
Scheduling incoming and outgoing trucks at cross

docking terminals to minimize the storage cost

Ruslan Sadykov∗

June 14, 2012

Abstract

Cross docking terminals allow companies to reduce storage and trans-
portation costs in a supply chain. At these terminals, products of different
types from incoming trucks are unloaded, sorted, and loaded to outgoing
trucks for delivery. If the designated outgoing truck is not immediately
available for some products, they are temporarily stocked in a small stor-
age area available at the terminal.

This paper focuses on the operational activities at a cross docking
terminal with two doors: one for incoming trucks and another one for
outgoing trucks. We consider the truck scheduling problem with the ob-
jective to minimize the storage usage during the product transfer inside
the terminal. We show that this problem is NP-hard in the strong sense
even if there are only two product types. For a special case with fixed
subsequences of incoming and outgoing trucks, we propose a dynamic pro-
gramming algorithm, which is the first polynomial algorithm for this case.
The results of numerical tests of the algorithm on randomly generated in-
stances are also presented.

Keywords: Logistics; Cross docking; Truck scheduling; Storage cost;
Dynamic programming

1 Introduction

Cross docking terminals are distribution centers carrying a considerably reduced
amount of stock in contrast to traditional warehouses. Incoming shipments de-
livered by incoming trucks are unloaded, sorted and loaded onto outgoing trucks,
which forward the shipments to the respective locations within the distribution
system. Compared to traditional warehousing, the cost intensive storage and
retrieval of goods is eliminated by the synchronization of inbound and outbound
flows. An additional advantage of cross docking is the efficient usage of truck
capacity (i.e. full loads) through the implementation of a good scheduling sys-
tem [1].

∗INRIA Bordeaux — Sud-Ouest, France, e-mail: Ruslan.Sadykov@inria.fr

1

As described in [3], such a scheduling system should synchronize incoming
and outgoing truckloads so that the intermediate storage inside the terminal is
kept low and on-time deliveries are ensured. The process of transshipment of
goods in cross docking terminals can be subdivided into the tasks of unloading
incoming trucks and loading outgoing trucks, which are typically separated by a
time lag for material handling inside the terminal. These tasks are processed by
the terminal’s “dock doors”, which can process one truck a time and are assumed
to be equipped with loading equipment and workers. As cost related to customer
satisfaction incurred by delayed deliveries is hard to quantify accurately, a time
related surrogate objective is often a better choice for cross docking scheduling.

In this paper, we consider a simplified cross docking terminal with one receiv-
ing door, one shipping door and the storage area, see Figure 1. The incoming
trucks arrive at the receiving door and the outgoing trucks arrive at the ship-
ping door. Once docked, the products of an incoming truck are unloaded and
transfered to the designated outgoing truck. This transfer can be immediate,
if the correct truck is at the shipping door, or delayed. In the latter case, a
small intermediate storage area is used to stock the products until the arrival
of the designated outgoing truck. Once an outgoing (incoming) truck has been
completely loaded (unloaded), it is removed from the dock, replaced by another
truck and the course of action repeats.

Results Packing, Planning, and Scheduling
Scheduling: R.Sadykov

• On Scheduling a Single Machine to Minimize a Piecewise
Linear Objective Function : A Compact MIP Formulation
(joint paper with Ph. Baptiste [BS09])

• Dominant class of schedules for an NP-hard problem of
scheduling malleable parallel tasks ([S09]).

• A polynomial dynamic programming algorithm for a basic
cross-docking scheduling problem (working paper).

cross-docking platform

shipping
area

receiving
area

Storage area

no cost
a cost

LogoINRIA 15 / 39Figure 1: The cross docking terminal

The efficiency of such a system depends on the appropriate coordination
of inbound and outbound flows. This paper deals with the truck scheduling
problem which comprises the sequencing of arrivals (and departures) of incoming
and outgoing trucks. This sequencing should reduce the delay of shipments at
the cross docking terminal. In some situations, storage usage can have a great
impact on this delay, as it increases the duration and the resource consumption
(i.e. manpower) of the product transfer. Thus storage usage should be limited
in this case.

