
Bin Packing with Conflicts:
a Generic Branch-and-Price Algorithm

Ruslan Sadykov
RealOpt team, INRIA Bordeaux — Sud-Ouest, 351 cours de la Libération, 33405 Talence France

Ruslan.Sadykov@inria.fr

François Vanderbeck
Université Bordeaux I and RealOpt team, INRIA Bordeaux — Sud-Ouest, 351 cours de la Libération,

33405 Talence France fv@math.u-bordeaux1.fr

The bin packing problem with conflicts consists in packing items in a minimum number of

bins of limited capacity while avoiding joint assignments of items that are in conflict. Our

study demonstrates that a generic implementation of a Branch-and-Price algorithm using

specific pricing oracle yields comparatively good performance for this problem. We use our

black-box Branch-and-Price solver BaPCod, relying on its generic branching scheme and

primal heuristics. We developed a dynamic programming algorithm for pricing when the

conflict graph is an interval graph, and a depth-first-search branch-and-bound approach for

pricing when the conflict graph has no special structure. The exact method is tested on

instances from the literature where the conflict graph is an interval graph, as well as harder

instances that we generated with an arbitrarily conflict graph and larger number of items

per bin. Our computational experiment report sets new benchmark results for this problem,

closing all open instances of the literature in one hour of CPU time.

Key words: branch-and-price; bin packing; knapsack; conflict graphs; interval graphs.

1. Introduction

In the Bin Packing Problem (BPP), items of different sizes/weights must be packed into a

minimum number of identical bins of given capacity. In the variant with conflicts (denoted

BPPC), a graph is given where nodes represent items and edges represent conflicts between

pairs of items: any two items that are linked by an edge cannot be assigned to the same bin.

Thus, the problem is a combination of the Bin Packing Problem and the Vertex Coloring

Problem. It arises in many real-world applications, such as examination scheduling (Laporte

and Desroches, 1984), parallel computing and database storage (Jansen, 1999), product de-

livery (Christofides et al., 1979), resource clustering in highly distributed parallel computing

1



(Beaumont et al., 2008). The special case of an interval conflict graph is a realistic model

on its own. It arises for instance in the mutual exclusion scheduling problem (Baker and

Coffman, 1996; Gardi, 2009) in which all items or tasks are represented by time intervals

associated to their schedule, and a conflict between tasks arises when the associated intervals

overlap. A related application arise in workforce planning (Gardi, 2005): the problem is to

assign tasks to a minimum number of workers; each task is defined by a start time and

a completion time; tasks assigned to the same worker may not overlap in time; the total

duration of the tasks assigned to a worker may not exceed a given bound.

The BPPC was considered by Jansen and Öhring (1997) and Jansen (1999) who devel-

oped approximation algorithms for special cases of conflict graphs. Several computational

studies on the problem have recently been published. Gendreau et al. (2004) have evalu-

ated six heuristics and lower bounding strategies for the problem. Different heuristics, lower

bounds and an exact algorithm based on a branch-and-price approach were proposed by Fer-

nandes Muritiba et al. (2010). A special purpose branch-and-price algorithm was developed

by Elhedhli et al. (2011).

Here, we show that the BPPC can be efficiently solved by a generic branch-and-price

algorithm: we use the generic software platform, BaPCod, that is developed in our team.

It includes the generic branching scheme of Vanderbeck (2010) and the generic column

generation based primal heuristics of Joncour et al. (2010). The pricing subproblem is a

Knapsack Problem with Conflicts (KPC). We developed a specific branch-and-bound oracle

for a general conflict graph and a dynamic programming solver for the special case of an

interval graph. To the best of our knowledge, the latter dynamic program is an original

contribution although a dynamic program for the more general case of the KPC in a chordal

graph can be found in Pferschy and Schauer (2009). Our computational results demonstrates

that our approach improves on the state-of-art branch-and-price algorithms proposed by

Fernandes Muritiba et al. (2010) and by Elhedhli et al. (2011).

The paper is organized as follows. In Section 2, we provide a compact formulation and

an extended (set covering) integer programming formulation of the problem. Our algorithm

is presented in Section 3. Results of computational experiments are reported in Section 4.

In Section 5, we draw conclusions.

2



2. Formulations of the problem

Formally, the BPPC can be described as follows. We are given K identical bins of capacity

W , a set V = {1, 2, . . . , n} of items characterized by a non-negative capacity consumption

wi ≤ W , and a conflict graph G = (V,E), where E is a set of edges such that (i, j) ∈ E when

i and j are in conflict. The problem is to assign items to bins, using a minimum number

of bins, while ensuring that the total weight of the items assigned to a bin does not exceed

the bin capacity W , and that no two items that are in conflict are assigned to the same bin.

The number K is assumed to be large enough to guarantee feasibility; more precisely it is a

valid upper bound on the number of bins in an optimal solution (note that K ≤ n).

A natural and compact integer programming formulation makes use of binary variables

xik taking value 1 if item i is assigned to bin k and 0 otherwise, and binary variables yk

taking value 1 if bin k is used and 0 otherwise:

min
K∑
k=1

yk (1a)

s.t.
K∑
k=1

xik ≥ 1, i = 1, . . . , n, (1b)

n∑
i=1

wixik ≤ Wyk, k = 1, . . . , K, (1c)

xik + xjk ≤ yk, (i, j) ∈ E, k = 1, . . . , K, (1d)

yk ∈ {0, 1}, k = 1, . . . , K, (1e)

xik ∈ {0, 1}, i = 1, . . . , n, k = 1, . . . , K. (1f)

Constraints (1b) require that each item is assigned to a bin; constraints (1c) enforce the bin

capacity; and constraints (1d) formulate the conflicts. The objective (1a) is to minimize the

number of used bins.

The linear programming relaxation of formulation (1) is weak, even if valid inequalities

are added (Martello and Toth, 1990). Instead, as for a standard bin packing problem, one

can use a set covering reformulation of (1) (Fernandes Muritiba et al., 2010; Elhedhli et al.,

2011). Such reformulation results from applying the Dantzig-Wolfe decomposition principle

to (1) (Vanderbeck and Savelsbergh, 2006): once (1b) are dualized in a Lagrangian way,

subsystem (1c-1f) decomposes into a subproblem for each bin k. Let B be the family of all

the subsets of items which are not in conflict and fit into one bin, i.e., the solutions to a

3



subproblem. Each subset B ∈ B is defined by an indicator vector xB (xBi = 1 if item i is in

set B) and associated with a binary variable λB taking value 1 if the corresponding subset

of items is selected to fill one bin. The reformulation is:

min
∑
B∈B

λB (2a)

s.t.
∑
B∈B

xBi λB ≥ 1, i = 1, . . . , n, (2b)

λB ∈ {0, 1}, B ∈ B. (2c)

Here, constraints (2b) replace constraints (1b), all other constraints of the compact formu-

lation (1) are build in the definition of feasible sets: B ∈ B.

