about 200 customers are now likely to be solved, perhaps
in hours or even days. However, there is something even more interesting: many instances with
about 100 customers, that a few years ago would take hours, are solved in less than 1 minute.
This means that many more real world instances can now be tackled by exact algorithms in
reasonable times.

Unhappily, designing and coding each of those complex and sophisticated BCPs has been
a highly demanding task, measured on several work-months of a skilled team. In effect, this
prevents the use of those algorithms in real world problems, that actually, seldom correspond
exactly to one of the most classical variants. This work presents a framework that can handle
most VRP variants found in the literature and can be used to model and solve many other new
variants. In order to obtain state-of-the-art BCP performance, some key components found in
the best specific VRP algorithms had to be generalized. The new concepts of packing set and
elementarity set were instrumental for that.

The quest for general exact VRP algorithms can be traced back to Balinski and Quandt [11],
where a set partitioning formulation valid for many variants was proposed. That formulation had
only turned practical in the 1980’s and 1990’s, when the Branch-and-Price (BP) method was de-
veloped. At that time, it was recognized that the pricing subproblems could often be modeled as
Resource Constrained Shortest Path (RCSP) problems and solved by labeling algorithms, lead-
ing to quite generic methods (for example, Desaulniers et al.[33]). However, those BP algorithms
only worked well on problems with “tightly constrained” routes, like VRPTW with narrow time
windows. Many variants, including CVRP, were much better handled by Branch-and-Cut (BC)
algorithms using problem-specific cuts (for example, Lysgaard et al. [57]). In the late 2000’s
decade, after works like [39, 8, 49, 34, 76, 7, 18], it became clear that the combination of cut
and column generation performs better than pure BP or pure BC on almost all problems. Until
today, BCP remains the dominant VRP approach. A first attempt of a generic algorithm based
on cut and column generation was presented in Baldacci and Mingozzi [9], where 7 variants, all
of them particular cases of the HFVRP, could be solved. Recently, [78] proposed a BCP for
several particular cases of the HFVRP with time windows. The framework now proposed is far
more generic than that.

2 The Basic Model

In this section, we provide a formal definition of a generic model that can be solved by a branch-
cut-and-price algorithm, where all pricing subproblems are modeled as RCSP problems. The
main original feature of the basic model is the concept of mapping for linking the variables induced
by the resource constrained paths to a user-defined generic objective function and constraints in
the Master formulation.

2.1 Graphs for RCSP Subproblems

Let K be the set of subproblems. Define directed graphs Gk = (V k, Ak), k ∈ K. Let V =
∪k∈KV k and A = ∪k∈KAk. The graphs are not necessarily simple and may even have loops.
Vertices and arcs in all graphs are distinct. Each graph has special source and sink vertices:
vksource and vksink. The source and sink may be distinct vertices, but may also be the same vertex.
Define set Rk of resources. For each r ∈ Rk and a ∈ Ak, qa,r ∈ R is the consumption of resource r
in arc a. There are finite accumulated resource consumption intervals [la,r, ua,r], for each r ∈ Rk
and a ∈ Ak. Since in most applications these intervals are more naturally defined on vertices,

2

we may define intervals [lv,r, uv,r], v ∈ V k, meaning that [la,r, ua,r] = [lv,r, uv,r] for every arc
a ∈ δ−(v) (i.e., entering v). Resources without any negative consumption are called monotone,
otherwise they are non-monotone. Set Rk is divided into main resources RkM and secondary
resources RkN . Main resources should be monotone, secondary resources may be monotone or
non-monotone. As will be discussed in Section 5, the concept of main resource is directly related
to key implementation issues in the labeling algorithm used for solving the pricing. For each
cycle in Gk, the net consumption of at least one resource should be strictly positive. Therefore,
unless Gk is acyclic, the existence of at least one resource is mandatory. Finally, resources are
also classified as disposable or non-disposable. In the former case, it is possible to drop resources
if this is needed order to satisfy the accumulated resource consumption intervals. Main resources
are always disposable. By default, secondary resources are also assumed to be disposable. The
existence of non-disposable resources should be explicitly indicated. A resource constrained path
p = (vksource = v0, a1, v1, . . . , an−1, vn−1, an, vn = vksink) over a graph Gk should have n ≥ 1 arcs,
vj 6= vksource and vj 6= vksink, 1 ≤ j ≤ n− 1, and is feasible if:

• for every r ∈ Rk that is disposable, the accumulated resource consumption Sj,r at visit j,
0 ≤ j ≤ n, where S0,r = 0 and Sj,r = max{laj ,r, Sj−1,r + qaj ,r}, does not exceed uaj ,r;

• for every r ∈ Rk that is non-disposable, the accumulated resource consumption Sj,r at
visit j, 0 ≤ j ≤ n, where S0,r = 0 and Sj,r = Sj−1,r + qaj ,r, lies in the interval [laj ,r, uaj ,r].

Note that some feasible paths may not be elementary, some vertices or arcs being visited more
than once. For each k ∈ K, let P k denote the set of all feasible resource constrained paths in
Gk. Each set P k is finite, either because Gk is acyclic or because the resources limit the number
of times that each vertex or arc can be visited. Define P = ∪k∈KP k. As vertices and arcs in
different graphs are distinct, paths in different graphs are also distinct.

2.2 Master Formulation

For all a ∈ A and p ∈ P , let hpa indicate how many times arc a appears in path p. Given c ∈ Rn1 ,
f ∈ Rn2 , α ∈ Rm×n1 , β ∈ Rm×n2 , and d ∈ Rm, the problem is formulated as follows.

Min
n1∑
j=1

cjxj +
n2∑
s=1

fsys (1a)

S.t.
n1∑
j=1

αijxj +
n2∑
s=1

βisys ≥ di, i = 1, . . . ,m, (1b)

xj =
∑
k∈K

∑
p∈Pk

(∑
a∈M(xj)

hpa

)
λp, j = 1 . . . , n1, (1c)

Lk ≤
∑
p∈Pk

λp ≤ Uk, k ∈ K, (1d)

λp ∈ Z+, p ∈ P, (1e)

xj ∈ Z, ys ∈ Z, j = 1, . . . , n̄1, s = 1, . . . , n̄2, (1f)

where xj , 1 ≤ j ≤ n1, ys, 1 ≤ s ≤ n2, and λp, p ∈ P , are variables. The first n̄1 x variables
and the first n̄2 y are defined to be integer; all λ variables are non-negative integer. Equation
(1a) defines a general linear objective function, c and f are cost vectors. Inequalities (1b) define
m general linear constraints over those variables, α and β are the coefficient matrices and d the
right-hand side vector. Constraints (1b) may even contain exponentially large families of cuts,
provided that suitable procedures are given for their separation. However, by simplicity, we
continue the presentation as if all the m constraints are explicitly defined. For each variable xj ,
1 ≤ j ≤ n1, M(xj) ⊆ A defines its mapping into a non-empty subset of the arcs. We remark that
mappings do not need to be disjoint, the same arc can mapped to more than one variable xj .
Define M−1(a) as {j | a ∈M(xj)}. As not all arcs need to belong to some mapping, some M−1

3

sets may be empty. The relation between variables x and λ is given by (1c). For each k ∈ K,
Lk and Uk are given lower and upper bounds on the number of paths from Gk in a solution.

A feasible solution to Formulation (1) is composed of a set of paths, each path p ∈ P
with multiplicity λp in the solution, and additional decisions represented by the values assigned
to variables ys, s = 1, . . . , n2. Hence, modelling a new problem as (1) requires it to contain
one or more structures that can be cast into paths in one or more properly defined graphs.
Then, resources should be created to model “intrapath” constraints while global “interpath”
constraints, and the objective function, should be modelled as (1b), and (1a), respectively. Note
that the values of xj , j = 1, . . . , n1, are completely defined as a function of the paths that
compose the solution (and their multiplicities) through the mappings. Thus, these variables
should only be created for allowing formulating (1a) and (1b).

Eliminating the x variables and relaxing the integrality constraints, the following LP is ob-
tained:

Min
∑
k∈K

∑
p∈Pk

(
n1∑
j=1

cj
∑

a∈M(xj)

hpa

)
λp +

n2∑
s=1

fsys (2a)

S.t.
∑
k∈K

∑
p∈Pk

(
n1∑
j=1

αij
∑

a∈M(xj)

hpa

)
λp +

n2∑
s=1

βisys ≥ di, i = 1, . . . ,m, (2b)

Lk ≤
∑
p∈Pk

λp ≤ Uk, k ∈ K, (2c)

λp ≥ 0, p ∈ P. (2d)

Master LP (2) is solved by column generation. Let πi, 1 ≤ i ≤ m, denote the dual variables of
Constraints (2b), νk+ and νk−, k ∈ K, are the dual variables of Constraints (2c). The reduced
cost of an arc a ∈ A is defined as:

c̄a =
∑

j∈M−1(a)

cj −
m∑
i=1

∑
j∈M−1(a)

αijπi.

The reduced cost of a path p = (v0, a1, v1, . . . , an−1, vn−1, an, vn) ∈ P k is:

c̄(p) =

n∑
j=1

c̄aj − νk+ − νk−.

So, the pricing subproblems correspond to finding, for each k ∈ K, a path p ∈ P k with minimum
reduced cost.

2.3 Example of a Basic Model

For the sake of illustration, we show how to model the Capacitated VRP (CVRP) in the proposed
solver. The problem is formally described as:

Data: Undirected graph G′ = (V,E), V = {0, . . . , n}, 0 is the depot, V+ = {1, . . . , n} are the
customers; positive cost ce, e ∈ E; positive demand di, i ∈ V+; vehicle capacity Q.

Goal: Find a minimum cost set of routes, starting and ending at the depot, visiting all customers
and such that the sum of the demands of the customers in a route does not exceed vehicle capacity.

A possible model is:

Model: A single graph G = (V,A) (the index k is omitted), A = {(i, j), (j, i) : {i, j} ∈ E},
vsource = vsink = 0; R = RM = {1}; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0);
li,1 = 0, ui,1 = Q, i ∈ V . Integer variables xe, e ∈ E. The formulation is:

Min
∑
e∈E cexe (3a)

4

S.t.
∑
e∈δ(i) xe = 2, i ∈ V+; (3b)

M(xe) = {(i, j), (j, i)}, e = {i, j} ∈ E; L = d
∑n
i=1 di/Qe, U = n.

The variables x are explicitly defined by the user and indicate how many times each edge
is traversed. The objective function (3a) directly defines (1a) and Constraints (3b), degree
constraints over x variables, directly define (1b). Constraints (1c) are implicitly defined by the
mapping M and Constraints (1d) are implicitly defined by the values of L and U . Variables λ
are implicitly defined by the set of resource constrained paths in G;

Consider the instance over a complete graph G′ with n = 4, d1 = 3, d2 = 4, d3 = 5, d4 = 7,
and Q = 10. Edge costs are c01 = 5, c02 = 9, c03 = 7, c04 = 3, c12 = 7, c13 = 8, c14 = 7, c23 = 4,
c24 = 9, and c34 = 5. The resulting directed graph G is depicted in Figure 1, arc consumptions
and mappings are indicated. Graph G generates a set P having 13 resource constrained paths:
0-1-0, 0-1-2-0, 0-1-2-1-0, 0-1-3-0, 0-1-4-0, 0-2-0, 0-2-1-0, 0-2-3-0, 0-3-0, 0-3-1-0, 0-3-2-0, 0-4-0,
and 0-4-1-0. The complete formulation (corresponding to Formulation (1)) for that instance is:

Min 5x01 + 9x02 + 7x03 + 3x04 + 7x12 + 8x13 + 7x14 + 4x23 + 9x24 + 5x34

S.t. x01 + x12 + x13 + x14 = 2,

x02 + x12 + x23 + x24 = 2,

x03 + x13 + x23 + x34 = 2,

x04 + x14 + x24 + x34 = 2,

x01 = 2λ1 + λ2 + 2λ3 + λ4 + λ5 + λ7 + λ10 + λ13,

x02 = λ2 + 2λ6 + λ7 + λ8 + λ11,

x03 = λ4 + λ8 + 2λ9 + λ10 + λ11,

x04 = λ5 + 2λ12 + λ13,

x12 = λ2 + 2λ3 + λ7,

x13 = λ4 + λ10,

x14 = λ5 + λ13,

x23 = λ8 + λ11,

x24 = x34 = 0,

2 ≤ λ1 + λ2 + λ3 + · · ·+ λ13 ≤ 4,

x ∈ Z10
+ , λ ∈ Z13

+

Eliminating the x variables and relaxing the integrality, the Master LP (corresponding to (2))
that should be solved by column generation is obtained:

Min 10λ1 + 21λ2 + 24λ3 + 20λ4 + 15λ5 + 18λ6 + 21λ7 + 20λ8 + 14λ9 + 20λ10 +

20λ11 + 6λ12 + 15λ13

S.t. 2λ1 + 2λ2 + 4λ3 + 2λ4 + 2λ5 + 2λ7 + 2λ10 + 2λ13 = 2

2λ2 + 2λ3 + 2λ6 + 2λ7 + 2λ8 + 2λ11 = 2

2λ4 + 2λ8 + 2λ9 + 2λ10 + 2λ11 = 2

2λ12 + 2λ13 = 2

2 ≤ λ1 + λ2 + λ3 + · · ·+ λ13 ≤ 4,

λ ≥ 0

Some remarks on the CVRP model:

• It can be seen that the mapping transforms degree constraints (3b) defined over the x
variables into “set-partitioning” constraints over the λ variables.