A number of recent articles have been devoted to cross dock scheduling. Boy-
sen and Fliedner [3] reviewed this research direction. There are several papers
which dealt with truck scheduling problems at a cross docking terminal with
two doors. Yu and Egbelu [11] developed a model for scheduling incoming and
outgoing trucks to minimise the makespan (i.e. the maximum completion time)
and proposed several heuristic algorithms for it. A simpler but similar problem
was considered by Boysen et al. [4]. They proposed lower bounds and an exact

2

decomposition approach for the problem. Chen and Lee [6] formulated the truck
scheduling problem to minimize the makespan as a flow-shop problem on two
machines. They proved that the latter is NP-hard and proposed a branch-and-
bound algorithm for its exact resolution. Boloori Arabani et al. [2] considered
the truck scheduling problem with the total earliness-tardiness objective, and
proposed three meta heuristic algorithms for it. Another meta heuristic algo-
rithm was suggested by Forouharfard and Zandieh [7] for the same problem but
with the objective to minimize the number of products that pass through the
storage area.

Maknoon et al. [9] concentrated on the objective function which minimizes
the storage cost and the special case of fixed subsequences of incoming and
outgoing trucks. Two exact but exponential algorithms have been proposed.
Larbi et al. [8] studied a similar problem but with truck replacement costs in
addition to the storage cost. In particular, they have also studied the special
case with a fixed sequence of incoming trucks. Under the assumption that the
products are loaded to outgoing trucks according to a first-in first-out policy,
the problem is shown to be polynomially solvable. Briskorn and Leung [5]
considered the truck scheduling problem at a cross docking terminal with one
door (where both incoming and outgoing trucks are docked) to minimize the
maximum lateness. In particular, they showed that the special case with fixed
subsequences of incoming and outgoing trucks can be solved in linear time.

In this work, which is an extended version of [10], we consider the truck
scheduling problem at a cross docking terminal with two doors with the objective
to minimize the storage cost. We are mainly interested in theoretical properties
of this problem. We prove that even a quite restricted version of the problem is
NP-hard in the strong sense. Then, we show that the special case of the problem
with fixed subsequences of incoming and outgoing trucks is polynomial. This is a
rare example of non-trivial polynomial special cases of cross docking scheduling
problems.

The paper is organized as follows. In Section 2, we formally describe the
problem and formulate it as a mixed integer program. We prove in Section 3
that the problem is NP-hard. Section 4 is devoted to the special case of the
problem mentioned above. We show that this special case, introduced in [9], can
be solved in polynomial time and propose a dynamic programming algorithm
for it. Finally, we test this algorithm on a set of randomly generated instances.
Conclusions are drawn in Section 5.

2 Problem description and mathematical formu-
lation

We now formally define the problem we consider. A set of n incoming trucks
should be unloaded at the single receiving door, and a set of m outgoing trucks
should be loaded at the single shipping door of the cross docking terminal. Each
incoming truck is loaded with units of different product types t ∈ T . The number

3

of units of product type t contained in an incoming truck Ii is denoted by ait.
Each outgoing truck Oo is to be loaded with a predetermined number bot of units
of product type t, for each t ∈ T . Let To be the set of product types demanded
by Oo, i.e. To = {t ∈ T : bot > 0}. Also let q be the maximum number of
product types demanded by a single outgoing truck, i.e. q = max1≤o≤m |To|,
where |To| is the cardinality of set To. An intermediate storage of capacity D is
available, i.e. at most D product units can be stored there.

Product units can be unloaded from an incoming truck either to storage or
directly to the outgoing truck currently present at the shipping door. Similarly,
product units can be loaded to an outgoing truck either from storage or directly
from the incoming truck currently present at the receiving door.

The following assumptions are made about the model.

• All trucks are available at time 0.

• Product units can be loaded from trucks and unloaded to trucks in any
sequence.

• Preemption is not allowed, i.e. once a truck arrives at a door, it should
be fully unloaded or loaded before its departure.

• Initial storage is zero.

• For each product type the total number of incoming product units should
be equal to the total number of outgoing ones:

n∑
i=1

ait =

m∑
o=1

bot, ∀t ∈ T. (1)

• There is no “idle time” at the doors, i.e. once an incoming or outgoing
truck departs, the next one arrives immediately.

Potentially, an incoming truck may unload product units to several outgoing
trucks, and vice versa. As an example, consider the following departure sequence
of trucks:

I1 → I2 → I3 → O1 → O2 → I4 → O3 → O4 → I5 → I6 → O5 (2)

In Figure 2, we graphically represent this departure sequence. For each truck,
a rectangle represents the time interval during which the truck is at the cor-
responding door. Arcs represent a possible “flow” of product units. They can
be directly unloaded from a truck to another if both trucks are at the doors at
the same moment. For example, truck I4 may unload product units directly to
trucks O1, O2, and O3. Also, only truck I5 may unload product units directly
to truck O4.

