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1 Introduction

We consider the following classical Capacitated Vehicle Routing Problem (CVRP). Let

G = (V,A) be a complete digraph with nodes V = {0, 1, . . . , n} and arcs {(i, j) ∈ V × V :

i 6= j}. Node 0 ∈ V represents the unique depot, and each node i ∈ V ′ = V \ {0}
corresponds to a customer with demand di ∈ R+ (let d0 = 0). The depot is the departure

and return base for a fleet m homogeneous vehicles of capacity Q. The set of vehicles

is denoted as K = {1, . . . ,m}. Each vehicle incurs a transportation cost cij ∈ R+ if it

traverses the arc (i, j) ∈ A. We define a route as a depot-base-walk in graph G, i.e., a

sequence of nodes visited by a vehicle such that the first and the last node in this sequence

is the depot. Let ari be equal to the number of times a node i ∈ V ′ is visited in a route r.

A route r is demand-feasible if the total demand of visited customers does not exceed the

vehicle capacity: ard ≤ Q. Let Ω be the set of all demand-feasible routes. We assume here

that demand-feasible routes may visit a node more than once. The cost cr of a route is the

total transportation cost incurred by traversing the route arcs. The problem consists in

finding a set of demand-feasible routes of the minimum total cost such that every customer

is visited exactly once. By introducing a binary variable λr for every r ∈ Ω, the problem



can be modeled by the following set partitioning formulation.

min
∑
r∈Ω

crλr,

s.t.
∑
r∈Ω

ariλr = 1, i ∈ V ′,∑
r∈Ω

λr ≤ m,

λr ∈ {0, 1}, r ∈ Ω.

2 Demand uncertainty

We consider that the demand vector d is uncertain and can take any value in a given

polytope D that is included in the box [d, d + d̂] defined by the vectors d, d̂ ∈ Rn
+, where

the components of d represent the nominal values, while those of d̂ are the deviations.

Observe that considering downward deviations of d is not of any use: they would not

impair the feasibility given that demand values only play a role in the capacity constraints.

Our study focuses on two definitions of polytope D. The first one is the budget polytope

introduced in [1], and widely used in the robust combinatorial optimization literature since

then. Given Γ ∈ R+, the budget polytope is given by

Dknap =

d ∈ Rn
+ : di = di + ηid̂i, i ∈ V 0,

∑
i∈V 0

ηi ≤ Γ, 0 ≤ η ≤ 1

 .

The second polytope we consider is that of [2, 3]. Therein is defined a customer partition

VC = V1 ∪ · · · ∪ Vs and associated budgets b1, . . . , bs ∈ R+, yielding potytope:

Dprop =

d ∈ Rn
+ : di = di + ξi, i ∈ V 0,

∑
i∈Vk

ξi ≤ bk, k = 1, . . . , s, 0 ≤ ξ ≤ d̂

 .

Considering the change of variable ξi = d̂iηi underlines thatDknap constrains the number of

elements of d that deviate simultaneously from their nominal values, while Dprop constrains

the total amount of deviation within each subset of customers.

The demand uncertainty only affects the feasibility of the routes r used in the set

partitioning formulation. Therefore, the robust counterparts of the above formulation

result in set partitioning formulations that involve the set of routes that are demand-

feasible for all values of d in Dknap or Dprop. We denote these sets of routes by Ω(Dknap)

and Ω(Dprop), respectively.



3 Robust algorithm

The contribution of our work is to extend the classical algorithms developed for the deter-

ministic CVRP to their robust counterpart. Specifically, Branch-Cut-and-Price algorithms

are the state-of-the-art approaches to solve this set partitioning formulation [5]. Therein,

the linear relaxation of the formulation is solved by column generation. The pricing prob-

lem is solved typically by dynamic programming using a forward labeling algorithm. To

improve the quality of column generation lower bounds, set Ω is restricted to the set of

ng-paths. Rounded capacity cuts and limited memory rank-1 cuts are used to further

strengthen the root bound. In this work, we use the Branch-Cut-and-Price algorithm

from [7]. It has the advantage to efficiently handle instances with real value demands,

which is important in the aforementioned robust variant of the problem.

In adapting the deterministic algorithms one must essentially specialize the pricing

oracle to generate routes in Ω(Dknap) or Ω(Dprop). This amounts to solving a minimum

cost ”robust” constrained shortest path problems. Using well-known results from the

robust optimization literature (see [1, 4, 6] for details) these problems are equivalent to

solving a set of deterministic constrained shortest path problems with different weights,

and taking the best of them. Specifically, the sets Dknap and Dprop require to solve

H(Dknap) = dn−Γ
2 e + 1 and H(Dprop) = 2s deterministic problems, respectively. Let

Ωh(Dknap) and Ωh(Dprop) denote the sets of routes that can be generated by the h-th

deterministic problem associated to the sets Dknap and Dprop, respectively. In the proposed

set partitioning formulation, we just set Ω =
⋃H(D)

h=1 Ωh(D), for both D = Dknap and

D = Dprop, transforming the robust problem into a deterministic equivalent CVRP.

Other important modifications to the algorithm of [7] are the extension of the valid

inequalities to the robust context and the implementation of a dedicated heuristic to find

primal solutions. We report on our iterated local search (ILS) heuristic with variable

neighborhood search (VNS).

4 Results

We performed preliminary computational tests on the instances with up to 150 customers

proposed by [2, 3] for uncertainty set Dprop. Our results indicate that (i) our ILS-VNS

heuristic algorithm obtains significantly better solutions than the AMP heuristic proposed

by [2] using a small fraction of its CPU time, and (ii) our exact algorithm is orders of

magnitudes faster than [3], solving all instances to optimality.
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