• Set P contains pairs of equivalent paths, visiting the same customers in reversed order.
Those pairs lead to identical λ variables in the LP. For example, variables λ2 and λ7 in

5

the above LP are identical. This redundancy does not harm the column generation. If one
of those variables is included in the restricted Master LP, the other will not have negative
reduced cost. Actually, in Section 5.1.1 it will be seen that the pricing algorithm may even
profit from that symmetry in the model.

• Set P contains non-elementary paths. In the example, path 0-1-2-1-0 corresponds to a
route that visits customer 1 twice. Although variables associated to non-elementary paths
never appear in integer solutions (note that λ3 has coefficient 4 in the transformed degree
constraint of customer 1), they may weaken the linear relaxation. Section 3.2 will present
a mechanism that can be used for eliminating the most undesirable non-elementary paths
in that model.

0

1

2

34

x011.5

x02
2.0

x03
2.5

x043.5

x12 3.5x13 4.0
x145.0

x23 4.5x24
5.5

x34
6.0

Figure 1: CVRP model graph and mapping. The resource consumptions (in bold) and mappings
(the same for each pair of opposite arcs) are depicted. The upper bound on accumulated resource
consumption is 10 for all vertices.

3 Generalizing State-of-the-Art Components

Formulation (1) can be used to model most VRP variants and also some other non-VRP ap-
plications. It can be solved by a standard BP algorithm (or a standard robust BCP algorithm
[71], if (1b) contains separated constraints), where the RCSP subproblems are handled by a
labeling dynamic programming algorithm. However, its performance would be very poor when
compared to the best existing specific algorithms. One of the main contributions of this work is
a generalization of the key additional concepts found in those state-of-the-art algorithms, leading
to the construction of a powerful and still quite generic BCP algorithm. In order to do that, the
new concepts of packing sets and elementarity sets are introduced.

3.1 Packing Sets and Elementarity Sets

Let P ⊂ 2A be a collection of mutually disjoint subsets of A such that the constraints:

∑
p∈P

(∑
a∈S

hpa

)
λp ≤ 1, S ∈ P, (4)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of Formulation (1). In other words, the
arcs in each S ∈ P appear at most once in all paths that are part of some optimal solution. In
those conditions, we say that each element of P is a packing set. Note that a packing set can
contain arcs from different graphs and not all arcs in A need to belong to some packing set. The
definition of a proper collection P is application specific and part of the modeling task. It does
not follow automatically from the analysis of Formulation (1).

6

In many applications the packing sets are more naturally defined on vertices, so we also
provide that modeling alternative. Let coefficient hpv indicate how many times vertex v appears
in a path p. Let V ′ = V \ {vksource, vksink : k ∈ K} be the set of vertices that are neither source or

sink of their graphs. Let PV ⊂ 2V
′

be a collection of mutually disjoint subsets of V ′ such that
the constraints: ∑

p∈P

(∑
v∈S

hpv

)
λp ≤ 1, S ∈ PV , (5)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of Formulation (1). In those conditions,
we say that the elements of PV are packing sets on vertices. Actually, in Section 5.1.1 we show
that in some symmetric problems there is a computational advantage in defining packing sets
on vertices.

Let E ⊂ 2A be a collection of mutually disjoint subsets of A such that the constraints:∑
a∈S

hpaλp ≤ 1, S ∈ E , p ∈ P, (6)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of Formulation (1). In other words, the
arcs in each S ∈ E appear at most once in each path that is part of some optimal solution. In
those conditions, we say that each element of E is an elementarity set. Collections EV ⊂ 2V

′

under similar conditions define elementarity sets on vertices.

The definition of a proper collection E is also part of the modeling task. However, any
collection of packing sets P is also a collection of elementarity sets. Similarly, a collection of
packing sets on vertices PV is also a collection of elementarity sets on vertices. So, it is always
possible to define E = P or EV = PV . In fact, this is done in most models, including 7 out the
8 model examples given in Section 4. However, there are some models where it is advantageous
to define a distinct collection of elementarity sets. The current implementation of the solver
assumes that if the packing sets are defined in arcs, the elementarity sets are also defined in arcs
and E ⊇ P. Similarly, if the packing sets are being defined on vertices then EV ⊇ PV . So, the
collection of elementary sets is either equal or is an extension of the collection of packing sets.

The following concepts — ng-paths, Limited Memory Rank-1 Cuts, path enumeration, ac-
cumulated consumption branching, and rounded capacity cuts — were originally proposed and
used on the most classical VRP variants, often CVRP and VRPTW. In our proposed general-
ization, those problems will correspond to simple models where the sets in PV and EV are the
singletons formed by each customer vertex. However, as will be seen in Section 4, there are
models where those sets are significantly more complex.

3.2 ng-paths

When modeling classical VRPs, one of the weaknesses of linear relaxation (2) is often the exis-
tence of non-elementary paths in P that can not be part of any integer solution. In those cases,
one would like to eliminate all those paths from the definition of P . However, this would make
the pricing subproblems much harder, to the point of becoming intractable in many cases. A
good compromise between formulation strength and pricing difficulty can be obtained by the
so-called ng-paths, introduced in Baldacci et al. [10].

In our more general context, we say that a path is E-elementary if it does not use more
than once arcs in the same elementarity set of E . Let P kelem be the subset of the paths in P k

that are E-elementary, Pelem = ∪k∈KP kelem. For example, suppose that V = {0, 1, 2, 3} with
vsource = vsink = 0, and E = {{(1, 2), (2, 1)}, {(1, 3), (3, 1)}, {(0, 3), (2, 3), (3, 2)}}. In this case,
the path 0-1-2-3-1-0 would be E-elementary, but the paths 0-1-2-1-0 and 0-1-2-3-1-2-0 would not.

Ideally, we would like to price only E-elementary paths. Instead, we settle for generalized
E-ng-paths defined as follows. For each arc a ∈ A, let NG(a) ⊆ E denote the ng-set of a. A E-ng-
path may use two arcs belonging to the same elementarity set S, but only if the subpath between
those two arcs passes by an arc a such that S /∈ NG(a). In the previous example, suppose

7

that NG((1, 2)) = NG((2, 1)) = NG((1, 3)) = NG((3, 1)) = {{(1, 2), (2, 1)}, {(1, 3), (3, 1)}},
NG((2, 3)) = NG((3, 2)) = {{(1, 3), (3, 1)}}, and all other arcs have empty ng-sets. In this case,
the path 0-1-2-3-1-2-0 would be allowed because {(1, 2), (2, 1)} does not belong to NG((2, 3)).
The ng-sets may be determined a priori; but also dynamically, like in [74] and [22].

If the elementarity sets are being defined on vertices, there is the similar concept of EV -
elementary path: a path that does not use more than once vertices in the same elementarity set
of EV . We also denote by P kelem the subset of the paths in P k that are EV -elementary. In this
context, for each vertex v ∈ V , let NG(v) ⊆ EV be the ng-set of v. A EV -ng-path may use two
vertices belonging to the same elementarity set S, but only if the subpath between those two
vertices passes by a vertex v such that S /∈ NG(v).

When E or EV are clear from the context, we may still refer to E-ng-paths or EV -ng-paths
simply as ng-paths.

3.3 Limited Memory Rank-1 Cuts

The Rank-1 Cuts (R1Cs) [70, 64, 21] are a generalization of the Subset Row Cuts proposed by
Jepsen et al. [49]. Here, they are further generalized as follows. Consider a collection of packing
sets P. A Chvátal-Gomory rounding of Constraints (4), using a non-negative multiplier ρB for
each packing set S ∈ P, yields:

∑
p∈P

⌊∑
S∈P

ρS
∑
a∈S

hpa

⌋
λp ≤

⌊∑
S∈P

ρS

⌋
. (7)

Those R1Cs are potentially very strong, but each added cut makes the pricing subproblems
significantly harder.

The limited memory technique [61] is essential for mitigating that negative impact. In this
technique, a R1C, characterized by its vector of multipliers ρ, is associated to a memory arc-set
A(ρ) ⊆ A. The limited-memory R1C (lm-R1C) is defined as:

∑
p∈P

α(ρ,A(ρ), p)λp ≤

⌊∑
S∈P

ρS

⌋
, (8)

where the coefficient α(ρ,A(ρ), p) is computed as in the pseudo-code that describes Function α.

Function α(ρ,A, p = (v0, a1, v1, . . . , an−1, vn−1, an, vn))

1 α← 0, s← 0;
2 for j = 1 to n do
3 if aj /∈ A(ρ) then
4 s← 0;

5 for S ∈ P do
6 if aj ∈ S then
7 s← s+ ρS ;
8 if s ≥ 1 then
9 s← s− 1, α← α+ 1;

10 return α;

If A(ρ) = A, constraints (7) and (8) are identical. Otherwise, variables λp corresponding
to paths p passing by arcs a /∈ A(ρ) may have their coefficients decreased. However, if the
memory sets are adjusted in such a way that variables λp with positive values in the current

8

linear relaxation have the same coefficients that they would have in (7), the resulting lm-R1C is
as effective as the original R1C. Yet, if the final A(ρ) is a small subset of A, as usually happens,
the impact in the pricing is much reduced.

If the model defines its packing sets in vertices, the R1Cs are defined in a similar way. There
is a non-negative multiplier ρS for each S ∈ PV and the cut is:∑

p∈P

⌊ ∑
S∈PV

ρS
∑
v∈SV

hpv

⌋
λp ≤

⌊ ∑
S∈PV

ρS

⌋
. (9)

Given a memory arc-set A(ρ) ⊆ A corresponding to the vector ρ, the lm-R1C is defined as:

∑
p∈P

α(ρ,A(ρ), p)λp ≤

⌊ ∑
S∈PV

ρS

⌋
, (10)

where Function α is the same, except that the line 5 is replaced by (for S ∈ PV) and the
condition of line 6 by (vj ∈ S)

Regardless of if the packing sets are being defined on arcs or on vertices, it is possible to
use lm-R1Cs where the memories are defined by vertex-sets. In this case, a memory vertex-set
V (ρ) ⊆ V should be assigned to the lm-R1C corresponding to vector ρ. Function α should
receive V (ρ) instead of A(ρ) as parameter and the condition in line 3 should be changed to
(vj /∈ V (ρ)).

As discussed in [67] and [78], memory vertex-sets perform better for most instances of some
classical VRPs. This happens because R1C memory adjustment converges in less iterations in
that case. In the other hand, memory arc-sets may be better for some harder instances because
they allow for a finer memory adjustment, leading to less impact in the pricing.

3.4 Path Enumeration

The path enumeration technique was proposed by Baldacci et. al. [8], and later improved by
Contardo and Martinelli [28]. It consists in trying to enumerate into a pool all paths in a certain
set P k that can possibly be part of an improving solution. After a successful enumeration,
the corresponding pricing subproblem k can be solved by inspection, saving time. Moreover,
standard fixing by reduced costs can be used to remove paths from the pools. If the enumeration
has already succeeded for all k ∈ K and once the total number of paths in the tables is reduced
to a reasonably small number (say, less than 10,000), the formulation restricted to those paths
can be given and directly solved by a general MIP solver.

In our context, we try to enumerate all paths p ∈ P kelem such that c̄(p) < UB − LB, where
UB is the best known integer solution cost, and LB the value of the current linear relaxation.
Moreover, if two paths p and p′ in P k map to variables λp and λ′p with identical coefficients in
the essential constraints in (2b), the one with a larger cost is dominated and can be dropped.
The essential constraints are those that are required to make the formulation valid, constraints
in (2b) added only to strengthen the linear relaxation are not essential.

However, the enumeration procedure would be highly inefficient if the dominance could only
be checked for pairs of complete paths. Instead, it is necessary to perform dominance over
the partial paths (E-elementary paths starting at the source vertex) that are being constructed
along the procedure. Our procedure uses the following dominance rule: if p and p′ are partial
paths ending at the same vertex and having already visited exactly the same elementarity sets
in E (regardless of the visitation order), the one with larger cost (breaking ties arbitrarily) is
considered dominated and dropped. No complete path in P kelem that is the completion of a
dominated partial path will be produced. The following condition is sufficient to assure that
such enumeration procedure is valid (i.e., no improving solution is ever missed):

Sufficient Condition for Enumeration. Every two feasible partial E-elementary paths start-
ing in vksource that end in the same vertex and map to different coefficients in some essential

9

constraint in (2b) should have visited different subsets of E.

We remark that the above condition can not be checked automatically. In fact, in general
it is not even possible to automatically determine what are the essential constraints in (2b).
It is up to the modeler to prove that the provided model satisfies the sufficient condition, so
enumeration can be used. Happily, in many models (including all the examples in Section 4)
it is easy to prove that the condition is satisfied. However, if it is not satisfied, it is up to the
modeler to prove that the enumeration is valid for his model directly from the dominance rule.
Otherwise, the enumeration should be turned off.

3.5 Branching

Branching over individual x and y variables (or over constraints defined over those variables) is
simple and do not change the structure of the pricing subproblems. In many models this kind of
branching is sufficient for correctness. However, there are models where Constraints (1e) need
to be explicitly enforced. However, branching over individual λ variables should be avoided due
to a big negative impact in the pricing and also due to highly unbalanced trees [84]. The model
offers two ways of branching over sets of λ variables, both are based on packing sets:

• Choose distinct sets S and S′ in P. Let P (S, S′) ⊆ P be the subset of the paths that
contain arcs in both S and S′. The branching is over the value of

∑
p∈P (S,S′) λp, either 0

or 1. This is a generalization of the Ryan and Foster branching rule [77]. It is still to be
avoided if possible, because it makes the pricing harder. However, using that scheme leads
to more balanced search trees.