The problem we consider determines the departure sequence of trucks and
the flow of product units, i.e. where each product unit is unloaded to, and, if
it is unloaded to storage, to which outgoing truck it is loaded afterwards. Each

4

time

I1 I2 I3 I4 I5 I6

O1 O2 O3 O4 O5

storage

Figure 2: Graphical representation of departure sequence (2)

time a unit of product type t is unloaded to storage, a cost ct is paid. The
objective is to minimize the total storage cost.

We now formulate the problem as a mixed integer program (MIP), in which
the following variables are used.

xip a binary variable which takes value 1 if incoming truck Ii is at position p
in the departure sequence, 0 otherwise

yop a binary variable which takes value 1 if outgoing truck Oo is at position p
in the departure sequence, 0 otherwise

zio a binary variable which takes value 1 if truck Ii may unload product units
directly to truck Oo, 0 otherwise

fiot number of units of product type t unloaded from Ii directly to Oo

f↓it number of units of product type t unloaded from truck Ii to storage

f↑ot number of units of product type t loaded to truck Oo from storage

spt number of units of product type t stored in the storage area after the truck
at position p in the departure sequence leaves the corresponding door

min
∑
t∈T

n∑
i=1

ct · f↓it (3)

s.t.

n+m∑
p=1

xip = 1 ∀i = 1, . . . , n (4)

n+m∑
p=1

yop = 1 ∀o = 1, . . . ,m (5)

5

n∑
i=1

xip +

m∑
o=1

yop = 1 ∀p = 1, . . . , n+m (6)

zio ≤ 3−
p−1∑
p′=1

xip′ −
∑

1≤o′≤m:

o′ 6=o

yo′p −
n+m∑

p′=p+1

yop′ ∀i, o, p (7)

zio ≤ 3−
p−1∑
p′=1

yop′ −
∑

1≤i′≤n:
i′ 6=i

xi′p −
n+m∑

p′=p+1

xip′ ∀i, o, p (8)

0 ≤ fiot ≤ min{ait, bot} · zio ∀i, o, t ∈ T (9)
m∑
o=1

fiot + f↓it = ait ∀i, t (10)

n∑
i=1

fiot + f↑ot = bot ∀o, t (11)

spt = sp−1,t +

n∑
i=1

xip · f↓it −
m∑
o=1

yop · f↑ot ∀t, p (12)∑
t∈T

spt ≤ D ∀p (13)

s0t = 0 ∀t (14)

spt ≥ 0 ∀t, p (15)

The objective function (3) minimizes the storage cost. Constraints (4) and
(5) ensure that each truck is assigned to exactly one position in the departure
sequence, whereas constraints (6) ensure that each position is assigned to exactly
one truck. Constraints (7) and (8), which link variables x and y with variables
z, are based on the following observation.

Proposition 1. Incoming truck Ii cannot unload product units directly to out-
going truck Oo if and only if

• either there exists an outgoing truck Oo′ , o
′ 6= o, such that, in the departure

sequence, Ii → Oo′ → Oo,

• or there exists an incoming truck Ii′ , i
′ 6= i, such that, in the departure

sequence, Oo → Ii′ → Ii.

Proof. Sufficiency is trivial to verify. Necessity can be shown by observing that,
in the departure sequence, either Ii → Oo or Oo → Ii, and by considering these
two cases.

Constraints (9) impose bounds on the direct flow of product units. Con-
straints (10) and (11) guarantee that every incoming (outgoing) truck is fully
unloaded (loaded). Constraints (12) are the flow conservation constraints for
the storage. Note that they can be linearized if needed. We present them in

6

a non-linear form for simplicity. Constraints (13), (14), and (15) impose lower
and upper bounds on the storage level.

3 NP-hardness proof

In this section, we show that our problem is NP-hard in the strong sense even
for the case in which

• each incoming truck supplies product units of at most two types,

• each outgoing truck demands product units of at most one type,

• all the storage costs are unitary,

• the storage capacity is unlimited.