Formulation (2) is tackled using a branch-and-price approach: at each node of a branch-

and-bound tree, the linear relaxation of (2) is solved by column generation to provide a lower

bound. The calculation of this lower bound is done by iteratively solving:

• the restricted master problem (RMP) which is the linear relaxation of (2) with a re-

stricted number of variables;

• and the pricing problem which determines whether there exists a variable λB to be

added to (RMP) in order to improve its current solution; this amounts to searching for

the set B ∈ B, solution to subsystem (1c-1f), which yields the minimum reduced cost

column for (RMP).

Let {πi}i∈V be a current dual solution of the (RMP). Then, the pricing problem can be

formulated as

max
n∑

i=1

πizi (3a)

s.t.
n∑

i=1

wizi ≤ W i = 1, . . . , n, (3b)

zi + zj ≤ 1, (i, j) ∈ E, (3c)

zi ∈ {0, 1}, i = 1, . . . , n. (3d)

Model (3) is a Knapsack Problem with Conflicts (KPC), as studied, for example, by Hifi and

Michrafy (2007).

4



3. A branch-and-price algorithm

Our algorithm for solving the BPPC is a branch-and-price procedure. It is to be distinguished

from the branch-and-price algorithms used by Fernandes Muritiba et al. (2010) and Elhedhli

et al. (2011) for the following features:

1. the way we solve the pricing problem (denoted KPC);

2. the branching rule that we use;

3. the use of a generic column generation based heuristic.

Before going into details, we briefly present the “features” of the branch-and-price algorithms

described in the literature.

Fernandes Muritiba et al. (2010) use combinatorial lower bounds and a tabu search

based heuristic as a “preprocessing” step. (The instances of their numerical test bed have

interval conflict graphs with typically large sub-cliques which make their combinatorial lower

bound relatively tight.) In their branch-and-price, the pricing problem is solved by a greedy

heuristic. If the latter fails to produce a column with a negative reduced cost, the MIP solver

CPLEX 10 is called for exact pricing. Branching is performed by implementing a disjunctive

constraint on the λ variable with the largest fractional part, with priority to the round-up

branch. A depth first strategy is used.

Elhedhli et al. (2011) developed a standard column generation approach where the pric-

ing problem is solved by the MIP solver CPLEX after adding maximal clique inequalities

generated using the Qualex library (Busygin, 2006). (The instances of their numerical test

bed have interval conflict graphs with typically large sub-cliques which make such inequal-

ities attractive.) Their branch-and-price algorithm rely on the branching rule of Ryan and

Foster (1981) in which two items are selected and put to the same bin at the first child

node and constrained to be in different bins at the other child node. However, their imple-

mentation of such branching is specific: instead a classic binary search tree, several pairs

of items are considered simultaneously. In the first branch, they are all considered for joint

assignment; while the other child nodes enumerate the disjoint assignments for each pair.

Primal solutions are obtained using a rounding heuristic for the set covering problem (2).

5



3.1. Solving the Knapsack Problem with Conflicts

In selecting an algorithm to solve the KPC with interval and arbitrary conflict graphs, the

first obvious choice is to apply an IP solver to formulation (3). However, our preliminary tests

showed that very efficient IP solvers such as CPLEX are not fast enough to be called many

times during the column generation procedure. An alternative specialized branch-and-cut

algorithm for the KPC was proposed by Hifi and Michrafy (2007). It is faster than CPLEX

only on a small fraction of instances with conflict graph density of around 1%. Therefore,

we developed our own specialized algorithms for the KPC.

First consider the Knapsack Problem with Interval Conflict Graphs (KPICG). Formally,

a graph G = (V,E) is an interval graph if, to each vertex v ∈ V , one can associate an open

interval Iv of the real line, i.e., Iv = (av, bv) for av, bv ∈ R with av < bv, such as two distinct

vertices u, v ∈ V are adjacent, i.e., form an edge, if and only if Iu ∩ Iv 6= ∅. The family

{Iv}v∈V is an interval representation of G. See Figure 1 for an illustration.

Figure 1: An interval graph and its interval representation

Recently, Pferschy and Schauer (2009) proposed a pseudo-polynomial algorithm for the

KPC with chordal conflict graphs which is a super-class of interval graphs. The complexity

of their algorithm is O(nW 2). Its pseudo-polynomial complexity of order two makes this

procedure too time consuming to be used for pricing within a branch-and-price algorithm.

We designed a dynamic programming algorithm with a lower complexity for the special case

of interval graph.

Our algorithm exploits the interval representation of the conflict graph: {Ii}i∈V . Note

that the procedure of (Corneil et al., 1998) allows to detect whether or not a graphG = (V,E)

is an interval graph and if it is, the algorithm produces an interval representation of the graph;

its complexity is O(|V |+ |E|).

Definition 1. Considering an interval conflict graph, G = (V,E), assume the items, i ∈ V ,

are indexed in non-decreasing order of the right endpoints of the corresponding intervals

6



{Ii = (ai, bi)}i∈V (the ties are resolved arbitrarily), i.e., bi ≤ bj if i < j. Let Qi denote the

set of items with indexes smaller than i that are not in conflict with i:

Qi = {j : j < i, (i, j) 6∈ E}, ∀i ∈ V.

Let previ be the item in Qi with the largest index (or 0 if Qi = ∅):

previ =

{
max{j : j ∈ Qi}, Qi 6= ∅,
0, Qi = ∅, ∀i ∈ V.

Observation 1. Consider an interval conflict graph, G = (V,E). Given the item indexing

of Definition 1, for every pair i, j ∈ V , such that 1 ≤ j ≤ previ, i and j are not in conflict,

i.e., (i, j) 6∈ E, while when previ < j < i, i and j are in conflict, i.e., (i, j) ∈ E.

Let P (i, w) be the value of an optimal solution of the KPICG for the first i items and

knapsack size w. With this notation, the solution of model (3) gives P (n,W ). By Observa-

tion 1, the solution set associated with P (i, w) either includes item i and cannot include any

items j such as previ < j < i; or it does not include item i and it reproduces the solution

set for P (i− 1, w). Therefore,

Observation 2.

P (i, w) = max {P (previ, w − wi) + pi, P (i− 1, w)}. (4)

The value P (n,W ) is the solution to KPICG. The associated solution set B can be

retrieved by backtracking from value P (n,W ) to value P (0, 0). The dynamic programming

algorithm stemming from Observation 2 is formally presented as Function DP. It is easy to

see that the time and the space complexity of the dynamic programming algorithm are both

O(nW ) once the values prev are known. This complexity is more tractable in practice than

that of the algorithm by Pferschy and Schauer (2009).