• Choose S ∈ P, r ∈ RkM and a certain threshold value t∗: in the left child make ua,r = t∗,
for all a ∈ S; in the right child make la,r = t∗, , for all a ∈ S. This branching over the
accumulated consumption of a resource generalizes the strategy proposed by Gélinas et
al. [41]. The branching is not likely to be complete, in the sense that some fractional λ
solutions can not be eliminated by it. However, it does not increase the pricing difficulty
and it may work well in practice, postponing (and even avoiding) the use of a branching
that makes pricing harder.

3.6 Rounded Capacity Cut Separators

The Rounded Capacity Cuts (RCCs), first proposed for CVRP [52], are still useful on modern
BCP algorithms for that problem and also for a number of other VRP variants. Moreover, a very
good heuristic separation routine is available for it in CVRPSEP library [56]. So, we decided to
introduce the concept of RCC separator as a feature of our model.

The RCC separator can only be used if the packing sets are defined on vertices. For a vertex
v ∈ V , define S(v) as the packing set of PV that contains v, S(v) = ∅ if v is not in any packing set.
An RCC separator is defined by setting a capacity Q and a demand function d : PV ∪ ∅ → R+

such that d(∅) = 0 and is valid if there exists an optimal solution (x∗, y∗, λ∗) of Formulation (1)
such that:

1.
∑n
j=0 d(S(vj)) ≤ Q, for all p = (v0, a1, v1, . . . , an−1, vn−1, an, vn) ∈ P with λ∗p ≥ 1;

2. for all S ∈ PV such that d(S) > 0, the corresponding constraints in (5) should be satisfied
with equality by (x∗, y∗, λ∗).

Again, it is up to the modeler to prove that the separator included in the model is valid.

Given a valid RCC separator, for S ⊆ PV , d(S) denotes
∑
S∈S d(S) and hpS is the number

of times that an arc in path p ∈ P enters in S. We say that an arc (vj−1, vj) enters in S if

10

S(vj−1) /∈ S and S(vj) ∈ S. A Rounded Capacity Cut is the following valid inequality:

∑
p∈P

hpSλp ≥
⌈
d(S)

Q

⌉
. (11)

Cuts in format (11) are robust. The dual variable of the cut corresponding to an S ⊆ PV is
simply subtracted from the reduced cost of all arcs entering S.

It is possible to define multiple RCC separators in the same model, each one having its demand
function and capacity. This can be useful for modeling VRPs where routes are constrained by
multiple dimensions. Packing sets would have zero demand in the dimensions that they do not
“participate”.

4 Model Examples

We selected a number of classical problems to illustrate the modeling capabilities of our solver.
For each formulation, we only present explicitly the objective function and the general constraints
corresponding to (1a–1b). The constraints corresponding to (1c) and (1d) are implicitly given
by the mappings and by the bounds Lk and Uk, respectively.

4.1 Generalized Assignment Problem (GAP)

Data: Set T of tasks; set K of machines; capacity Qk, k ∈ K; assignment cost ckt and machine
load wkt , t ∈ T , k ∈ K.

Goal: Find an assignment of tasks to machines such that the total load in each machine does
not exceed its capacity, with minimum total cost.

Model: RCSP generator graphs Gk = (V k, Ak) for each k ∈ K: V k = {vkt : t = 0, . . . , |T |},
Ak = {akt+ = (vkt−1, v

k
t), akt− = (vkt−1, v

k
t) : t = 1, . . . , |T |}, vksource = vk0 , vksink = vk|T | (see Fig. 2);

Rk = RkM = {rk}; qakt+,rk = wkt , qakt−,rk = 0, t ∈ T ; [lvkt ,rk , uvkt ,rk] = [0, Qk], t ∈ T ∪ {0}. Integer

variables xkt , t ∈ T , k ∈ K. The formulation is:

Min
∑
t∈T

∑
k∈K

ckt x
k
t (12a)

S.t.
∑
k∈K

xkt = 1, t ∈ T ; (12b)

M(xkt) = {akt+}, t ∈ T, k ∈ K; Lk = 0, Uk = 1, k ∈ K. P = E = ∪t∈T {{akt+ : k ∈ K}}.
Branching is over the x variables. Enumeration is on.

Comments: Graphs Gk, illustrated in Figure 2, are designed to model binary knapsack con-
straints: each path in P k corresponds to a possible assignment of a set of tasks to machine k.
A collection of packing sets (that are also the elementarity sets) is provided, so the features de-
scribed in Section 3, that extend the basic formulation, can be used. In this model, the validity
of the chosen P is a clear consequence of Constraints (12b) and of the mapping. However, in
other problems, the validity of the packing sets provided by the modeler may not be obvious.
All constraints in (12b) are essential. It can be checked that the enumeration sufficient condition
is satisfied, so the enumeration procedure can be used.

4.2 Vector Packing (VPP) / Bin Packing (BPP)

Data: Set T of items; set D of dimensions; bin capacities Qd, d ∈ D; item weight wdt , t ∈ T ,
d ∈ D. (Bin packing is the case where |D| = 1).

11

vk0 vk1 vk2 vk3 vk|T |−1 vk|T |
ak
1+

ak
1−

ak
2+

ak
2−

ak
3+

ak
3−

ak
|T |+

ak
|T |−

.

Figure 2: GAP model graph, RCSPs correspond to binary knapsack solutions.

Goal: Find a packing using the minimum number of bins, such that, for each dimension, the
total weight of the items in a bin does not exceed its capacity.

Model: A single graph G = (V,A) (we omit the index k in such cases): V = {vt : t = 0, . . . , |T |},
A = {at+ = (vt−1, vt), at− = (vt−1, vt) : t = 1, . . . , |T |}, vsource = v0, vsink = v|T |. R = RM = D;

qat+,d = wdt , qat−,d = 0, t ∈ T, d ∈ D; [lvt,d, uvt,d] = [0, Qd], t ∈ T ∪ {0}, d ∈ D. Continuous
variables xt, t ∈ T ∪ {0}. The formulation is:

Min x0 (13a)

S.t. xt = 1, t ∈ T ; (13b)

M(x0) = {a1+, a1−}, M(xt) = {at+}, t ∈ T ; L = 0, U = ∞. P = E = ∪t∈T {{at+}}. Branching
over accumulated resource consumption and, if still needed, by Ryan and Foster rule. Enumer-
ation is on.

Comments: Defining the x variables as integer would be useless, it would not be possible to
branch over them (except, in very limited way, over x0). Branching on λ variables is needed; Ryan
and Foster rule suffices for correctness, however accumulated resource consumption branching
(that may not suffice) should be performed first.

4.3 Capacitated Vehicle Routing Problem (CVRP)

The problem was already defined in Section 2.

Model: A single graph G = (V,A), A = {(i, j), (j, i) : {i, j} ∈ E}, vsource = vsink = 0;
R = RM = {1}; qa,1 = (di + dj)/2, a = (i, j) ∈ A (define d0 = 0); li,1 = 0, ui,1 = Q, i ∈ V .
Integer variables xe, e ∈ E. The formulation is:

Min
∑
e∈E cexe (14a)

S.t.
∑
e∈δ(i) xe = 2, i ∈ V+, (14b)

xe ≤ 1, e ∈ E \ δ(0); (14c)

M(xe) = {(i, j), (j, i)}, e = {i, j} ∈ E; L = d
∑n
i=1 di/Qe, U = n. PV = EV = ∪i∈V+{{i}}. RCC

separator on (∪i∈V+{({i}, di)}, Q). Branching on x variables. Enumeration is on.

Comments: Constraints (14c) are separated (by inspection) as user cuts. The packing sets
are defined on vertices. In this problem, defining the resource consumption in a symmetric way
(q(i,j),1 = q(j,i),1) improves the efficiency of the pricing, as will be discussed in Section 5.1.1.
As constraints (14c) are not essential, the enumeration condition over (14b) is satisfied. The
function d : PV ∪ ∅ → R+ for the RCC separator is defined as the set of all pairs (S, d(S)) for
which d(S) 6= 0.

4.4 Heterogeneous Fleet Vehicle Routing Problem (HFVRP)

Data: Undirected graph G′ = (V,E), V = {0, . . . , n}, 0 is the depot, V+ = {1, . . . , n} are the
customers; positive demand di, i ∈ V+; set of vehicle types K = {1, . . . ,m}; number of available
vehicles uk, k ∈ K; edge costs cke , e ∈ E, k ∈ K (assume that fixed costs fk for using a vehicle

12

of type k are included in the cost of the edges incident to the depot); vehicle type capacity Qk,
k ∈ K.

Goal: Find a minimum cost set of routes, each route associated to a vehicle type and starting
and ending at the depot, visiting all customers and such that the sum of the demands of the
customers in a route does not exceed its vehicle type capacity. The number of routes for a vehicle
type should not exceed its availability.

Model: Graphs Gk = (V k, Ak), V k = {vk0 , . . . , vkn}, Ak = {(vki , vkj), (vkj , v
k
i) : {i, j} ∈ E},

vksource = vksink = vk0 , k ∈ K; Rk = RkM = {rk}; qa,1 = (di + dj)/2, a = (vki , v
k
j) ∈ Ak, k ∈ K

(define d0 = 0); lvki ,rk = 0, uvki ,rk = Qk, vki ∈ V k, k ∈ K. Integer variables xke , e ∈ E, k ∈ K.
The formulation is:

Min
∑
k∈K

∑
e∈E c

k
ex

k
e (15a)

S.t.
∑
k∈K

∑
e∈δ(i) x

k
e = 2, i ∈ V+; (15b)

M(xke) = {(vki , vkj), (vkj , v
k
i)}, e = {i, j} ∈ E, k ∈ K; Lk = 0, Uk = uk. PV = EV = ∪i∈V+

{{vki :

k ∈ K}}. RCC separator on (∪i∈V+
{({vki : k ∈ K}, di)},maxk∈K Q

k). Branching first on the
aggregation of x variables corresponding to number of times that a vehicle of each type is used,
then on the aggregation of x variables corresponding to the assignment of a customer to a vehicle
type or on the aggregation of x variables corresponding to the edges of the original graph G′.
Enumeration is on.

4.5 Team Orienteering Problem (TOP)

Data: Directed graph G = (V,A), V = {0, . . . , n + 1}, 0 and n + 1 are the initial and final
depots, respectively, V+ = {1, . . . , n} are the customers; positive travel time ta, a ∈ A; profit pi,
i ∈ V+; maximum route duration T ; and fleet size F .

Goal: Find a set of at most F routes, each one starting at 0, ending at n+ 1 and not exceeding
the maximum route duration, that visit each customer at most once and maximize the total
profit of the visited customers.

Model: A single graph G = (V,A), vsource = 0, vsink = n + 1; R = RM = {1}; qa,1 = ta,
a = (i, j) ∈ A; li,1 = 0, ui,1 = T, i ∈ V . Integer variables xa, a ∈ A and binary variables yi,
i ∈ V+. The formulation is:

Min −
∑
i∈V+

piyi (16a)

S.t.
∑
i∈δ−(i) xa = yi, i ∈ V+; (16b)

M(xa) = {a}, a ∈ A; L = 0, U = F . PV = EV = ∪i∈V+
{{i}}. Branching on x or on y variables.

Enumeration is on.

Comments: The y variables, that indicate which customers are visited, are not mapped to any
arc. So, they are kept in the Master LP.

4.6 Pickup and Delivery VRPTW (PDPTW)

Data: Directed graph G = (V,A), where V = {0} ∪ P ∪D, P = {1, . . . , n} is the set of pickup
vertices and D = {n+ 1, . . . , 2n} the set of corresponding deliveries (a pickup at i correspond to
a delivery at i+ n); vehicle capacities Q; traveling cost ca and time (including service time) ta ,
a ∈ A; positive demands dv, v ∈ P (dv = −dv−n, v ∈ D); and time windows [lv, uv], v ∈ V .

Goal: Find a minimum cost set of routes, starting and ending at the depot, performing all
pickups and deliveries within the time windows (waiting is allowed) and such that, along a
route, the total demand already collected but not yet delivered does not exceed vehicle capacity.

13

Model: A single graph G = (V,A), vsource = vsink = 0. RM = {n+2} (the time resource); RN =
{1, . . . , n+ 1}, the first n resources are non-disposable; q(v,v′),v′ = 1, if v′ ∈ P , q(v,v′),v′−n = −1,
if v′ ∈ D, and q(v,v′),n+1 = dv′ , (v, v′) ∈ A; qa,n+2 = ta, a ∈ A; all other resource consumptions
are zero; uv,r = 1, v ∈ P ∪D, r = 1, . . . , n, uv,n+1 = Q, v ∈ V , and (lv,n+2, uv,n+2) = (lv, uv),
v ∈ V ; all other resource bounds are zero. Integer variables xa, a ∈ A. The formulation is:

Min
∑
a∈A caxa (17a)

S.t.
∑
a∈δ−(v) xa = 1, v ∈ P ; (17b)

M(xa) = {a}, a ∈ A; L = 0, U =∞. PV = EV = ∪v∈P {{v}}. Branching first on the aggregation
of x variables corresponding to number of routes, then on individual x variables.