We will perform a reduction from the 3-partition problem.
Recall that, in the 3-partition problem, we are given an integer B and a

set of 3n integers r1, r2, . . . , r3n such that
∑3n

i=1 ri = Bn and B/4 < ri < B/2
for each i. We need to decide whether there exists a partition of the set of
indexes {1, 2, . . . , 3n} into n sets {A1, A2, . . . , An} such that

∑
i∈Aj

ri = B,
∀j = 1, . . . , n. Note that, if such a partition exists, each subset Aj contains
exactly 3 indexes.

Given an instance of the 3-partition problem, we now define the correspond-
ing instance of our cross docking problem. There are 3n incoming trucks, 4n
outgoing trucks (3n of the first type, n of the second type) and two product
types. The supplies and demands are the following:

ai1 = 1, i = 1, . . . , 3n,
ai2 = 2n+ ri, i = 1, . . . , 3n,
bi1 = 1, i = 1, . . . , 3n,
bi2 = 0, i = 1, . . . , 3n,
bi1 = 0, i = 3n+ 1, . . . , 4n,
bi2 = 6n+B, i = 3n+ 1, . . . , 4n.

Proposition 2. There exists a 3-partition if and only if there is a solution
to the corresponding instance of the cross docking problem in which at most n
product units are unloaded to storage.

Proof. Necessity. Suppose that there exists a 3-partition {A1, A2, . . . , An},
where Aj = {ij1, ij2, ij3}. Then, the trucks are sequenced in n groups. Group
j, 1 ≤ j ≤ n, includes set Aj of incoming trucks and outgoing trucks O2j−1,
O2j and O3n+j . The departure sequence of group j is the following

O2j−1 → Iij1 → Iij2 → O3n+j → Iij3 → O2j .

As rij1 + rij2 + rij3 = B, the incoming trucks unload 6n + B units of product
type 2 directly to truck O3n+j , Iij1 unloads one unit of product type 1 directly

7

to O2j−1, and Iij3 unloads one unit of product type 1 directly to O2j . Only
one unit of product type 1 is unloaded to the storage from Iij2 . This product
flow is represented in Figure 3. As there are n groups, n product units in total
are unloaded to the storage and then loaded to outgoing trucks O2n+1, . . . , O3n,
which are sequenced at the end.

Iij1 Iij2 Iij3

O2j−1 O3n+j O2j

r
i
j
1

+
2
n

r
i
j
2

+
2
n

r
i
j
3

+
2
n

1 1

storage

1

Figure 3: Product flow within group j of trucks

Sufficiency. Suppose now there is a solution in which at most n products
are unloaded to the storage. Then, every outgoing truck Oo of type 2, i.e.
o = 3n + 1, . . . , 4n, must be loaded with product units directly from at least
three incoming trucks. Otherwise it would be loaded with at least 2n units of
product type 2 from the storage. Therefore, when an outgoing truck of type 2
loads product units directly from its second incoming truck, one unit of product
type 1 is unloaded to the storage. Thus, the number of product units of type
1 unloaded to the storage is exactly n. Consequently, in the sequence, between
two outgoing trucks of type 2, there should be two trucks of type 1, which
load their products units directly from incoming trucks. This means that each
incoming truck can unload product units of type 2 directly to only one outgoing
truck. We conclude that there should exist a partition of incoming trucks into
triples {A1, A2, . . . , An} such that

∑
i∈Aj

ri = B. Otherwise there would exist
a triple Aj such that rij1 + rij2 + rij3 < B, and the outgoing truck which is
loaded from the incoming trucks in Aj would need to be loaded with at least
one unit of product type 2 from the storage.

4 Special case with fixed subsequences

Let the subsequences of incoming and outgoing trucks be fixed. For convenience,
we renumber incoming and outgoing trucks according to these subsequences:

I1 → I2 → · · · → In and O1 → O2 → · · · → Om

8

To our knowledge, the complexity of this special case, introduced in [9], is not
known. Here we propose a polynomial dynamic programming algorithm for it.

In the rest of the paper, we will use an equivalent objective which is the
maximization of the total cost of product units unloaded directly to an outgoing
truck. The equivalence between two objective functions can be seen from the
fact that the total costs of product units unloaded to storage and unloaded
directly to an outgoing truck sum up to a constant.