Next, we consider the knapsack problem with an arbitrary conflict graph. We developed

a recursive enumeration procedure for the KPC that combines the classic depth-first-search

based branch-and-bound algorithm for the 0-1 Knapsack Problem (Kelleler et al., 2004,

section 2.4) with the enumeration algorithm for solving the maximum clique (or maximum

independent set) problem by Carraghan and Pardalos (1990). The latter also makes use of

a depth-first-search strategy, while dual bounds are obtained by simply ignoring all conflicts

between free vertices, i.e. vertices which have not yet been fixed via branching decisions.

7



Function DP(n, p[1,...,n], w[1,...,n],W, prev[1,...,n])

for w ← 0 to W do
P (0, w)← 0;

for i← 1 to n do
for w ← 0 to wi − 1 do

P (i, w)← P (i− 1, w);
liw ← 0;

for w ← wi to W do
P (i, w)← P (i− 1, w);
liw ← 0;
if P (i, w) < P (previ, w − wi) + pi then

P (i, w)← P (previ, w − wi) + pi;
liw ← 1;

w ← W ;
B ← ∅;
i← n;
while i > 0 do

if liw = 1 then
B ← B ∪ {i};
w ← w − wi;
i← previ;

else
i← i− 1;

return B;

8



Definition 2. For each item i ∈ V , we define the list Ci of items in conflict with i. At any

node of the enumeration tree, we denote by S1 the set of items that have been selected in

the current partial knapsack solution and by S0 the items that have been fixed to 0. The set

F = (V \(∪i∈S1Ci∪S1∪S0)) denotes free items that are not fixed to either 0 or 1 in previous

branching decisions and are not in conflict with items in S1. Assume that items are indexed

in the non-decreasing order of their “efficiency”, i.e., of their ratio pi/wi. Then, succi(F )

denotes the item following i in the sorted sub-list of items of F . By extension succ0(F )

denote the first element in F , while last(F ) the last element in F and succlast(F )(F ) = n+1.

During the depth-first-search, upper (dual) bounds UB are computed at each node of

the tree by solving the continuous relaxation of the residual knapsack problem on set F ,

ignoring conflict constraints:

UB = max
∑
i∈F

pixi +
∑
i∈S1

pi (5a)

s.t.
∑
i∈F

wixi ≤ W −
∑
i∈S1

wi i ∈ F, (5b)

0 ≤ xi ≤ 1, i ∈ F. (5c)

As the items in F are sorted according to their efficiencies, problem (5) can be solved in

O(n) time using a greedy algorithm (Kelleler et al., 2004).

If the current upper bound UB is smaller or equal to the value LB of the incumbent

solution, we prune the node, putting an end to further recursive calls to the enumeration

procedure. Otherwise, we Branch: for each item i ∈ F , we consider a child node where i is

added to S1 and all items of F that precede i in the ordering are added to S0. As the items

in F and in the conflict list Ci of the i-th item in F are sorted in the same order, each child

node can be created in time O(n). Thus, the time spent per node is linear. The recursive

enumeration procedure for KPC is formally presented as Function Node(p, w, S1, F, LB,B),

where p is the current profit, w the current weight, S1 the set of items fixed to 1, F the

set of free items, LB the current lower bound, and B the associated current incumbent

solution. Our depth-first-search branch-and-bound algorithm for KPC is invoked by calling

Node(0, 0, ∅, V, 0, ∅).

We also experimented with variants of the above algorithm. In a first variant, items were

added to the partial solution in the non-increasing order of the ratio of profit by number of

conflicts. In a second variant, dual bounds were computed by solving a continuous knapsack

9



Function Node(p, w, S1, F, LB,B)

if p > LB then
LB ← p;
B ← S1;

UB ← p;
c← w;
i← succ0(F );
while c < W and i ≤ last(F ) do

if c+ wi ≤ W then
UB ← UB + pi;
c← c+ wi;
i← succi(F );

else
UB ← UB + (W − c) · (pi/wi);
c← W ;

if UB ≤ LB then
return B;

i← succ0(F );
while p+ (W − w) · (pi/wi) > LB and i ≤ last(F ) do

j ← succi(F );
F ← F \ {i};
if w + wi ≤ W then

Ŝ1 ← S1 ∪ {i};
F̂ ← F \ Ci;
B ← Node(p+ pi, w + wi, Ŝ

1, F̂ , LB,B);

i← j;

return B;

problem that takes into account some of the conflicts only. Indeed, continuous knapsack

problems with disjoint special ordered set (SOS) constraints can be solved using the O(n2)

algorithm by Johnson and Padberg (1981). Therefore, we search for a conflict sub-graph that

define a family of disjoint cliques, C ⊂ V , each of which defines a SOS constraint:
∑

i∈C xi ≤
1. The family of cliques is constructed using the following iterative greedy procedure: items

are indexed in non-decreasing order of their ratio pi/wi; at each iteration, one clique is formed

and the corresponding vertices are not considered in subsequent iterations; to build a clique,

we select the remaining item with smallest index (maximum ratio pi/wi) and add subsequent

items that are in conflict with it as long as it forms a clique. The two above variants were

not as successful experimentally as that of Function Node(p, w, S1, F, LB,B).

Note that, in the column generation procedure, we do not have to solve the pricing

10



problem to optimality: the procedure can iterate as long as a solution with a negative

reduced cost is found. Fernandes Muritiba et al. (2010) applied a heuristic to try to find

such a solution before relying on an exact algorithm. This approach decreases the average

time needed to solve the pricing problem. However, our computational study showed that

the overall branch-and-price algorithm performance is not as good when using a non exact

pricing problem solver because of the slower convergence of the column generation procedure.

Indeed, the simplex algorithm is experimentally faster when pivoting on the most negative

reduced cost variable.

3.2. The branching rule

The linear relaxation of (2) is traditionally called the master. It can be shown that the

solution λ̄ to the master is binary, i.e. λ̄ ∈ {0, 1}B, if and only if for all item pairs i, j ∈ V ,

the number of selected subsets that contain both i and j is either zero or one. Equivalently

λ̄B ∈ {0, 1}, ∀B ∈ B, if and only if solution λ̄ can be projected on a corresponding solution

(x̄, ȳ) to the integer problem (1) – the projection is defined in Vanderbeck (2010). The result

is known for the bin packing problem, or vertex coloring, but it applies more generally for

a set partitioning like master problem with a pure binary subproblem (Vanderbeck, 2010;

Vanderbeck and Wolsey, 2010).