Comments: This example illustrates the use of non-monotone secondary resources, some of
them being defined as non-disposable. The first n resources are used to enforce that if a route
performs a pickup i it can not return to the depot before doing the corresponding delivery i+n.
If those resources were disposable, routes that visit i+ n without having visited first i would be
possible. Resource n+ 1 controls the capacity along the route.

4.7 Capacitated Arc Routing (CARP)

Data: Undirected graph G′ = (V ′, E), V ′ = {0, . . . , n}, 0 is the depot vertex; positive cost ce
and non-negative demand de, e ∈ E, set F of required edges: F = {e ∈ E | de > 0}; vehicle
capacity Q.

Goal: Find a minimum cost set of routes, closed walks starting and ending at the depot, that
serve the demands in all required edges. Edges in a route can be traversed either serving or
deadheading (not serving). The sum of the demands of the served edges in a route can not
exceed capacity.

Model: For i, j ∈ V ′, let D(i, j) ⊆ E be the set of edges in a chosen cheapest path from i to j,
with cost C(i, j) =

∑
e∈D(i,j) ce. Define a dummy required edge r0 = (0, 0′) and F0 = F ∪ {r0}.

Define an auxiliary undirected complete graph G′′ = (F0, E
′′). For each r = (w1, w2) ∈ F0,

define o(r, w1) = w2 and o(r, w2) = w1.

The model has a single RCSP graph generator G = (V,A), V = {vwr : r ∈ F0, w ∈ r},
A = {(vw1

r1 , v
z1
r2), (vw1

r1 , v
z2
r2), (vw2

r1 , v
z1
r2), (vw2

r1 , v
z2
r2) : r1 = (w1, w2), r2 = (z1, z2) ∈ F0, r1 6= r2},

vsource = v0r0 , vsink = v0
′

r0 ; R = RM = {1}; for a = (vwr1 , v
z
r2) ∈ A, qa,1 = dr2 ; lv,1 = 0, uv,1 =

Q, v ∈ V . Integer variables xa, a ∈ A. For a = (vwr1 , v
z
r2) ∈ A, ca = C(w, o(r2, z)) + cr2 . The

formulation is:

Min
∑
a∈A caxa (18a)

S.t.
∑
a∈δ−({vw1

r ,v
w2
r }) xa = 1, r = (w1, w2) ∈ F, (18b)

plus Lifted Odd-Cutsets [14, 12]; M(xa) = {a}, a ∈ A; L = 0, U = ∞. PV = EV =
∪r=(w1,w2)∈F {{vw1

r , vw2
r }}. RCC separator on (∪r=(w1,w2)∈F {({vw1

r , vw2
r }, dr)}, Q). Branching

first on the aggregation of x variables corresponding to node degrees in original graph G′ or on
the aggregation of x variables corresponding to edges of graph G′′.

Comments: A case where a more complex transformation (similar to [55, 12, 16]) is used to
fit the problem into the model. The separation of Lifted Odd-Cutsets is performed using the
Gomory-Hu tree algorithm.

4.8 Black-and-White Traveling Salesman Problem (BWTSP)

Data: Undirected graph G′ = (V = B ∪W,E), where B is the set of black vertices and W is
the set of white vertices; positive cost ce, e ∈ E; positive distance de, e ∈ E; limits Q and D.

14

Goal: Find a minimum cost tour such that every subpath between two consecutive black vertices
visits at most Q white vertices and has total distance at most D.

Model: A single graph G = (B ∪W ∪ {0}, A), A = {(i, j), (j, i) : (i, j) ∈ E} ∪ {(0, i), (i, 0) :
i ∈ B}, vsource = vsink = 0; R = RM = {1, 2}. Consumptions of the first (capacity) and second
(distance) resources for arc a = (i, j) ∈ A are

qa,1 =

{
Q, i ∈ B and j ∈ B,
0.5 · |{i, j} ∩W |, otherwise,

qa,2 =

{
le, (i, j) = e or (j, i) = e,
0, otherwise,

where |{i, j} ∩W | is the number of white vertices in {i, j}. We also have li,1 = 0, ui,1 = Q,
li,2 = 0, ui,2 = D, i ∈ V . Integer variables xe, e ∈ E. The formulation is:

Min
∑
e∈E cexe (19a)

S.t.
∑
e∈δ(i) xe = 2, i ∈ V, (19b)∑

i∈V ′
∑
j 6∈V ′ x(i,j) ≥ 2, ∅ 6= V ′ ⊂ V ; (19c)

M(xe) = {(i, j), (j, i)}, e = {i, j} ∈ E; L = U = |B|. PV = ∪i∈W {{i}}, EV = ∪i∈B{{i}} ∪
PV . RCC separator on (∪i∈W {({i}, 1)}, Q). Branching on x variables. Enumeration is on.
Constraints (19c) (standard TSP subtour elimination constraints) are added dynamically as
core cuts.

Comments: The graph G is used for generating the subpaths linking two consecutive black
vertices. This model demonstrates the case when the collection of packing sets is not equal to
the collection of elementarity sets. Each black vertex i ∈ B defines an elementarity set, but not
a packing set. In fact, we cannot put a black vertex to any packing set as it appears in two
paths in every feasible solution. However, a black vertex appears at most once in every subpath,
therefore it can be put to an elementarity set. The model is illustrated in Figure 3.

0

1

2 3

4

5

x12 Q

x130.5

x14 0.5

x15
0.5

x23
0.5

x24
0.5

x25
0.5

x351

x34 1

x45 1

Figure 3: BWTSP model graph and mapping. Consumption of the capacity resource is shown
in bold. Dashed arcs have zero consumption for both resources.

5 Implementation

Algorithms used in the implementation of the solver are generalizations of already published
algorithms. Thus, we only give an overview of these algorithms; together with references to the
original papers. In fact, the main goal of this section is to explain how modeling decisions and
solver parameters impact the implemented algorithms.

15

5.1 Labeling Algorithm for Pricing Problems

Pricing problems are solved by a bi-directional labeling dynamic programming algorithm [73],
using the bucket graph implementation proposed in [78]. A label is a data structure that repre-
sents either a forward partial path started in vertex vksource or a backward partial path started
in vertex vksink. Initially, only labels representing null paths at vksource or at vksink exist. Labels
are extended along arcs in Ak, if the new extended path is feasible, then the corresponding new
label is created. The key feature of a labeling algorithm is the use of dominance checks. Let p
and p′ be two partial paths ending at the same vertex. If it can be proved that any complete
path that is a completion of p′ will have a reduced cost greater than the reduced cost of the
path obtained by the same completion over p, then p′ is dominated by p and the corresponding
label can be dropped. Labels are grouped and stored in buckets. The idea is to perform frequent
dominance checks only for labels in the same bucket, in order to avoid spending an excessive time
on those operations. In our algorithm, labels with the same final vertex and within the same
ranges of accumulated consumption values of main resources are put in the same bucket. Such
bucket organization has advantages over a simpler organization based on resource discretization,
used for example in [63]: it improves significantly the algorithm performance in the cases where
resource intervals are given by very large integer numbers and even allows the use of continuous
resource consumptions.

Our implementation supports at most two main resources, as we believe that having three
or more main resources would result in too many buckets and too few labels per bucket, not
being computationally advantageous. Accumulated resource consumption ranges for buckets are
specified using the step size d̃r defined for each main resource r ∈ RkM . Each bucket contains
labels with a main resource consumption within two consecutive multiples of the step size for
this resource. Initial step sizes are defined using parameter ψbuck which designates the maximum
number of buckets per vertex. Let Q̄kr be the maximum spread of the resource consumption for
resource r ∈ RkM in graph Gk: Q̄r = uvksink,r− lvksource,r. Then in the case with one main resource,

d̃1 = Q̄1/ψ
buck. In the case two main resources d̃r = Q̄r/

√
ψbuck for r = 1, 2. In the course of

the algorithm, step sizes may be automatically reduced (i.e. number of buckets per vertex may
be increased) if it determined that too many dominance checks are performed between labels in
a same bucket. If this happens, the buckets are recreated. Binary parameter ψreduc determines
whether automatic step size reduction is activated.

The bucket graph defines one node per bucket and directed arcs connecting pairs of buckets
through which the labels can be possibly extended. Distinct bucket graphs are then defined for
forward and backward labeling. The concept of bucket graph is useful because:

1. It helps to determine an efficient order of treatment for the buckets. If the bucket graph
is acyclic, it is desirable to process the buckets in its topological order because no further
extension from a bucket is necessary after it has been processed. If the bucket graph
contains cycles, then buckets are handled in the topological order of its strongly connected
components, trying to minimize such reprocessing.

2. It is used to improve the efficiency of performing dominance checks between labels in
different buckets.

3. Arcs can be removed from the bucket graph by reduced cost arguments, avoiding label
extensions in future calls to the pricing. This fixing procedure is more powerful than the
one in [48]. Binary parameter φelimin determines whether this more sophisticated fixing
procedure is applied.

Our labelling algorithm and the bucket arc elimination procedure are bi-directional. For the
first main resource, we calculate a special resource consumption value q∗ equal to the average
middle value of the resource consumption bounds in all vertices. In the forward (backward)
labelling, we keep only labels with the first main resource consumption not larger (larger) than
q∗. Then the concatenation step is performed to obtain complete paths. Completion bounds are

16

used to speed up concatenation. If the difference between the number of forward and backward
non-dominated labels is large, the next call of the pricing will use an automatically adjusted value
of q∗. Parameter φbidir defines whether bidirectional search is used. If φbidir = 0, bidirectional
search is never used. If φbidir = 1, bidirectional search is always used. If φbidir = 2, bidirectional
search is used only for the exact labeling, and not used for the heuristic labeling presented in
Section 5.1.3.

5.1.1 Benefiting from symmetry

We exploit forward-backward path symmetry when solving the pricing problem for graph Gk,
k ∈ K, if the following conditions are satisfied.

• Packing and elementarity sets are defined on vertices.

• For each arc a = (i, j) ∈ Ak, k ∈ K, there exists arc a′ = (j, i) ∈ Ak with the same
resource consumptions and the same inverse mapping: qa,r = qa′,r, for all r ∈ Rk, and
M−1(a) = M−1(a′). For the sake of symmetry detection, vertices vksource and vksink are
treated as the same vertex, even if the user set them as being distinct vertices.

• Resource consumption bounds are the same for all vertices: [lv,r, uv,r] = [lv′,r, uv′,r] =
[0, Qr], for all r ∈ R and for all pairs v, v′ ∈ V k.

Under these conditions, value q∗ is fixed to Q1/2. The backward labelling is not executed, this
saves a significant time. The concatenation is performed just after the forward labelling, using
symmetric copies of forward labels as backward labels, as described in [78].

5.1.2 Dominance on disposable and non-disposable resources

When performing dominance checks between labels corresponding to partial paths p and p′ end-
ing at the same vertex, we need to compare their accumulated resource comsumptions. Path
p can only dominate p′ if, for every disposable resource r ∈ Rk, the accumulated consumption
of p is not larger than the accumulated consumption of p′. Note that a strictly smaller accu-
mulated consumption does not prevent the dominance, because it is always possible to dispose
the additional units of that resource in a completion of p. This is not true for non-disposable
resources. Therefore, path p can only dominate p′ if, for every non-disposable resource r ∈ Rk,
the accumulated consumption of p is identical to the accumulated consumption of p′. This means
that models should only define resources as non-disposable if this is really necessary. Remark
that monotone and non-monotone resources are not treated differently in the dominance.

A resource is binary if its accumulated consumption can only be 0 or 1. Sets of secondary
binary resources of the same type (disposable or not disposable) are implemented in a special way,
being represented as bitsets in the labels. This greatly decreases the time spent for dominance
checks between labels.

5.1.3 Pricing heuristics

We use two labelling heuristics similar to [78]. In the lighter heuristic, only one label per bucket
is kept, the one with the smallest reduced costs. In the heavier heuristic, only reduced cost and
resource consumption is used to check dominance between labels. Label dimensions related to
ng-paths and rank-1 cuts are ignored.

5.2 Column and cut generation

We use three-stage column generation. In the first and second stages, the lighter and the heavier
labelling heuristics are used, and at most γheur columns are generated per iteration and per

17

k ∈ K. In the last stage, the exact labeling algorithm is used, and at most γexact columns are
generated per iteration and per k ∈ K. We use automatic dual price smoothing [68] technique to
improve the column generation convergence in each stage. Parameter σstab specifies the minimum
column generation stage in which stabilization is active. The column clean-up procedure is also
used: each time the total number of columns exceeds 10,000, only 66% of the columns with the
smallest reduced cost remain in the master problem while other columns are removed.

If enabled, the bucket arc elimination procedure for each pricing problem k ∈ K is performed
after the first column generation convergence and each time the current primal-dual gap is
reduced by more than 10% since the last call to it. Immediately after this procedure, the bi-
directional path enumeration labeling algorithm for graph Gk is executed. This algorithm is a
generalization of the one used in [8, 63]. It is aborted if the number of non-dominated labels
(in this context they correspond to partial E-elementary paths) exceeds ωlabels or the number
of generated paths exceeds ωroutes. If the enumeration algorithm for graph Gk succeeds, i) the
enumerated paths are stored in a pool ii) all columns corresponding to paths that are not E-
elementary are deleted from the master, iii) in future column generation iterations the pricing
is performed by inspection in the pool, and iv) the fixing by reduced costs also starts to be
performed in the pool and removes paths from it. If the total number of paths for all graphs
drops below ωMIP, all corresponding columns are added to the restricted master, and current
node is solved by the MIP solver.