4.1 Preliminary observations

For each departure sequence of trucks we define the unique direct first product
flow: each time trucks Ii and Oo are at the doors, for each t ∈ T , Ii unloads
directly to Oo as many units of product type t as possible, i.e. the minimum
between the number of units of product type t still available in Ii and the number
of units of product type t which are still demanded by Oo.

The following important fact serves as the base for the algorithm.

Proposition 3. There exists an optimal solution with a direct first product flow.

Proof. Suppose, in an optimal solution, the product flow is not direct first.
Then, let (Ii, Oo) be the first pair of trucks at the doors at the same time, such
that u units of a product type t can be unloaded from Ii directly to Oo but
they are “saved” for consequent outgoing truck(s). Then these u units have
to be loaded to Oo from storage. In the modified product flow, these u units
are unloaded directly from Ii to Oo. Outgoing truck(s), loaded with these u
units directly from Ii in the original product flow, replace these units by ones
from storage in the modified flow. The cost of the modified solution does not
increase.

Applying this modification a finite number of times, we obtain an optimal
solution with a direct first product flow.

By Proposition 3, the search for an optimum solution can be limited to the
set of direct first product flows. By definition, each direct first product flow is
characterized by the departure sequence of trucks.

Note that some departure sequences are infeasible. First, when outgoing
truck Oo departs, it is loaded with the missing product units from the storage.
Suppose that incoming truck Ii is at the door. Then, there are enough product
units in storage to complete the demand of Oo if and only if

∀t ∈ T,
i∑

k=1

akt ≥
o∑

j=1

bjt. (16)

For a given ī, let lo(̄i) be the maximum index o such that (16) is satisfied.
Second, when incoming truck Ii departs, it unloads to storage the product

units which were not unloaded directly to outgoing trucks. Suppose that out-
going truck Oo is at the door. Then, there is enough capacity in the storage to

9

receive the surplus of Ii if and only if

T∑
t=1

max

0,

i∑
k=1

akt −
o∑

j=1

bjt

 ≤ D. (17)

For a given ō, let li(ō) be the maximum index i such that (17) is satisfied.
In the following, we present a dynamic programming algorithm which finds

a feasible departure sequence of trucks which leads to an optimal direct first
product flow.

4.2 Dynamic programming states

In our dynamic programming algorithm, there are two sets of states: Sout and
Sin.

Consider the set of the following partial departure sequences of trucks:

. . . , Oo−1, Ii. (18)

Such sequences create the situation in which truck Ii has departed, truck Ii+1

is going to arrive, and truck Oo, which arrived after the departure of truck
Ii−1, is now at the shipping door. This means that Oo can be loaded with
product units only from truck Ii (at the moment of departure of Ii). In a state
Sout(i, o, {ft}t∈To

), which corresponds to this situation, Oo is loaded with ft
units of product type t directly from Ii.

Consider the set of the following partial departure sequences of trucks:

. . . , Ii−1, Oo. (19)

Such sequences create the situation in which truck Oo has departed, truck Oo+1

is going to arrive, and truck Ii, which arrived after the departure of truck Oo−1,
is at the shipping door. This means that (at the moment of departure of Oo)
Ii could unload product units only to Oo. In a state Sin(i, o, {ft}t∈To

), which
corresponds to this situation, Ii unloads ft units of product type t directly to
Oo.

To simplify the presentation, when there is no ambiguity, we will use the
shortened notations Sin(i, o, f), Sout(i, o, f).

A move from a state Sin(i, o, f) can be done only to a state Sout(i, o′, f ′),
o′ > o. Such a move corresponds to the continuation

Oo+1, . . . , Oo′−1, Ii

of one of partial departure sequences (19). Under the direct first product flow
assumption, vector f ′ and the cost of such a move can be uniquely determined,
i.e. they depend only on i, o, f , and o′:

f ′t = min

bo′t, max

0, ait − f̃t −
o′−1∑

j=o+1

bjt

 , ∀t ∈ To′ , (20)

10

where

f̃t =

{
ft, t ∈ To,
0, t 6∈ To,

and the cost equals to

∑
t∈T

ct ·min

ait − f̃t,
o′∑

j=o+1

bjt

 . (21)

A move from a state Sout(i, o, f) can be done only to a state Sin(i′, o, f ′),
i′ > i. Such a move corresponds to the continuation