Therefore, a natural branching scheme is the following. At a given node of the branch-

and-price tree, given master solution λ̄, one can identify two items i, j ∈ V such that

0 <
∑

B:i,j∈B λ̄B < 1, and branch by enforcing that these two items are either assigned

to the same bin or must be in different bins. Such branching constraint can be enforced by

removing inappropriate columns and by constraining the subproblem to avoid regenerating

the inappropriate columns. In the first child node, where item i and j must be assigned to

the same bin, one adds constraints xi = xj to the pricing problem (3) and removes from

the master all columns that do not satisfy it. In the second child, constraint xi + xj ≤ 1 is

added to the subproblem and columns with xi = xj = 1 are removed from the master. This

scheme was originally proposed by Ryan and Foster (1981). It was used in the approach of

Elhedhli et al. (2011)

Observe that adding branching constraints to (3) implies modifications to the pricing

problem that are compatible with the KPC model: constraint xi = xj amounts to contracting

the associated vertices of the conflict graph into one vertex representing the item pair i, j;

while xi + xj ≤ 1 amounts to adding a conflict edge. However, the special structure of the

11



conflict graph might be lost. In particular, for applications where the initial conflict graph

is an interval graph, additional conflicts introduced by branching will typically destroy this

structure that made the pricing problem solvable in pseudo-polynomial time as we showed

in Section 3.1. Thus, our dynamic programming algorithm on which the method rely for

good performance cannot be used when the Ryan and Foster branching scheme is applied.

Instead, we use the generic branching scheme proposed by Vanderbeck (2010) that was

specially designed to preserve the structure of the pricing problem. The scheme proceeds by

progressively partitioning into column classes the set B of feasible pricing problem solutions

and by implementing separate pricing on each class. A class is defined by restricting the

solution set via fixing some variables to zero or one. Hence, pricing over a class can be done

using the initial oracle since the latter can handle some variable fixing. The implementa-

tion developed in Vanderbeck (2010) guarantees that the number of created classes remains

polynomial in the input size. Fractional master solutions are eliminated by adding branch-

ing constraint in the master that force an integer lower bound on the number of columns

selected in each defined class. The dual bounds after branching are proved to be as strong

as if branching constraints had been defined in the subproblem.

To be more specific let us examine how the generic branching scheme of Vanderbeck

(2010) applies to the present problem. It takes a form closely related to the Ryan and Foster

branching scheme. At the root node, a pair i, j ∈ V is selected such that 0 <
∑

B:i,j∈B λ̄B <

1. Then, in Node 1, branching is implemented by requiring that
∑

B:i,j∈B λB ≥ 1 and∑
B:i 6∈B,j 6∈B λB ≥ K − 1 in the master (K is the number of available bins); there are two

column classes and two associated pricing problems, the first consider solutions where xi =

xj = 1 and the second solutions where xi = xj = 0. In Node 2, branching is implemented by

requiring
∑

B:i∈B,j 6∈B λB ≥ 1 and
∑

B:i 6∈B λB ≥ K − 1 in the master and there are 2 pricing

problems, the first consider solutions where xi = 1 and xj = 0 and the second solutions

where xi = 0. At subsequent branch-and-price nodes, branching is implemented by further

partitioning existing column classes (for details see Vanderbeck (2010)).

3.3. Column generation based primal heuristic

As it was showed by previous research and by our own computational experiments, the set

covering formulation is a very tight formulation that provides quite good dual bounds for the

BPPC. Therefore, combined with a good primal heuristic, the column generation approach

can be a very successful algorithm.

12



We use a generic diving heuristic which is a depth-first heuristic search in the branch-and-

price tree that is presented in Joncour et al. (2010). Here, the branch-and-price enumeration

is not driven by the branching scheme of Section 3.2, but simply by fixing λB variables.

At each branch-and-price node, the master is solved by column generation, then a branch

corresponding to rounding-to-one a λB variable is selected heuristically based on a greedy

strategy. The master is then updated: deleting rows of (2) associated to items already

covered and deleting columns covering those items. The master is re-optimized with a limit

on the number of column generation iterations and the process is reiterated.

The solution obtained through the initial depth first exploration of the tree is considered

as a reference incumbent solution. To further explore the solution space, we use limited

backtracking as a diversification mechanism as developed in Joncour et al. (2010). This

generic primal heuristic implemented in the software platform BaPCod relies on the concept

of Limited Discrepancy Search (Harvey and Ginsberg, 1995). Specifically, we avoid choosing

columns in a tabu list that consists of columns selected in previous branches from which

we wish to diversify the search. The tabu list of columns at a branch-and-price node is the

union of the tabu list of its ancestor and the columns chosen in previous child nodes of the

ancestor. The tabu list of the root node is empty. A node which is not the first child node of

its ancestor is explored only if the size of its tabu list is smaller or equal to maxDiscrepancy

and its depth is smaller or equal to maxDepth, where maxDiscrepancy and maxDepth are

two control parameters. In our implementation, we set parameters maxDiscrepancy = 2

and maxDepth = 3. The resulting search tree is illustrated in Figure 2.

Figure 2: The search tree of the diving heuristic with parameters maxDepth = 3,
maxDiscrepancy = 2; a doted line denotes a pure dive down in the branch-and-price tree.

13



4. Computational experiments

Our algorithm was developed using the software platform BaPCod — a generic Branch-and-

Price Code. BaPCod is a library of C++ classes developed within the INRIA research team

RealOpt at the University of Bordeaux. Our algorithm relies on the generic features of the

solver for the branching scheme, the primal heuristic, and basic preprocessing. Therefore,

the only application specific implementation consists in providing the problem formulation

and the oracles for solving the pricing problem.

4.1. Instances with interval conflict graphs

We tested our procedure on instances obtained using the generation procedure of Gendreau

et al. (2004); the latter is based on the bin packing test instances of Falkenauer (1996).

There are 8 classes of instances. In the first four classes denoted below by “u”, the items

have an integer weight uniformly distributed in the range [20, 100] while bins have capacity

150. The number n of items takes value in {120, 250, 500, 1000}. The next four classes

referenced below by “t” (for “triplets” ) involve items with weights wi uniformly distributed

in the range [250, 500], to be packed into bins of capacity W = 1000. Items are generated

by triplet: every third item, i3s, has a weight wi3s = W − wi3s−1 − wi3s−2 for s = 1, . . . , n
3
.

Thus, an optimal solution requires n
3

bins that are filled at full capacity with exactly three

items. The number of items is, respectively, n = 60, 120, 249 and 501. Conflict graphs are

characterized by different density values δ, varying from 0.1 to 0.9. This is done by assigning

a value ρi, to each vertex, i ∈ V , according to a continuous uniform distribution in [0, 1].