Initial ng-sets may be explicitly given by the user. However, it is possible (and usually much
more practical) to specify a distance matrix between elementarity sets and a parameter ηinit,
which was always equal to 8 for the experiments reported in this paper. If elementarity sets are
defined on arcs, NG(a) will include the ηinit closest elementarity sets to the elementarity set of a
according to the distance matrix. If elementarity sets are defined on vertices, NG(a) will include
the union of the ηinit closest elementarity sets to the elementarity sets of both extremities of a.

We have implemented a dynamic extension of ng-sets [74, 22], which is useful for some prob-
lems. Given a fractional solution λ̄ obtained after column generation convergence, we augment
ng-sets based on “elementarity set cycles” in paths p ∈ P k such that λ̄p > 0. An elementarity
set cycle is a partial path started and finished by arcs belonging to a same elementarity set S.
For each considered path, we find all cycles of size at most 5 or, if there are no such cycles, a
minimum size cycle. Then we add S to NG(a) for every arc in these cycles. At most 100 paths
p with cycles are considered, those with the largest values λ̄p. The size of ng-sets is limited by
parameter ηmax. All columns corresponding to paths which are not feasible with respect to new
ng-sets are deleted from the restricted master.

In each cut round, we generate at most 100 rounded capacity cuts (if RCC separators are
defined). We call a rank-1 cut l-row if the corresponding vector ρ of multipliers has l positive
components. In each round, we generate at most θnum l-row rank-1 cuts for each l ∈ {1, 4, 5, 6, 7},
and at most 1.5 · θnum 3-row rank-1 cuts (which are subset-row cuts [49]). Parameter θrows

determines the maximum number of rows in rank-1 cuts, i.e. if l > θrows, l-row rank-1 cuts are
not separated. l-row rank-1 cuts are separated by exhaustive enumeration for l = {1, 3, 4}. For
separating other rank-1 cuts, a local search heuristic is used. It is based on the distance matrix
between packing sets (contained in the distance matrix between elementarity sets) given by the
user. The local search heuristic separates only cuts corresponding to multipliers ρ such that
every packing set S, ρS > 0, is among 16 closest to any other packing set S′, ρS′ > 0.

There is parameter θmem to determine how rank-1 cuts limited memory is computed. If
θmem = 1, the arc memory is used as described in Section 3.3. If θmem = 2, the vertex memory is
used, which is “projected” to arcs between vertices in the memory before executing the labeling
algorithm. Vertex memory allows the algorithm to converge faster, as rank-1 cuts are stronger.
However, the impact on the running time of the labeling algorithm is larger. Thus, the obtained
dual bounds may be weaker due to the time thresholds τ soft and τhard defined below. If θmem = 0,
the root node is solved two times, first time with arc memory for rank-1 cuts, and the second
time with vertex memory. After solving the root, it is automatically determined based on the
latest pricing time and the dual bound obtained which memory is used for the remaining of the

18

branch-and-bound tree.

Increasing of ng-sets can also be considered as cut generation, as this procedure improves
dual bound given by the master problem. In the root node, ng-set augmentation has the highest
priority, robust cuts (RCCs and user cuts) have medium priority, and rank-1 cuts have the
smallest priority. We separate cuts with lower priority only if the tailing-off condition is satisfied
for cuts of higher priority. The tailing condition is fulfilled when the dual gap is reduced by less
than δgap% after δnum round of cuts. In the other nodes of the branch-and-bound tree, priority
of all cuts is the same, i.e. they all are separated in every round.

There are two thresholds τ soft and τhard for the running time of the exact labeling algorithm.
If the running time for at least one pricing problem exceeds τ soft, after the column generation
convergence, cuts are not separated and branching is performed. If the running time exceeds
τhard, the labelling algorithm is interrupted and the rollback procedure [63] is executed: the cuts
added in the last separation round are deleted from the master, and branching is performed.

5.3 Safe dual bounds

An optimal dual solution returned by the restricted master problem is actually an approximation
of a real one, as competitive LP solvers use floating-point arithmetic. Thus the sign of the
minimum reduced cost found by the pricing problem can hardly be decided. This can lead to
premature termination or to endless loops [45]. For most applications, no practical difficulty
occurs. However for some problems, wrong dual bound can be calculated. Vertex coloring and
bin packing are examples of such problems.

Our solver has an option to compute a numerically safe dual bound similarly to the method
proposed in [45]. This approach can be applied in our solver if i) variables y are absent (i.e.
n2 = 0), and ii) all coefficients α are non-negative.

We use the property that a valid (Lagrangian) dual bound can be computed for any vector of
dual values. Given as a parameter a large integer constant K̃, we call the pricing problem with
modified dual values bK̃πic, i = 1, . . .m, bK̃νk+c, bK̃νk−c, k ∈ K. The dual values corresponding
to the cuts are modified in the same way. The modified cost of variable xj in the pricing problems

is equal to dK̃cje, j = 1, . . . , n1. This rounding procedure allows us to obtain a feasible dual
solution at the end of column generation convergence under two conditions given in the previous
paragraph. As the objective function of any modified pricing problem is integer, its solution value
can be computed exactly. The (Lagrangian) dual bound is then calculated in the usual way and
then multiplied by K̃−1. When the option to use safe dual bounds is activated (K̃ > 0), the
reduced cost tolerance of the LP solver is set to the minimum possible value (10−9 for CPLEX).

5.4 Branching

The user has the possibility to set the priority for each branching strategy he uses for his
application. The selection among branching candidates with the same priority is done using a
sophisticated hierarchical evaluation strategy similar to the one proposed in [75, 63]. The idea
is to spend more time evaluating branching candidates in the lowest levels of the branch-and-
bound tree where each selection has a greater impact on the overall time, and spend less time as
the level increases, taking advantage of the history of previous evaluations. The following three
evaluation phases are used:

Phase 0: Up to a half of the candidates are chosen from history using pseudo-costs (if history is
not empty). The remaining candidates are chosen in a balanced way between all branching
strategies of the current priority. Within the same strategy, the candidates are chosen
based on the distance from its fractional value to the closest integer, the larger distance is
better.

Phase 1: Evaluate the selected candidates from phase 0 by solving the current restricted master

19

LP modified for each created child node, without generating columns. Select the variables
with the maximum value of ∆LB1×∆LB2, where ∆LBi denotes the increase in the current
lower bound obtained for the ith child node, for i = 1, 2 (Product Rule, [3]).

Phase 2: Evaluate the selected candidates from phase 1 by solving the relaxation associated to
each created child node, including column generation with heuristic labelling for solving
the pricing problem. Cut generation is not applied in this phase. The best candidate is
also selected by the Product Rule.

The maximum number of candidates evaluated in phase ρ = 1, 2 in branch-and-bound node bbn
is equal to min{ζnumρ , TS(nbb) ·ζestimρ }, where TS(nbb) is an estimation of the size of the subtree
rooted at the parent of node bbn (it is equal to infinity for the root). Calculation of estimation
TS(bbn) follows that of [51]. See also [53] for a related work.

5.5 Primal heuristics

Restricted master and diving heuristics [79] are built-in to the solver to improve the primal
solution during the search. When used, these heuristics are executed at each branch-and-bound
node before branching. The first heuristic uses a MIP solver to solve the current restricted
master problem as a mixed-integer program with the time limit χrm. The second heuristic is
the diving heuristic with Limited Discrepancy Search (LDS). It is applied in branch-and-bound
nodes of depth at most χdiv. The diving heuristic uses two parameters χdisc and χdepth which
correspond to parameters maxDiscrepancy and maxDepth in [79]. In each dive of the diving
heuristic, we iteratively fix a column with largest value in the fractional solution to one and then
we solve the resulting residual master problem with column generation. In the diving heuristic
with LDS, one does several dives. Thus, a search tree is formed in which backtracking is allowed.
In each node ndiv of the diving search tree, we keep a tabu list of columns forbidden to be fixed.
Tabu list of a child node is initialized with the current tabu list of the parent node (the initial
tabu list at the root is empty). After a backtrack to a node ndiv, we insert in its tabu list the
column which was fixed by the previous fixing decision in ndiv. An additional fixing decision in
ndiv is allowed (i.e. other child nodes of ndiv can be created) if the size of its tabu list does not
exceed χdisc and the depth of ndiv is not larger than χdepth.

5.6 Parameterization

Based on the description above, we list in Table 1 the solver parameters available to the user.
In addition the user may provide the following information to improve the solver performance.

• Designation of the first main resource which will be used for the bi-directional labelling.

• Priorities for branching strategies.

• Distance matrix between elementarity sets for defining initial ng-sets and for local search
heuristic separation of l-row rank-1 cuts with l ≥ 5.

We now give recommendations for tuning the parameters. The time thresholds τ soft and
τhard may be reduced if these thresholds are attained and the branch-and-bound tree is large.
Parameter ψbuck may be increased if the pricing time is large during the first column generation
convergence. Bucket arc elimination may be switched off (φelim = 0) if it takes a large part of
the solution time. Number of generated columns per iteration γexact, γheur may be reduced if
set K of graphs is relatively large. Enumeration parameters ωlabels, ωroutes may be reduced if
enumeration takes a large part of solution time (this often happens for easy instances). They may
be increased for hard instances with small primal-dual gap. Parameter ωMIP may be decreased
if enumerated MIP takes a lot of time to be solved by the MIP solver (and increased in the
opposite case). Sometimes ωMIP may be set to zero if separation of lazy constraints is used: in

20

Description Notation Default value(s)
Time thresholds for the labeling algorithm τ soft, τhard 10 sec., 20 sec.
Calculation of step sizes for buckets ψbuck, ψreduc 25, 1 (on)
Bi-directional search and bucket arc elimination φbidir, φelim 2, 1 (on)
Max. # of generated columns per iteration γexact, γheur 150, 30
Minimum stage for stabilization σstab 0 (everywhere)
Max. # of labels and paths in the enumeration ωlabels, ωroutes 106, 106

Max. total # of enumerated paths for MIP ωMIP 104

Initial and maximum size of ng-sets ηinit, ηmax 8, 8
Limited-memory rank-1 cuts parameters θnum, θrows, θmem 100, 5, 2
Cut generation tailing-off parameters δgap, δnum 2%, 3

Numerically safe dual bound multiplier K̃ -1 (off)
Strong branching parameters for phase 1 ζnum1 , ζestim1 100, 0.3
Strong branching parameters for phase 2 ζnum2 , ζestim2 3, 0.1
Restricted master heuristic χrm -1 (off)
Diving heuristic (with LDS) χdiv, χdepth, χdisc -1 (off), 0, 0

Table 1: Parameters of the solver available to the user and their default values

this case the enumerated MIP may be resolved many times. Parameters ηinit and ηmax should be
set to zero if the elementarity constraints are always satisfied, f.e. when the graphs are acyclic.
Dynamic ng-relaxation should be used (ηinit should be set to zero) if the distance matrix between
elementarity sets is not specified. Parameters ηinit and ηmax may be changed according to the
difficulty of the pricing problem.

Limited-memory rank-1 cuts parameters may be quite important for the performance. For
instances with long paths, arc memory should be used (θmem should be set to 1). For a mix
of instances with short and long paths, automatic memory should be used (θmem should be set
to 0). For instances with relatively short routes and a large branch-and-bound tree, parameter
θrows may be increased to 7. Number of generated rank-1 cuts θnum may be reduced if the pricing
time increases significantly after one cut generation round.

Cut generation tailing-off parameters δgap, δnum may be changed depending on the size of
the branch-and-bound tree. In the case of a large tree or a large cut separation time, tailing-off
may be reduced (δgap increased and δnum decreased). It may be augmented in the opposite case.

Numerically safe dual bound should be used (K̃ should be set to a large value) for problems
for which the objective function value is small and integer. This is often true for problems similar
to bin packing and vertex coloring, where one needs to minimize the number of columns in the
solution. Strong branching parameters should be increased if good branching candidates are rare
or the quality of branching candidates is very heterogeneous.

Restricted master and diving heuristics should be used if a good initial solution is not avail-
able. The diving heuristic may be inefficient if the pricing problem generates many paths which
are not E-elementary.

6 Computational Experiments

The generic BCP solver optimization algorithms were coded in C++. The interface to the solver
is implemented in Julia 1.2 language using JuMP [35] and LightGraphs packages. We also used:

• BaPCod C++ library [83] which implements the BCP framework;

• the C++ code developed by Sadykov et al. [78] implementing the bucket graph based
labeling algorithm, bucket arc elimination procedure, path enumeration, and the separation
of limited-memory rank-1 cuts;

21

• CVRPSEP C++ library [56] which implements heuristic separation of rounded capacity
cuts;

• IBM CPLEX Optimizer version 12.8.0 as the LP solver in column generation and as the
solver for the enumerated MIPs.

• Boost C++ library version 1.55 [2]

• LEMON C++ library version 1.31 [1] for the bucket graph creation for the labeling algo-
rithm.

The experiments were run on a 2 Deca-core Ivy-Bridge Haswell Intel Xeon E5-2680 v3 server
running at 2.50 GHz. The 128 GB of available RAM was shared between 8 copies of the algorithm
running in parallel on the server. Each instance is solved by one copy of the algorithm using a
single thread.

In Table 2, we show computational results for 14 applications. The first column is the problem
acronym, second column refers to data sets, the third indicates the number of instances. Next
is the time limit per instance. The last three columns show the results obtained by our generic
solver, as well as by two other algorithms, those with the best (to our knowledge) published
results for the data set. For each algorithm, we give the number of instances solved within the
time limit, the average time in brackets (geometric mean time if the time limit is 10 hours or
more), and its reference. For instances not solved, the time limit is considered as the solution
time. Best results are marked in bold. The performance of our solver depends significantly on
initial primal bounds given by the user. In the experiments, we always used the same primal
bounds as in the works we compare with.