Then, a conflict is created for item pair (i, j) if (ρi + ρj)/2 ≤ δ. For each of the 8 classes and

each δ ∈ {0.1, 0.2, . . . , 0.9}, 10 of 20 instances were generated.

Observe that the above conflict generation scheme results in an interval conflict graph.

Assume that items are indexed in the non-increasing order of their values ρi. An interval

representation of such graph is similar to the one depicted in Figure 3. Therein, the intervals

Ii associated to each item/vertex i ∈ V are shown from the bottom to the top in order of

their index number, i.e., in the non-increasing order of their values ρi. The definition of

intervals Ii formalizes the condition that a conflict exists if (ρi + ρj)/2 ≤ δ. If two items,

i and j have both ρ-value larger or equal to δ they cannot be in conflict; hence, they have

non-overlapping intervals. Let L = {i : ρi > δ} and define interval Ii = (i − 1, i) for items

i ∈ L. If two items, i and j have both ρ-value smaller or equal to δ they must be in conflict;

14



hence, they have overlapping intervals. For items j ∈ V \ L, one can set Ij = (aj, |L| + 1)

where aj = min{i − 1 : i ∈ L and ρi + ρj ≤ 2δ}. Note that all these intervals overlap on

(|L|, |L| + 1). Now consider two items i, j ∈ V with ρi > δ, ρj ≤ δ, and therefore i < j and

note that their interval overlap only if ρi +ρj ≤ 2δ, with the property that if Ii overlaps with

Ij, then it must overlap with every Il such as j < l.

ρi

if ρi > δ

if ρi ≤ δ

Figure 3: Structure of the interval representation of the conflict graphs

We have therefore showed that an interval definition exists that yields the desired conflict

graph. However, for the purpose of our specialized dynamic programming algorithm, one

only needs the values of previ of Definition 1. They can be obtained as follows:

previ =

{
i− 1, ρi > δ,
max{j : (ρj + ρi)/2 > δ}, ρi ≤ δ

assuming items are indexed in the non-increasing order of their values ρi.

In our numerical experiments, we first compared our algorithm and the algorithm of

Fernandes Muritiba et al. (2010), which we denote FMIMT. The comparison was carried on

the test instances that were kindly provided to us by these authors. For each class and each

density, there are 10 instances. Hence, there are 90 instances for each class. In comparison to

FMIMT, we tested three versions of our algorithm: (1) using our branch-and-price approach

with specialized DP pricing but without the primal heuristic, (2) running the algorithm

with the column generation based primal heuristic, but relying on the branch-and-bound

oracle for pricing in a general conflict graph instead of the specialized DP pricing oracle for

interval graphs (3) the full-blown branch-and-price approach with DP pricing and primal

heuristic. Our algorithm was run using one thread on a Dell PowerEdge T300 workstation

with an Intel Xeon X5460 3.16 GHz processor. Algorithm FMIMT was run on a Pentium IV

3 GHz processor. By www.spec.org, our machine is roughly 3.75 times faster. Therefore,

we multiplied our computing time by 3.75 for the purpose of this comparison.

In Table 1, we report the number of unsolved instances within the time limit, denoted

¬opt, out of 90 instances (except for our algorithm with the primal heuristic that solved all

15



FMIMT Our w/o heur. Our w/o DP sp Our w DP sp & heur.
class ¬opt av. time ¬opt av. time av. time max. time av. time max. time
t60 0 38.7 0 1.0 0.9 27.9 0.8 6.5
t120 5 1860.3 1 156.0 26.9 1971.3 37.8 2956.4
t249 4 1582.1 2 334.2 30.0 235.5 29.3 130.6
t501 4 3163.6 0 245.9 407.7 2818.7 189.1 960.8
u120 0 29.4 0 3.4 2.6 55.7 2.8 26.2
u250 0 107.1 0 23.9 13.5 32.4 12.5 35.9
u500 5 2195.4 1 318.0 132.2 501.2 70.3 154.9
u1000 2 1911.9 0 1401.2 940.2 3335.6 437.6 1133.1

Table 1: Comparison of our algorithm with the algorithm of Fernandes Muritiba et al. (2010)

instances to optimality); the average solution time; and the maximum solution time for our

algorithm with primal heuristic. The time limit was 10 hours for FMIMT and 1 hour for our

algorithm. Our algorithm with the primal heuristic solved all instances to optimality and it

is faster by an order of magnitude than FMIMT. Using the heuristic allowed us to solve 4

more instances and it speeds up our algorithm considerably. Additionally, we observed that

our root node lower bound was equal to the optimal solution for all instances but 3. All but

4 instances were solved at the root node (thanks to the primal heuristic). Note also that

using specialized DP pricing oracle reduces the running time of the algorithm only for large

instances (500 items and more).

Secondly, we compare the above three versions of our algorithms (without and with DP

pricing or primal heuristic) to the algorithm of Elhedhli et al. (2011), which we denote ELGN.

The comparison was carried on the test instances that were kindly provided to us by these

authors. For each class and each density, there are 20 instances. So, we have 180 instances

for each class. The comparison involve results obtained on different computers: algorithm

ELGN was run on a Sun Blade 2500 workstation with an Ultrasparc IIIi 1.6 GHz processor.

By www.spec.org, our machine is roughly six times faster. Therefore, in this comparison,

the solution time of our algorithm is multiplied by 6. The time limit was 1 hour for

ELGN and 10 minutes for our algorithm (the ELGN time limit was divided by 6).

In Table 2, we report the number of unsolved instances within the time limit, denoted

¬opt (except for our algorithm with primal heuristic that solved all instances to optimality);

the average solution time; and the maximum solution time. The algorithm ELGN includes

a primal heuristic: a rounding procedure with no backtracking. Results of Table 2 indicates

that our algorithm with DP pricing and primal heuristic is an order of magnitude faster. All

16



ELGN Our w/o heur. Our w/o DP sp Our w DP sp & heur.
class ¬opt av.time ¬opt av.time av.time max.time av.time max.time
t60 0 3.2 0 0.9 0.9 8.9 1.3 7.7
t120 3 118.6 0 5.0 5.5 34.0 6.9 30.0
t249 10 398.0 4 157.1 65.0 1024.9 53.8 383.2
u120 0 47.0 0 2.4 3.2 15.4 3.7 9.4
u250 1 183.1 1 37.0 21.5 99.5 21.2 73.3
u500 13 1253.8 5 277.5 214.6 1479.9 115.2 310.4

Table 2: Comparison of our algorithm with the algorithm of Elhedhli et al. (2011)

instances were solved at the root node thanks to the primal heuristic. The root node lower

bound is equal to the optimal solution for all tested instances.

4.2. Instances with arbitrary conflict graphs

As there are no test instances of the problem with an arbitrary conflict graph available in

the literature, we generated them ourselves. First, we took the same instances as those used

above, but generated the conflict graphs randomly in the following way. We begin with the

empty graph. We iteratively select an item pair (i, j) at random (with uniform distribution);

then edge (i, j) is added to the graph if it is not already defined. The procedure is interrupted

as soon as the desired graph density is reached.

The resulted eight classes are referenced below by “ta” and “ua”. For each class and each

density, there are 10 instances. So, we have 90 instances per class. We tested our algorithm

with and without the primal heuristic on these instances. In Table 3, we compare the number

of unsolved instances within 1 hour, denoted ¬opt; the average solution time (only for the

solved instances); and the average remaining gap (only for the unsolved instances). The exact

method does not typically produce feasible solutions until it identifies the optimum. Thus,

when the heuristic is not used and the algorithm does not solved the problem to optimality,

then generally no feasible solution is available. Therefore, for the version of the algorithm

without the primal heuristic, the gap statistics are not provided. For comparison purposes,

Table 3 also reproduces on the right-hand the results for instance classes “u” and “t” with

interval conflict graph (therein our computing times are not multiplied by a correction factor

anymore).

As shown in Table 3, instances with arbitrary conflict graphs are significantly harder

to solve than the instances with interval conflict graphs. For arbitrary conflict graphs, the

primal heuristic helps a lot when solving instances in class “ua”. On the contrary, it increases

17



General Conflict Graph Interval C G
Our algo w/o heur Our algo with heur. Our algo with heur.

class not opt. av. time not opt. av. time gap class av. time
ta60 0 0.3 0 0.2 0% t60 0.2
ta120 0 2.3 0 4.2 0% t120 4.1
ta249 7 97.6 6 137.3 1.2% t249 8.6
ta501 23 215.0 25 392.6 0.6% t501 50.4
ua120 0 1.4 0 0.7 0% u120 0.7
ua250 1 41.2 2 9.0 1.0% u250 3.5
ua500 27 234.3 8 39.0 0.5% u500 19.1
ua1000 33 713.0 8 286.2 0.3% u1000 116.7

Table 3: Results obtained by our algorithm on instances with arbitrary conflict graphs and
comparison of solution time on instances with interval conflict graphs

the running time when solving class “ta” instances. However, it guarantees to obtain a good

feasible solution. Solving pricing problems using the depth-first-search branch-and-bound

algorithm takes 32.9% of the overall running time on the average.

4.3. Instances with a larger number of items per bin

Observe that, in previous classes of instances, the number of items per bin does not exceed

3 on average. We generated additional classes of more difficult instances denote below by

“d” and “da”. They consist of items with integer weights uniformly distributed in the range

[500, 2500], to be packed into bins of capacity W = 10000. In class “d”, conflict graphs are

interval graphs. They were generated using the same procedure as for classes “t” and “u”.

In class “da”, conflict graphs are arbitrary, as in classes “ta” and “ua”. The number n of

items is 120, 250, and 500. There are on average 8 items per bin. For each class and each

density, there are 10 instances. So, we have 90 instances per class again. We tested our

algorithm with the primal heuristic on these instances. In Table 4, we report the number of

unsolved instances within 1 hour, denoted ¬opt, (out of 90), the average solution time (only

for the solved instances), and the average remaining gap (only for the unsolved instances).

Our algorithm solved all class “d” instances. As for class“u” and “t”, the lower bound

provided by the column generation procedure are very tight: it was always equal to the

optimum solution. The primal heuristic is very good: it found optimum solutions for all

but 3 instances. Our numerical experiment revealed that, for these instances where the bin

capacity is large, the dynamic programming algorithm was slower than the depth-first-search

branch-and-bound algorithm developed the general KPC. Hence, we used the latter. The

18



Our algorithm with primal heuristic
class ¬opt av. time gap class ¬opt av. time gap
d120 0 8.9 0.0% da120 23 23.2 4.7%
d250 0 53.4 0.0% da250 40 23.3 3.7%
d500 0 486.8 0.0% da500 41 137.6 3.9%

Table 4: Results obtained by our algorithm on hard instances with interval and arbitrary
conflict graphs

solution time for instances “d” are therefore much larger than for instances “u” and “t”.

The increased computing time is also due to a slower convergence of the column generation

algorithm. In our experiments the oracle for the KPC took on the average only 18.6% of

the overall computation time. (The increasing computing times explain why we did not test

instances in class “d” and “da” with 1000 jobs.)

The performance of our algorithm for class “da” instances is much worse than for other

tested classes. Slightly less than half of the instances remains unsolved after one hour of

computation time. The remaining gap is almost an order of magnitude larger than for class

“ta” and class “ua” instances. The difficulty of these instances depends a lot on the conflict

graph density. Details on this can be found in Section 4.5.

4.4. Efficiency of the primal heuristic

In this subsection, we present the results obtained using the primal heuristic only, without

branching. We tested two variants of the heuristic: a pure diving approach (DH) without the

Limited Discrepancy Search (meaning that the maxDiscrepancy parameter is equal to 0) and

the variant used in the above test (DH with LDS) with the parameters maxDiscrepancy = 2

and maxDepth = 3.

“u” “t” “ua” “ta” “da”
#items time gap time gap time gap time gap time gap

60 0.2 0.21% 0.1 0.22%
120 0.6 0.12% 0.9 0.45% 0.6 0.18% 0.7 0.71% 1.0 3.20%
250 3.1 0.11% 5.7 0.31% 3.7 0.14% 4.0 0.69% 7.6 2.79%
500 17.8 0.04% 34.7 0.16% 28.1 0.12% 38.2 0.47% 73.7 2.35%

1000 110.0 0.02% 205.1 0.08% 760.8 1.88%

Table 5: Results with the pure diving heuristic DH alone.

In Tables 5 and 6, we present, for all the above instance classes, the average running

time of the heuristics and the average gap of the solutions found in per cent from the best

19



“u” “t” “ua” “ta” “da”
#items time gap time gap time gap time gap time gap

60 0.2 0% 0.2 0%
120 0.7 0% 1.2 0.01% 0.7 0% 1.5 0.05% 6.0 1.25%
250 3.5 0% 8.6 0% 6.2 0.03% 23.7 0.32% 60.0 1.69%
500 19.0 0% 50.4 0% 63.1 0.05% 271.3 0.28% 541.5 1.81%

1000 116.7 0% 516.8 0.03% 6036.3 1.48%

Table 6: Results with our diving heuristics with Limited Discrepancy Search, DH LDS.

known dual bound. The pure diving heuristic (DH) produces solutions of a high quality.