For each problem below we give details concerning the models and the parameterization
employed, instances considered, initial primal bounds used, as well as analysis of computational
results.

Capacitated Vehicle Routing Problem (CVRP)

The model is given in Section 4.3. The parameterization of the solver is the following (values
different from defaults): τhard = 25 sec., ωroutes = 5 · 106, θmem = 0, ζestim1 = 0.2, ζnum2 = 5,
ζestim2 = 0.02, δgap = 1.5%. The distance matrix between elementarity sets corresponds to the
distance matrix between clients. The same matrix is used in all routing problems below, except
CARP.

The considered E-M instances are the 12 hardest ones, those considered in [63]. The con-
sidered X instances are those with less than 400 customers. The number of vehicles for E-M
instances is fixed as it is usual in the literature. The number of vehicles is unbounded for X
instances. The same initial upper bounds are used as in the literature [63, 82].

The results show that our solver outperforms noticeably state-of-the-art on X instances.
Results for E-M instances are comparable to the state-of-the-art. Note that the initial upper
bound for the hardest instance M-n200-k16 is different by 4 units from the optimum solution.
This difference introduce randomness to the running time of algorithms.

According to CVRPLIB (http://vrp.atd-lab.inf.puc-rio.br), in November 2018 there
were 55 open CVRP instances in the X set [82]. We started long runs of the generic solver on the
most promising ones, using a specially calibrated parameterization. We could solve 6 instances
to optimality for the first time, as indicated in Table 3. Improved best known solutions are
underlined.

Vehicle Routing Problem with Time Windows (VRPTW)

We use the same model as for the CVRP except that an additional main resource is defined
which represents the time. Different bounds on the consumption of the time resource prevent us

22

Problem Data set # T.L. Gen. BCP Best Publ. 2nd Best
CVRP E-M [25, 26] 12 10h 12 (61s) 12 (49s) [63] 10 (432s) [28]

X [82] 58 60h 36 (147m) 34 (209m) [82] —

VRPTW Solomon Hardest [81] 14 1h 14 (5m) 13 (17m) [62] 9 (39m) [10]
Homberger 200 [40] 60 30h 56 (21m) 50 (70m) [62] 7 (-) [50]

HFVRP BaldacciMingozzi [9] 40 1h 40 (144s) 39 (287s) [67] 34 (855s) [9]

MDVRP Cordeau [29] 11 1h 11 (6m) 11 (7m) [67] 9 (25m) [28]

PDPTW RopkeCordeau [76] 40 1h 40 (5m) 33 (17m) [43] 32 (14m) [7]
LiLim [54] 30 1h 3 (56m) 23 (20m) [7] 18 (27m) [43]

TOP Chao class 4 [24] 60 1h 55 (8m) 39 (15m) [17] 30 (-) [37]

CTOP Archetti [5] 14 1h 13 (7m) 6 (35m) [4] 7 (34m) [5]

CPTP Archetti open [5] 28 1h 24 (9m) 0 (1h) [20] 0 (1h) [4]

VRPSL Bulhoes [20] 180 2h 159 (16m) 49 (90m) [20] —

GAP OR-Lib, type D [13] 6 2h 4 (83m) 5 (30m) [72] 5 (46m) [6]
Nauss [59] 30 1h 28 (29m) 1 (58m) [44] 0 (1h) [59]

BPP Falkenauer T [38] 80 10m 80 (16s) 80 (1s) [19] 80 (1s) [31]
Hard28 [80] 28 10m 28 (17s) 28 (4s) [31] 28 (7s) [15]
AI [32] 250 1h 160 (25m) 140 (28m) [85] 116 (35m) [15]
ANI [32] 250 1h 103 (35m) 97 (40m) [85] 67 (45m) [31]

VPP Classes 1,4,5,9 [23] 40 1h 35 (16m) 13 (50m) [46] 10 (53m) [19]

CARP Eglese [36] 24 30h 22 (36m) 22 (43m) [65] 10 (237m) [12]

BWTSP GLR1, GLR2 [42] 720 2h 720 (36s) 515 (42m) [42] —

Table 2: Generic solver vs best specific solvers on 14 problems.

Instance Prev. BKS Root LB Nodes Total Time OPT
X-n284-k15 20226 20168 940 11.0 days 20215
X-n322-k28 29834 29731 1197 5.6 days 29834
X-n344-k43 42056 41939 2791 11.6 days 42050
X-n393-k38 38260 38194 1331 5.8 days 38260
X-n469-k138 221909 221585 8964 15.2 days 221824
X-n548-k50 86701 86650 337 2.0 days 86700

Table 3: Detailed results on the open instances solved.

from exploiting forward-backward path symmetry in the pricing.

The considered Solomon instances (all with 100 customers) are the hardest ones according
to [62]. As it is standard in the literature, we divide the instances in two groups. First group
contains instances of type C1, RC1, and R1. For this group of instances, the first main resource
for the bi-directional labelling is the capacity resource. Second group contains instances of
type C2, RC2, R2. For the second group of instances, capacity resource is not used, and the
feasibility related to the vehicle capacity is guaranteed by the rounded capacity cuts, separated
both for fractional and integer solutions of the master problem. Therefore, those cuts become
essential constraints and the sufficient condition for enumeration given in Section 3.4 is not
verified (paths visiting the same customers in distinct orders may have different coefficients in
some RCC). However, it is still possible to show that the enumeration procedure is valid. The
same initial upper bounds are used as for the algorithm in [62].

The parameterization of the solver for the first group of instances is τ soft = 5 sec., τhard = 10
sec., φbidir = 1, ηmax = 16, θrows = 7, θmem = 1, ωroutes = 107, ζnum0 = 50, ζestim1 = 0.1,
ζestim2 = 0.1, δgap = 1.5%. The parameterization for the second group of instances is τhard = 30

23

sec., φbidir = 1, ηmax = 16, θmem = 1, ωroutes = 5 · 106, ζnum1 = 50, ζestim1 = ∞, ζestim2 = ∞,
δgap = 1.5%.

The results in Table 2 show that our solver outperformed significantly the algorithm proposed
in [62]. It is more than three times faster on average and could solve 7 more instances within
the time limit. All Solomon instances with 100 customers are solved in less than 5 minutes each,
except the hardest instance R208 which is solved in 37 minutes. The latter was solved in about
17 hours by the algorithm in [62].

Heterogeneous Fleet Vehicle Routing Problem (HFVRP)

The model is given in Section 4.4. The parameterization of the solver is the following: τ soft = 6
sec., τhard = 15 sec., ωroutes = 5 · 106, θmem = 1, ζestim1 = 0.2, ζnum2 = 5, ζestim2 = 0.02. The
branching on the number of paths for each vehicle type has the highest priority. Other branching
strategies have the same priority.

We use the instances with 50-100 clients proposed in [9]. They include instances with lim-
ited and unlimited fleet, with and without fixed vehicle cost, and with vehicle dependent and
independent routing costs. The same initial upper bounds are used as in [67]. Our solver sig-
nificantly outperforms the algorithm from [9]. It also has a better performance than a recent
branch-cut-and-price algorithm specific for that problem [67].

Multi-Depot Vehicle Routing Problem (MDVRP)

We use a model similar to the one used on HFVRP, defining a graph Gk for every depot k ∈ K.
Variables associated with edges incident to a depot k are mapped to the corresponding arcs
in graph Gk. Variables associated with edges between customers are mapped to corresponding
arcs in all graphs. The same parameterization and the same priorities for branching as for the
HFVRP are used.

We use instances proposed in [29]. Only instances without distance constraints are considered,
so there is a single capacity resource. The same initial upper bounds are used as in [67]. The
solver obtained a performance similar to [67] and significantly better than [28].

Pickup and Delivery Problem with Time Windows (PDPTW)

The model is given in Section 4.6. The parameterization of the solver is the following: τ soft = 5
sec., τhard = 10 sec., ψbuck = 200, ωlabels = 5 · 105, ωroutes = 2.5 · 106, ωMIP = 7000, δnum = 2,
ζestim1 = 30, ζestim1 = 1.0, ζnum2 = 2. Diving heuristic is used with parameters χdiv = 10,
χdepth =∞, χdisc = 1.

The convention in PDPTW literature is to first minimize the number of routes, then min-
imize the transportation cost. So, we add the constant 10,000 to the cost of arcs leaving the
depot. The same initial upper bounds are used as in [7]. Results for this problem are mixed.
Worse performance for Li& Lim instances can be explained by the fact that our solver does
not incorporate some labeling algorithm acceleration techniques specific to the PDPTW. For
the Ropke & Cordeau instances however, generic state-of-the-art BCP components mitigate the
effect of lacking ad-hoc enhancements. Employing diving heuristic is important here as initial
upper bounds are not tight for some instances.

Team Orienteering Problem (TOP)

The model is given in Section 4.5. The parameterization of the solver is the following: τ soft = 5
sec., τhard = 10 sec., ψbuck = 200, φbidir = 1, ωlabels = 5 · 105, ωroutes = 2.5 · 106, θmem = 1,

24

δnum = 2, ζestim1 = 50, ζestim1 = 1.0. Both restricted master and diving heuristics are used with
parameters χrm = 1 sec., χdiv = 0, χdepth =∞, χdisc = 1.

No initial upper bound is defined, so using heuristics is important. Instances of class 4,
the most difficult one according to [17], are considered for TOP. Our solver clearly outperforms
the state-of-the-art on this problem. Its advantage can be explained by the fact that some
important recent improvements in BCP algorithms for variants like CVRP and VRPTW were
not yet adapted and used in TOP, possibly due to the complexity of their implementation.

Capacitated Team Orienteering Problem (CTOP)

The same model as for the TOP is used, except that an additional capacity resource is considered.
The first main resource for the bi-directional labelling is the time resource. Pricing problem can
be difficult for the instances considered. Therefore, we used a special parameterization for
the number of buckets to be able to solve them in a reasonable time. Bucket arc elimination
procedure and thus route enumeration are not used due to performance issues. Rank-1 cuts are
also not separated due to the difficulty of the pricing problem.

The parameterization of the solver is the following: τ soft = 5 sec., τhard = 10 sec., ψbuck =
1000, φbidir = 1, φelim = 0 (off), σstab = 1, ηmax = 30, θrows = −1 (off), δgap = 1.5%, ζestim1 = 50,
ζestim1 = 1.0. Diving heuristic is used with parameters χdiv = 0, χdepth =∞, χdisc = 1.

No initial upper bound is defined. We used all instances in Set 1 from [5]. We also used only
open instances in Set 2 from [5] (which were not solved by Archetti et al. [4]), as Set 2 contains
easier instances (with a reduced vehicle capacity and a reduced time limit). We have not solved
only one instance: “p09”. All other instances were solved to optimality in less than 15 minutes
each, seven of them for the first time.

Capacitated Profitable Tour Problem (CPTP)

The same model as for the CTOP, except that i) the only resource is the vehicle capacity,
ii) the objective is the difference between the total profit and the transportation cost. The
parameterization of the solver is the following: τ soft = 5 sec., τhard = 10 sec., ψbuck = 200,
φbidir = 1, σstab = 1, ωlabels = 5 · 105, ωroutes = 2.5 · 106, ηmax = 30, θmem = 1, δgap = 1.5%,
ζestim1 = 50, ζestim1 = 1.0.

Only open instances from [5] are considered, which could not be solved by Bulhoes et al. [20].
The same initial upper bounds were used as for the branch-and-price algorithm in [20]. Note that
only one of them was improved: for instance “p13-4-200” the optimum value is 304.15, whereas
the best known solution is 303.18. So the heuristic suggested in [20] is of a very good quality.
Among 28 open instances of the CPTP, we solved to optimality 24 within 1 hour. Two more
instances “p13-4-200” and “p10-20-200” were solved within 2 hours each. The only remaining
open instances are now “p15-15-200”, and “p16-20-200”.

VRP with Service Level constraints (VRPSL)

VRPSL is a generalisation of CVRP in which a service weight is defined for each customer.
For each predefined group of customers, total service weight of visited customers should not
be below a threshold. The model contains edge variables x and visiting variables y, as for the
TOP. For each group, a knapsack constraint over y variables is defined. Branching is both on
y and x variables. The parameterization of the solver is the following: τ soft = 3 sec., τhard = 6
sec., ψbuck = 200, ωlabels = 2 · 105, ηmax = 30, θrows = 4, θmem = 1, δgap = 1.5%, ζnum1 = 50,
ζestim1 = 1.0.

The instances proposed in [20] are considered. The same initial upper bounds were used
as in [20]. None of them was improved. Our solver outperformed largely the branch-and-price

25

algorithm by Bulhoes et al. [20]. The reason is that the latter does not use many state-of-the-
art techniques for routing problems. Performance of our solver can probably be improved by
separating valid inequalities for the knapsack constraints.

Generalized Assignment Problem (GAP)

The model is given in Section 4.1. We used 6 classic OR-Library instances of the most difficult
type D with up to 20 machines and 200 tasks. Also we used instances by Nauss [59] with
|T | = 90, 100 and |K| = 25, 30. The parameterisation of the solver is the following: ψbuck = 100,
ψreduc = 0 (off), φbidir = 1, γexact = 10, γheur = 10, ωlabels = 105, ωroutes = 2 · 105, ωMIP = 4000,
ηinit = 0, ηmax = 0, θrows = 4. Diving heuristic is used with parameters χdiv = 0, χdepth = 3,
χdisc = 2, as no initial upper bound is defined for both types of instances.

Performance of our solver is slightly worse than the state-of-the-art. Both “competitors” [72]
and [6] solved one more instance to optimality. In Table 2, times of [72] and [6] are adjusted
according to computer speeds. Note that our solver is the first algorithm in the literature which
solves the pricing problem as the resource constrained shortest path problem. Although it is
slower than specialised knapsack solvers, it supports rank-1 cuts and enumeration.

Our solver is much more efficient than the algorithm by Nauss [59] and the MIP formulation
for the GAP solved by Gurobi. Note that our solver obtains particularly good results for instances
with relatively small number of tasks per machine, as in this case path enumeration procedure is
very efficient. For instances with large number of tasks per machine our solver is less efficient. In
particular, a more advanced stabilisation technique is required for such instances, as discussed
in [68].

Bin Packing Problem (BPP)

The model is given in Section 4.2. The parameterization of the solver is the following: ψbuck =
200, ψreduc = 0 (off), φbidir = 1, γexact = 100, γheur = 100, σstab = 2, ωroutes = 2 · 106,
ωMIP = 105, ηinit = 0, ηmax = 0, θrows = 4, δnum = 5, K̃ = 1010, ζnum1 = 20, ζnum2 = 1. Diving
heuristic with parameters χdiv = 10, χdepth = 0, χdisc = 0 is used for all instances except set
ANI.

We give smaller priority for the Ryan and Foster branching and larger priority for the branch-
ing over the accumulated resource consumption. The latter showed to be so effective that Ryan
and Foster rule was never used in our experiments. For each instance, we use initial primal
bound which is equal to the rounded up value of the column generation dual bound plus 1 unit
(there is a long-standing conjecture that the optimal solution of a BPP instance is never larger
than this). Solutions with these objective values are easily obtainable by simple heuristics.

Our solver obtains the best results for the two most difficult instance classes AI and ANI. For
other less difficult instances, our algorithm is slower than the state-of-the-art. However, it can
solve all instances to optimality in a relatively small time. Note that the algorithm of Clautiaux
et al. [27] showed better results for the class AI. However, the authors communicated to us that
they discovered an issue with their code. Therefore, their results are not included in Table 2.

The bottleneck of our algorithm for solving instances of classes AI and ANI with 600 items or
more is the LP solver. For such instances, very often when the pricing problem finds columns with
negative reduced cost, LP solver does not include them in the basis. This happens because the
absolute value of the reduced cost is smaller than the minimum possible reduced cost tolerance
of the LP solver. Thus, the final dual solution of column generation is not feasible, and the
Lagrangian bound obtained by the safe procedure is weaker than it can potentially be.

26

Vector Packing Problem (VPP)

The model is given in Section 4.2. The parameterization of the solver is the following: ψbuck =
2000, ψreduc = 0 (off), φbidir = 1, γexact = 100, γheur = 100, σstab = 1, ωlabels = 105, ωMIP = 105,
ηinit = 0, ηmax = 0, θrows = −1 (off), ζnum2 = 1. We use diving heuristic with parameters
χdiv = 0, χdepth = 2, χdisc = 3.

We do not use initial upper bounds. We consider only largest instances from the literature
with 200 items and only with 2 resources. We use instances of the most difficult, according
to [46], classes 1, 4, 5, and 9. Other instances are significantly easier, all of them are solved in
the literature. Our solver outperforms largely the algorithms in the literature.

Capacitated Arc Routing Problem (CARP)

The model is defined in Section 4.7. The parameterization of the solver is the following: τ soft = 6
sec., τhard = 15 sec., ψbuck = 50, γexact = 50, γheur = 300, σstab = 1, ωlabels = 5 ·105, θnum = 50,
δgap = 1%, δnum = 5, ζestim1 = 1.0, ζnum2 = 5. In the distance matrix for ng-sets, the distance
between two required edges is defined as the sum of costs of four paths between midpoints of
the edges. Each path is the shortest path starting from a given vertex incident to the first edge
and ending at a given vertex incident to the second edge.

The branching is done on the aggregation of x variables corresponding to node degrees in the
original graph or on the aggregation of x variables corresponding to whether required two edges
are served immediately one after another by the same route or not. The same priority is used
for both branching strategies.

The Eglese dataset [36] is standard in the literature and it is used in all recent works on
the CARP. We have used the same initial upper bounds as in [65]. The performance of our
solver is similar to the most recent exact algorithm [65] for the problem. Other algorithms in
the literature are significantly less efficient. The generality of our solver opens a way to quickly
obtain excellent computational results for many variants of the arc routing problems.

Black-and-White Traveling Salesman Problem (BWTSP)

The model is defined in Section 4.8. The parameterization of the solver is the following: τhard =
25 sec., ωlabels = 5 · 105 ωroutes = 5 · 106, ωMIP = 5000, θmem = 1, ζestim1 = 0.2, ζnum2 = 5,
ζestim2 = 0.02, δgap = 1.5%. We use restricted master heuristic with parameter χrm = 10 sec.

One third of 720 instances do not have the constraint on the maximum distance between
visiting two black vertices. For these instances, only one (capacity) resource is defined. For
other instances, the first main resource is the distance resource.

Our solver is much more efficient for the GLR instances than the best approach in the
literature [42], which is a branch-and-cut algorithm. The average solution time is 72 times
smaller for our solver.

Results with the default parameterisation

In Table 4 we present results for 7 VRP variants obtained using the default parameterisation of
the solver. The built-in primal heuristics are used, with default parameters, if and only if no
initial primal bound is specified. It can be seen that the performance is deteriorated, but not
much. This indicates that finding a good problem-specific parameterization is important but
not critical.

27

Problem Data set # T.L. Specific params Default params
CVRP E-M [25, 26] 12 10h 12 (61s) 11 (65s)

X [82] 58 60h 36 (147m) 35 (142m)

VRPTW Solomon Hardest [81] 14 1h 14 (5m) 13 (10m)
Homberger 200 [40] 60 30h 56 (21m) 52 (31m)

HFVRP BaldacciMingozzi [9] 40 1h 40 (144s) 40 (191s)

MDVRP Cordeau [29] 11 1h 11 (6m) 11 (7m)

PDPTW RopkeCordeau [76] 40 1h 40 (5m) 38 (8m)

TOP Chao class 4 [24] 60 1h 55 (8m) 54 (9m)

CARP Eglese [36] 24 30h 22 (36m) 21 (41m)

Table 4: Problem-dependent parameterisation vs default parameterisation

Results without defining packing sets

The concept of packing set (and the related concept of elementarity set) is crucial to our models,
since it is used in all the advanced BCP components described in Section 3. In some models, like
those for CVRP and VRPTW, the packing sets are very simple: each customer vertex defines a
packing set. However, there are models where the packing sets are more complex. For examples:
(1) on GAP each packing set is composed by |K| arcs, but only one of the two arcs entering each
of the |K| vertices representing a task belongs to the packing set; (2) on CARP each packing
set is composed by a pair of vertices. In order to justify the need for such a general concept of
packing sets, we test the impact of not using packing sets on GAP and CARP.

In those tests, the solver parameterisation was the same as for the main experimental results.
Of course, when packing sets are not defined, the solver cannot use ng-path relaxation, rank-
1 and capacity cuts, enumeration, and specific branching. For the GAP, if packing sets are
not defined, only two OR-Lib instances are solved in 2 hours (one in 16 minutes, another in
53 minutes) and none of Nauss instances has been solved in 1 hour. For the CARP, only one
Eglese instance has been solved within the time limit of 30 hours (it was solved in 36 minutes).
Comparison with results in Table 2 makes clear that defining packing sets is absolutely necessary
for having a reasonable performance on those problems.

A deeper conclusion of the experiment is the following. If we had defined the advanced BCP
components using a simpler concept, like “the set of customers”, we could have built a general
solver with a good performance on a number of classic VRP variants. However, that solver would
not work well on other important problems. In order to have a good performance over a wider
range of problems, the more general concept of packing set, including its arc and vertex variants,
is indeed needed.

7 Conclusions

We proposed a new generic way of modeling VRPs and related problems, so that they can be
solved by a BCP algorithm that already includes most state-of-the-art components introduced
for the most classical VRP variants. It combines existing modeling concepts, like the use of
RCSPs for defining the valid routes, with new ones: (1) the concept of mapping for linking the
route variables with a generic set of constraints in the Master formulation; (2) the concepts of
packing and elementarity sets for allowing the use of some advanced BCP components over a
wide range of problems. The experiments show that the generic solver has a performance either
comparable or better than the specific algorithms for all VRP variants tested. The cases where
the performance was much better can be explained by the fact that previous works on some
problems did not use some of those advanced components, possibly due to the complexity of
their implementation. However, if generic VRP solvers become publicly available, we believe

28

that their use may become standard, at least for the purpose of having baseline results to be
compared with results of proposed specialized algorithms.

Furthermore, we believe that there is plenty of room for “creative modeling”, where users may
find original ways of fitting new problems into the proposed model. In fact, as already demon-
strated on generalized assignment problem and on bin/vector packing problems, not only VRP
variants can be efficiently treated. It may be also possible to model problems from scheduling,
from network design and from other discrete optimization subareas.

Several emerging VRP variants include complex features like time-dependent travel times,
stochastic components or synchronization. There are two recent works where creative modeling
was used for handling some of those complex variants with the proposed VRP solver: (1) on two-
echelon VRP, [58] proposes an exponentially-sized number of Master constraints for modeling the
synchronization between the two echelons; (2) on robust CVRP under knapsack uncertainty, [66]
proposes a transformation for representing uncertain demands by a set of deterministic RCSP
problems. Yet, most of those emerging variants are out of the modeling capabilities of the VRP
solver.

We believe that the most promising course for future improvements in the modeling power of
the solver is to add the possibility of using other types of resources. This may include resources
with arc consumption and/or cost dependent on its own accumulated consumption or even de-
pendent on accumulated consumption of other resources, resources with soft or multiple interval
limits, non-linear and stochastic resources, and others, as discussed in [47] and in [60]. However,
devising and implementing algorithms that support any of those more complex resources, in an
efficient way and preserving the compatibility with all the existing features of the solver, will be
a major challenge.

8 Acknowledgements

We would like to thank Teobaldo Bulhoes and Guillaume Marques for a large part of the im-
plementation of the Julia–JuMP interface to the solver; Teobaldo Bulhoes, Guillaume Marques
and Eduardo Queiroga for implementing, over that interface, the models corresponding to the
examples of this paper; and Laurent Facq for a general support of the computing environment.

Experiments presented in this paper were carried out using the PlaFRIM (Federative Plat-
form for Research in Computer Science and Mathematics), created under the Inria PlaFRIM
development action with support from Bordeaux INP, LABRI and IMB and other entities:
Conseil Régional d’Aquitaine, Université de Bordeaux, CNRS and ANR in accordance to the
“Programme d’Investissements d’Avenir”.

This study was financed in part by the Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq), grant 313601/2018-6 (Produtividade 1B), and by the Fundação de Amparo
à Pesquisa do Estado do Rio de Janeiro (FAPERJ), grant E-26/202.887/2017 (Cientista do
Estado).

References

[1] LEMON: Library for Efficient Modeling and Optimization in Networks, 2014.

[2] Boost C++ libraries, 2019.

[3] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universitat
Berlin, 2007.

[4] C. Archetti, N. Bianchessi, and M.G. Speranza. Optimal solutions for routing problems
with profits. Discrete Applied Mathematics, 161(4–5):547–557, 2013.

29

[5] C. Archetti, D. Feillet, A. Hertz, and M G Speranza. The capacitated team orienteering
and profitable tour problems. Journal of the Operational Research Society, 60(6):831–842,
Jun 2009.

[6] Pasquale Avella, Maurizio Boccia, and Igor Vasilyev. A computational study of exact
knapsack separation for the generalized assignment problem. Computational Optimization
and Applications, 45(3):543–555, 2010.

[7] Roberto Baldacci, Enrico Bartolini, and Aristide Mingozzi. An exact algorithm for the
pickup and delivery problem with time windows. Operations Research, 59(2):414–426, 2011.

[8] Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An exact algorithm for the
vehicle routing problem based on the set partitioning formulation with additional cuts.
Mathematical Programming, 115:351–385, 2008.

[9] Roberto Baldacci and Aristide Mingozzi. A unified exact method for solving different classes
of vehicle routing problems. Mathematical Programming, 120(2):347–380, 2009.

[10] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New route relaxation and pricing
strategies for the vehicle routing problem. Operations Research, 59(5):1269–1283, 2011.

[11] M.L. Balinski and R.E. Quandt. On an integer program for a delivery problem. Operations
Research, 12(2):300–304, 1964.

[12] Enrico Bartolini, Jean-François Cordeau, and Gilbert Laporte. Improved lower bounds
and exact algorithm for the capacitated arc routing problem. Mathematical Programming,
137(1):409–452, Feb 2013.

[13] J. E. Beasley. OR-Library: Distributing test problems by electronic mail. The Journal of
the Operational Research Society, 41(11):1069–1072, 1990.

[14] J. Belenguer and E. Benavent. The capacitated arc routing problem: Valid inequalities and
facets. Computational Optimization & Applications, 10(2):165–187, 1998.

[15] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-dimensional
stock cutting and two-dimensional two-stage cutting. European Journal of Operational
Research, 171(1):85 – 106, 2006.