The Limited Discrepancy Search (in DH LDS) improves significantly the performance of the

heuristic, especially for instances of classes “u”, “t”, and “ua”. A disadvantage of our primal

heuristic is that its running time increases rapidly with the number of items; this can be

noted specially for class “da” that are the most difficult instances.

Fernandes Muritiba et al. (2010) have proposed a population based heuristic (PH) for

the problem. It consists in a tabu search algorithm and a diversification procedure. In

Table 7, we compare the two variants of our primal heuristic with PH, the heuristic of

Fernandes Muritiba et al. (2010). As it was done above, the running time of our heuristics

is multiplied by 3.75 to compensate the difference in the computers speed. The results of

Table 7 show that DH is faster than PH for instances with less than 500 items and produce on

average significantly better solutions than the population heuristic (except for class “u120”).

DH LDS is only slightly slower than the PH and produces optimal solutions for all instances

except one.

PH DH DH LDS
class gap time gap time gap time
t60 0.45% 37.5 0.18% 0.7 0% 0.8
t120 0.62% 40.0 0.48% 3.5 0.03% 5.1
t249 0.39% 51.9 0.29% 21.3 0% 29.3
t501 0.21% 58.9 0.16% 130.3 0% 189.1
u120 0.10% 22.4 0.16% 2.3 0% 2.8
u250 0.21% 52.1 0.10% 11.8 0% 12.5
u500 0.20% 69.7 0.05% 66.2 0% 70.3
u1000 0.22% 107.8 0.02% 412.5 0% 437.6

Table 7: Comparison of our primal heuristics with the population heuristic of Fernandes Mu-
ritiba et al. (2010).

20



4.5. Impact of the density of the graph to the results

“u” “t” “ua” “ta” “da”
density time time ¬opt time gap ¬opt. time gap ¬opt time gap

10% 15.5 6.1 0% 71.1 0% 0% 43.5 0% 0% 57.0 0.0%
20% 16.7 11.0 0% 67.7 0% 0% 50.8 0% 0% 41.7 0.0%
30% 19.5 21.8 0% 67.8 0% 0% 105.3 0% 0% 56.0 0.0%
40% 30.1 10.8 0% 71.4 0% 0% 171.2 0% 7% 44.7 1.3%
50% 26.8 9.8 0% 64.8 0% 18% 481.7 0.9% 20% 47.9 4.5%
60% 19.6 7.5 0% 76.5 0% 15% 80.3 0.7% 90% 319.1 3.3%
70% 15.8 5.7 5% 101.7 0.7% 20% 2.9 0.6% 90% 186.9 4.7%
80% 13.1 4.5 15% 100.2 0.5% 0% 9.7 0% 73% 107.2 4.9%
90% 10.5 3.0 25% 115.9 0.3% 25% 116.9 0.6% 67% 4.6 3.0%

Table 8: Impact of the conflict graph density on the results obtained by our branch-and-price
algorithm.

We proceed to show how the difficulty of instances depends on the density of the con-

flict graph. Instances here are grouped according to their classes. Table 8 presents results

obtained with our algorithm with the primal heuristic for different conflict graph density.

We report the percentage of unsolved instances within 1 hour denoted “¬opt; the average

solution time (only for the solved instances), and the average remaining gap (only for the

unsolved instances). For classes “u” and “t”, we present only the time statistic, as all these

instances were solved to optimality.

One can observe that the impact of the graph density on the difficulty of instances highly

depends on the graph class. The most difficult instances with interval conflict graph are with

50% density or slightly below. On the contrary, the most difficult instances with arbitrary

conflict graph are with a high density. Highly oscillating results for instance class “ta” can

be explained by their particular structure: there are threshold values for the density of the

conflict graph which change a lot the quality of the column generation dual bounds.

In Tables 9 and 10, we present the impact of conflict graph density on the performance of

the primal heuristics DH and DH LDS: we report the average running time and the average

gap of the solutions found. The observation is similar to the one concerning the impact of

density on the efficiency of the branch-and-price algorithm. The heuristic DH sometimes

requires more time and produces solutions with larger relative gap for instances with small

density. This is due to the larger running time of pricing oracle and the fact that the absolute

solution values are smaller.

21



“u” “t” “ua” “ta” “da”
density time gap time gap time gap time gap time gap

10% 14.3 0.08% 3.2 0.76% 70.0 0.01% 17.6 0.65% 32.7 1.15%
20% 15.9 0.04% 3.8 0.72% 67.6 0.01% 16.2 0.75% 31.1 1.25%
30% 19.2 0.05% 5.3 0.45% 67.1 0.05% 12.7 0.81% 27.6 1.98%
40% 28.1 0.12% 9.3 0.37% 64.7 0.07% 11.1 0.42% 24.0 1.61%
50% 24.7 0.22% 9.1 0.15% 63.6 0.08% 9.2 0.42% 21.3 1.64%
60% 18.3 0.11% 6.8 0.17% 59.2 0.18% 8.5 0.13% 25.6 3.98%
70% 14.5 0.07% 5.2 0.07% 54.8 0.21% 7.1 0.30% 45.9 5.45%
80% 12.7 0.03% 4.1 0.03% 47.8 0.24% 8.1 0.42% 26.5 5.14%
90% 9.4 0.01% 2.8 0.03% 39.4 0.34% 6.5 0.82% 12.4 2.82%

Table 9: Impact of the conflict graph density on the results obtained using heuristic DH.

“u” “t” “ua” “ta” “da”
density time gap time gap time gap time gap time gap

10% 15.5 0% 6.1 0% 74.7 0% 51.2 0% 92.5 0.04%
20% 16.7 0% 11.0 0% 74.4 0% 42.8 0% 84.5 0.09%
30% 19.5 0% 14.0 0.03% 69.1 0% 72.3 0.11% 36.7 0.00%
40% 30.1 0% 10.8 0% 69.7 0% 112.8 0.27% 79.8 0.04%
50% 26.8 0% 9.8 0% 66.7 0% 120.8 0.42% 81.0 0.71%
60% 19.6 0% 7.5 0% 81.5 0% 80.1 0.13% 384.4 2.99%
70% 15.8 0% 5.7 0% 106.9 0.04% 86.3 0.12% 543.4 4.27%
80% 13.1 0% 4.5 0% 171.8 0.06% 9.4 0.12% 348.2 3.81%
90% 10.5 0% 3.0 0% 605.5 0.16% 91.7 0.29% 170.7 2.31%

Table 10: Impact of the conflict graph density on the results obtained using heuristic DH
LDS.

These results also allow us to give the following recommendations. For the instances of

classes “ua” and “da”, the pure diving heuristic should be used if the graph density is large.

For other instances with an arbitrary conflict graph, the DH LDS requires a reasonable

increase in the running time but produces significantly better solutions. For instances with

an interval conflict graph, the DH LDS should always be used.

5. Conclusions

In this paper, we present a branch-and-price algorithm for the bin packing problem with

conflicts that we implemented using the software platform BaPCod. The only problem

specific “features” of our implementation are the formulations and the oracles for solving

the pricing problem. Our algorithm was tested on instances from the literature and newly

generated ones. Our computational results can be summarized as follows:

22



• On instances from the literature, our algorithm outperforms the existing algorithms.

These instances are rather specific: the number of items in a bin is small (3 on average)

and the conflict graph is an interval graph. Here, our algorithm gives comparatively

better results even when a generic branch-and-bound pricing oracle is used, i.e. when

the interval graph structure is not exploited.

• Instances where the solution involves a higher number of items per bin and the conflict

graph has no special structure, are much harder. In particular, the linear relaxation

bound stemming from the set covering formulation is not as tight when the conflict

graph is not an interval graph.

• The generic column generation based primal heuristic built into BaPCod contributes a

lot to the success of our algorithm, and compares favorably with the population based

heuristics from the literature. The Limited Discrepancy Search improves significantly

the efficiency of the diving heuristic.

• The generic BaPCod solver is a competitive tool once a problem specific oracle is

provided for solving the pricing problem.

In addition to the new benchmarks, the highlights of our study are:

• a novel dynamic programming algorithm of complexity O(nW ) for the knapsack prob-

lem with an interval conflict graph;

• a depth-first-search branch-and-bound algorithm for the Knapsack Problem with Con-

flicts that has proved to be efficient in practice and outperforms the CPLEX 11.0 solver

on instances with conflict graphs of density 10% and more;

• an illustration of the interest of exploiting structure of solved instances (the fact that

standard BPPC test instances of the literature had interval conflict graphs was not

noticed in the previous research work).

References

Baker, Brenda S., Edward G. Coffman. 1996. Mutual exclusion scheduling. Theoretical

Computer Science 162 225 – 243.

23



Beaumont, Olivier, Nicolas Bonichon, Philippe Duchon, Hubert Larchevêque. 2008. Dis-

tributed approximation algorithm for resource clustering. Structural Information and

Communication Complexity , Lecture Notes in Computer Science, vol. 5058. Springer

Berlin / Heidelberg, 61–73.

Busygin, Stanislav. 2006. A new trust region technique for the maximum weight clique

problem. Discrete Applied Mathematics 154 2080–2096.

Carraghan, Randy, Panos M. Pardalos. 1990. An exact algorithm for the maximum clique

problem. Operations Research Letters 9 375 – 382.

Christofides, N., A. Mingozzi, P. Toth. 1979. The vehicle routing problem. N. Christofides,

A. Mingozzi, P. Toth, C. Sandi, eds., Combinatorial optimization. Wiley, Chichester, 315–

338.

Corneil, Derek G., Stephan Olariu, Lorna Stewart. 1998. The ultimate interval graph recog-

nition algorithm? SODA ’98: Proceedings of the ninth annual ACM-SIAM symposium on

Discrete algorithms . Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 175–180.

Elhedhli, Samir, Lingzi Li, Mariem Gzara, Joe Naoum-Sawaya. 2011. A Branch-and-Price

Algorithm for the Bin Packing Problem with Conflicts. INFORMS Journal on Computing

23 404–415.

Falkenauer, Emanuel. 1996. A hybrid grouping genetic algorithm for bin packing. Journal

of Heuristics 2 5–30.

Fernandes Muritiba, Albert E., Manuel Iori, Enrico Malaguti, Paolo Toth. 2010. Algorithms

for the Bin Packing Problem with Conflicts. INFORMS Journal on Computing 22 401–

415.

Gardi, Frédéric. 2005. Ordonnancement avec exclusion mutuelle par un graphe d’intervalles

ou d’une classe apparentée : complexité et algorithmes. Ph.D. thesis, Université de la

Méditerranée-Aix-Marseille II, Marseille, France.

Gardi, Frédéric. 2009. Mutual exclusion scheduling with interval graphs or related classes.

part i. Discrete Applied Mathematics 157 19–35.

24



Gendreau, Michel, Gilbert Laporte, Frédéric Semet. 2004. Heuristics and lower bounds for

the bin packing problem with conflicts. Computers and Operations Research 31 347 – 358.

Harvey, William D., Matthew L. Ginsberg. 1995. Limited discrepancy search. IJCAI’95:

Proceedings of the 14th international joint conference on Artificial intelligence. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 607–613.

Hifi, Mhand, Mustapha Michrafy. 2007. Reduction strategies and exact algorithms for the

disjunctively constrained knapsack problem. Computers and Operations Research 34 2657

– 2673.

Jansen, Klaus. 1999. An approximation scheme for bin packing with conflicts. Journal of

Combinatorial Optimization 3 363–377.

Jansen, Klaus, Sabine Öhring. 1997. Approximation algorithms for time constrained schedul-

ing. Information and Computation 132 85 – 108.

Johnson, Ellis L., Manfred W. Padberg. 1981. A note on the knapsack problem with special

ordered sets. Operations Research Letters 1 18–22.

Joncour, Cédric, Sophie Michel, Ruslan Sadykov, Dmitry Sverdlov, François Vanderbeck.

2010. Column generation based primal heuristics. Electronic Notes in Discrete Mathemat-

ics 36 695 – 702.

Kelleler, Hans, Ulrich Pferschy, David Pisinger. 2004. Knapsack problems . Springer-Verlag

Berlin.

Laporte, Gilbert, Sylvain Desroches. 1984. Examination timetabling by computer. Comput-

ers and Operations Research 11 351 – 360.

Martello, Silvano, Paolo Toth. 1990. Knapsack problems: algorithms and computer imple-

mentations . John Wiley and Sons, Inc., New York, NY, USA.

Pferschy, Ulrich, Joachim Schauer. 2009. The knapsack problem with conflict graphs. Journal

of Graph Algorithms and Applications 13 233–249.

Ryan, D. M., B. A. Foster. 1981. An integer programming approach to scheduling. A. Wren,

ed., Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Schedul-

ing . North-Holland, Amsterdam, 269–280.

25



Vanderbeck, François, Martin W. P. Savelsbergh. 2006. A generic view of dantzig-wolfe

decomposition in mixed integer programming. Operations Research Letters 34 296–306.

Vanderbeck, François. 2010. Branching in branch-and-price: a generic scheme. Mathematical

Programming Online first.

Vanderbeck, François, Laurence A. Wolsey. 2010. Reformulation and decomposition of inte-

ger programs. Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser,

William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, Laurence A. Wolsey, eds., 50

Years of Integer Programming 1958-2008 . Springer Berlin Heidelberg, 431–502.

26