[16] Enrique Benavent, Ángel Corberán, Guy Desaulniers, François Lessard, Isaac Plana, and
José M Sanchis. A branch-price-and-cut algorithm for the min-max k-vehicle windy rural
postman problem. Networks, 63(1):34–45, 2014.

[17] Nicola Bianchessi, Renata Mansini, and M. Grazia Speranza. A branch–and–cut algorithm
for the team orienteering problem. International Transactions in Operational Research,
25(2):627–635, 2018.

[18] C. Bode and S. Irnich. Cut-first branch-and-price-second for the capacitated arc-routing
problem. Operations Research, 60(5):1167–1182, 2012.

[19] Filipe Brandão and João Pedro Pedroso. Bin packing and related problems: General arc-
flow formulation with graph compression. Computers & Operations Research, 69:56 – 67,
2016.

[20] Teobaldo Bulhoes, Minh Hoàng Hà, Rafael Martinelli, and Thibaut Vidal. The vehicle
routing problem with service level constraints. European Journal of Operational Research,
265(2):544 – 558, 2018.

[21] Teobaldo Bulhões, Artur Pessoa, Fábio Protti, and Eduardo Uchoa. On the complete set
packing and set partitioning polytopes: Properties and rank 1 facets. Operations Research
Letters, 46(4):389–392, 2018.

30

[22] Teobaldo Bulhoes, Ruslan Sadykov, and Eduardo Uchoa. A branch-and-price algorithm for
the minimum latency problem. Computers & Operations Research, 93:66–78, May 2018.

[23] Alberto Caprara and Paolo Toth. Lower bounds and algorithms for the 2-dimensional vector
packing problem. Discrete Applied Mathematics, 111(3):231 – 262, 2001.

[24] I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. The team orienteering problem.
European Journal of Operational Research, 88(3):464 – 474, 1996.

[25] N. Christofides and S. Eilon. An algorithm for the vehicle-dispatching problem. Operational
Research Quarterly, 20:309–318, 1969.

[26] N. Christofides, A. Mingozzi, and P. Toth. Combinatorial Optimization, chapter The vehicle
routing problem, pages 315–338. Wiley, Chichester, 1979.

[27] François Clautiaux, Säıd Hanafi, Rita Macedo, Marie Émilie Voge, and Cláudio Alves. Iter-
ative aggregation and disaggregation algorithm for pseudo-polynomial network flow models
with side constraints. European Journal of Operational Research, 258(2):467 – 477, 2017.

[28] Claudio Contardo and Rafael Martinelli. A new exact algorithm for the multi-depot vehicle
routing problem under capacity and route length constraints. Discrete Optimization, 12:129
– 146, 2014.

[29] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search heuristic for
periodic and multi-depot vehicle routing problems. Networks, 30(2):105–119, 1997.

[30] G. Dantzig and J. Ramser. The truck dispatching problem. Management science, 6(1):80–
91, 1959.

[31] Maxence Delorme and Manuel Iori. Enhanced pseudo-polynomial formulations for bin pack-
ing and cutting stock problems. INFORMS Journal on Computing, 32(1):101–119, 2020.

[32] Maxence Delorme, Manuel Iori, and Silvano Martello. Bin packing and cutting stock prob-
lems: Mathematical models and exact algorithms. European Journal of Operational Re-
search, 255(1):1–20, 2016.

[33] Guy Desaulniers, Jacques Desrosiers, Irina loachim, Marius M Solomon, François Soumis,
Daniel Villeneuve, et al. A unified framework for deterministic time constrained vehicle
routing and crew scheduling problems. In Fleet management and logistics, pages 57–93.
Springer, 1998.

[34] Guy Desaulniers, François Lessard, and Ahmed Hadjar. Tabu search, partial elementarity,
and generalized k-path inequalities for the vehicle routing problem with time windows.
Transportation Science, 42(3):387–404, 2008.

[35] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for mathe-
matical optimization. SIAM Review, 59(2):295–320, 2017.

[36] R. W. Eglese and L. Y. O. Li. Efficient routeing for winter gritting. Journal of the Opera-
tional Research Society, 43(11):1031–1034, 1992.

[37] Racha El-Hajj, Duc-Cuong Dang, and Aziz Moukrim. Solving the team orienteering problem
with cutting planes. Computers & Operations Research, 74:21 – 30, 2016.

[38] Emanuel Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of
Heuristics, 2:5–30, 1996.

[39] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão, Marcelo
Reis, Eduardo Uchoa, and Renato F. Werneck. Robust branch-and-cut-and-price for the
capacitated vehicle routing problem. Mathematical Programming, 106(3):491–511, 2006.

[40] Hermann Gehring and Jörg Homberger. Parallelization of a two-phase metaheuristic for
routing problems with time windows. Journal of Heuristics, 8(3):251–276, 2002.

31

[41] Sylvie Gélinas, Martin Desrochers, Jacques Desrosiers, and Marius M Solomon. A new
branching strategy for time constrained routing problems with application to backhauling.
Annals of Operations Research, 61(1):91–109, 1995.

[42] Luis Gouveia, Markus Leitner, and Mario Ruthmair. Extended formulations and branch-
and-cut algorithms for the black-and-white traveling salesman problem. European Journal
of Operational Research, 262(3):908 – 928, 2017.

[43] Timo Gschwind, Stefan Irnich, Ann-Kathrin Rothenbächer, and Christian Tilk. Bidirec-
tional labeling in column-generation algorithms for pickup-and-delivery problems. European
Journal of Operational Research, 266(2):521 – 530, 2018.

[44] LLC Gurobi Optimization. Gurobi optimizer reference manual, version 7.5, 2017.

[45] Stephan Held, William Cook, and Edward C. Sewell. Maximum-weight stable sets and safe
lower bounds for graph coloring. Mathematical Programming Computation, 4(4):363–381,
2012.

[46] Katrin Heßler, Timo Gschwind, and Stefan Irnich. Stabilized branch-and-price algorithms
for vector packing problems. European Journal of Operational Research, 271(2):401 – 419,
2018.

[47] Stefan Irnich. Resource extension functions: Properties, inversion, and generalization to
segments. OR Spectrum, 30(1):113–148, 2008.

[48] Stefan Irnich, Guy Desaulniers, Jacques Desrosiers, and Ahmed Hadjar. Path-reduced
costs for eliminating arcs in routing and scheduling. INFORMS Journal on Computing,
22(2):297–313, 2010.

[49] Mads Jepsen, Bjorn Petersen, Simon Spoorendonk, and David Pisinger. Subset-row in-
equalities applied to the vehicle-routing problem with time windows. Operations Research,
56(2):497–511, 2008.

[50] B. Kallehauge, J. Larsen, and O.B.G. Madsen. Lagrangian duality applied to the vehicle
routing problem with time windows. 33(5):1464–1487, 2006.

[51] O Kullmann. Handbook of Satisfiability, chapter Fundaments of branching heuristics, pages
205–244. IOS Press, Amsterdam, 2009.

[52] G. Laporte and Y. Nobert. A branch and bound algorithm for the capacitated vehicle
routing problem. Operations-Research-Spektrum, 5(2):77–85, Jun 1983.

[53] Pierre Le Bodic and George Nemhauser. An abstract model for branching and its application
to mixed integer programming. Mathematical Programming, 166(1):369–405, Nov 2017.

[54] Haibing Li and Andrew Lim. A metaheuristic for the pickup and delivery problem with
time windows. International Journal on Artificial Intelligence Tools, 12(02):173–186, 2003.

[55] Humberto Longo, Marcus Poggi De Aragão, and Eduardo Uchoa. Solving capacitated arc
routing problems using a transformation to the cvrp. Computers & Operations Research,
33(6):1823–1837, 2006.

[56] J. Lysgaard. CVRPSEP: A package of separation routines for the capacitated vehicle routing
problem. Aarhus School of Business, Department of Management Science and Logistics,
2003.

[57] Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new branch-and-cut algo-
rithm for the capacitated vehicle routing problem. Mathematical Programming, 100(2):423–
445, Jun 2004.

32

[58] Guillaume Marques, Ruslan Sadykov, Jean-Christophe Deschamps, and Rémy Dupas. An
improved branch-cut-and-price algorithm for the two-echelon capacitated vehicle routing
problem. Computers & Operations Research, 114:104833, 2020.

[59] Robert M. Nauss. Solving the generalized assignment problem: An optimizing and heuristic
approach. INFORMS Journal on Computing, 15(3):249–266, 2003.

[60] Axel Parmentier. Algorithms for non-linear and stochastic resource constrained shortest
path. Mathematical Methods of Operations Research, 89(2):281–317, 2019.

[61] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-and-price for capacitated
vehicle routing. In Proceedings of the XVII IPCO, volume 8494 of Lecture Notes in Computer
Science, pages 393–403. Springer, 2014.

[62] Diego Pecin, Claudio Contardo, Guy Desaulniers, and Eduardo Uchoa. New enhancements
for the exact solution of the vehicle routing problem with time windows. INFORMS Journal
on Computing, 29(3):489–502, 2017.

[63] Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved branch-cut-and-
price for capacitated vehicle routing. Mathematical Programming Computation, 9(1):61–100,
2017.

[64] Diego Pecin, Artur Pessoa, Marcus Poggi, Eduardo Uchoa, and Haroldo Santos. Limited
memory rank-1 cuts for vehicle routing problems. Operations Research Letters, 45(3):206 –
209, 2017.

[65] Diego Pecin and Eduardo Uchoa. Comparative analysis of capacitated arc routing for-
mulations for designing a new branch-cut-and-price algorithm. Transportation Science,
53(6):1501–1799, 2019.

[66] Artur Pessoa, Michael Poss, Ruslan Sadykov, and François Vanderbeck. Branch-and-cut-
and-price for the robust capacitated vehicle routing problem with knapsack uncertainty.
Operations Research, (Forthcoming), 2020.

[67] Artur Pessoa, Ruslan Sadykov, and Eduardo Uchoa. Enhanced branch-cut-and-price algo-
rithm for heterogeneous fleet vehicle routing problems. European Journal of Operational
Research, 270:530–543, 2018.

[68] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. Automation and
combination of linear-programming based stabilization techniques in column generation.
INFORMS Journal on Computing, 30(2):339–360, 2018.

[69] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. A generic exact
solver for vehicle routing and related problems. In Andrea Lodi and Viswanath Nagarajan,
editors, Integer Programming and Combinatorial Optimization, volume 11480, pages 354–
369. Springer, 2019.

[70] Bjørn Petersen, David Pisinger, and Simon Spoorendonk. Chvátal-gomory rank-1 cuts used
in a dantzig-wolfe decomposition of the vehicle routing problem with time windows. In The
Vehicle Routing Problem: Latest Advances and New Challenges, pages 397–419. Springer,
2008.

[71] M. Poggi de Aragão and E. Uchoa. Integer program reformulation for robust branch-and-
cut-and-price. In L. Wolsey, editor, Annals of Mathematical Programming in Rio, pages
56–61, Búzios, Brazil, 2003.

[72] Marius Posta, Jacques A. Ferland, and Philippe Michelon. An exact method with variable
fixing for solving the generalized assignment problem. Computational Optimization and
Applications, 52:629–644, 2012.

33

[73] Giovanni Righini and Matteo Salani. Symmetry helps: Bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints. Discrete
Optimization, 3(3):255 – 273, 2006.

[74] Roberto Roberti and Aristide Mingozzi. Dynamic ng-path relaxation for the delivery man
problem. Transportation Science, 48(3):413–424, 2014.

[75] S. Røpke. Branching decisions in branch-and-cut-and-price algorithms for vehicle routing
problems. Presentation in Column Generation 2012, 2012.

[76] Stefan Ropke and Jean-François Cordeau. Branch and cut and price for the pickup and
delivery problem with time windows. Transportation Science, 43(3):267–286, 2009.

[77] D. M. Ryan and B. A. Foster. An integer programming approach to scheduling. In
A. Wren, editor, Computer Scheduling of Public Transport: Urban Passenger Vehicle and
Crew Scheduling, pages 269–280. North-Holland, 1981.

[78] Ruslan Sadykov, Eduardo Uchoa, and Artur Pessoa. A bucket graph based labeling algo-
rithm with application to vehicle routing. Transportation Science, (Forthcoming), 2020.

[79] Ruslan Sadykov, François Vanderbeck, Artur Pessoa, Issam Tahiri, and Eduardo Uchoa.
Primal heuristics for branch-and-price: the assets of diving methods. INFORMS Journal
on Computing, 31(2):251–267, 2019.

[80] J. E. Schoenfield. Fast, exact solution of open bin packing problems without linear pro-
gramming. Technical report, US Army Space and Missile Defense Command, 2002.

[81] Marius M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35(2):254–265, 1987.

[82] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Anand Subramanian, and
Thibaut Vidal. New benchmark instances for the capacitated vehicle routing problem.
European Journal of Operational Research, 257(3):845–858, 2017.

[83] François Vanderbeck, Ruslan Sadykov, and Issam Tahiri. BaPCod — a generic Branch-
And-Price Code, 2018.

[84] François Vanderbeck and Laurence A Wolsey. Reformulation and decomposition of integer
programs. In 50 Years of Integer Programming 1958-2008, pages 431–502. Springer, 2010.

[85] Laguna Wei, Zhixing Luo, Roberto Baldacci, and Andrew Lim. A new branch-and-price-
and-cut algorithm for one-dimensional bin-packing problems. INFORMS Journal on Com-
puting, (Forthcoming), 2019.

34