Ii+1, . . . , Ii′−1, Oo

of one of partial departure sequences (18). Under the direct first product flow
assumption, vector f ′ and the cost of such a move can be uniquely determined,
i.e. they depend only on i, o, f , and i′:

f ′t = min

ai′t, max

0, bot − ft −
i′−1∑

k=i+1

akt

 , ∀t ∈ To, (22)

and the cost equals to

∑
t∈To

ct ·min

bot − ft,
i′∑

k=i+1

akt

 . (23)

Remark 1. One could think of using simpler two-parameter dynamic pro-
gramming states Sin(i, o) and Sout(i, o). However, these two parameters do not
suffice to fully describe the situation. For a state Sin(i, o), we can calculate
the total number of units of each product type in incoming truck Ii and in
the storage area, but we cannot uniquely determine the distribution of product
units between truck Ii and storage. The similar observation holds for a state
Sout(i, o). The following example illustrates this observation in details.

Consider two partial departure sequences of trucks:

I1 → O1 → I2 → I3 → O2 → I4 → O3, (24)

I1 → O1 → I2 → O2 → I3 → I4 → O3. (25)

These sequences create the situation which corresponds to two-parameter state
Sin(5, 3).

We will denote u units of product type t as u(t). Let incoming truck I1
supplies 3(1) and 3(2), I2 supplies 2(1) and 2(2), I3 supplies 3(3), I4 supplies 3(2),
I5 supplies 5(3). Let also each outgoing truck Oo, o = 1, 2, 3, demands 5(o). In
Figure 4, we represent direct first product flows which correspond to the both
partial departure sequences. Let c2 = 1 and c3 = 2. Sequence (24) creates

11

the situation which corresponds to three-parameter state Sin(5, 3, {5}) with
partial cost 9 and nothing left in I5. Sequence (25) creates the situation which
corresponds to three-parameter state Sin(5, 3, {2}) with partial cost 6. This cost
can be potentially increased by 6 because of 3 units of product type 3 left in I5,
as later they may be unloaded directly to an outgoing truck. Therefore, non of
the states Sin(5, 3, {5}) and Sin(5, 3, {2}) is dominated, which shows that the
use of two-parameter states does not permit one to find an optimal departure
sequence of trucks.

I1 I2 I3 I4 I5

O1 O2 O3

3(1) 2(1) 2(2) 3(2) 5(3)storage
3(2)

3(3)

I1 I2 I3 I4 I5

O1 O2 O3

3(1) 2(1) 2(2) 3(3) 2(3)storage
3(2)

3(2)

3(2)

Figure 4: Direct first product flows which correspond to partial departure se-
quences (24) and (25)

To clarify the presentation, we show in Figure 5 the underlying directed
graph of the dynamic programming algorithm. Each “square node” (i, o) col-
lects set of states Sout(i, o, f). Each “circle node” (i, o) collects set of states
Sin(i, o, f). The path shown in Figure 5 corresponds to departure sequence

I1 → I2 → I3 → O1 → O2 → I4 → O3 → O4 → I5 →

→ I6 → · · · → In−1 → O6 → · · · → Om−1 → In → Om.

Recall that, for each feasible departure sequence, there are many possi-
ble product flows, each of which corresponds to a different sequence of three-
parameters states or a states path. Exactly one of these product flows is direct
first. The states path this direct flow product flow corresponds to we will call
direct first path. The cost of such a path can be computed using formulae (21)
and (23). In the following, we will use the same notation P for a product flow
and the states path which corresponds to it. A direct first state is a state which
is contained in at least one direct first path.

By inequalities (16) and (17),

12

outgoing trucks

in
co

m
in

g
tr

u
ck

s
1 2 3 4 5 6 m· · ·

1

2

3

4

5

6

n

...
...

...
...

...
...

...
...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

(1, 1)

(4, 1)

(4, 3)

(5, 3)

(5, 5)

(n, 6)

(n,m)

Figure 5: The underlying directed graph for the dynamic programming algo-
rithm

• a direct first state Sout(i, o, f) is feasible if and only if i ≤ li(o) and
o− 1 ≤ lo(i);
• a direct first state Sin(i, o, f) is feasible if and only if i − 1 ≤ li(o) and
o ≤ lo(i).

A possible situation of infeasible direct first states is shown in Figure 5. Sets of
infeasible direct first states are shown as black nodes.

For each direct first state Sout(i, o, f) and Sin(i, o, f), we keep and update
the objective function value of the best direct first path to this state. Let
V out(i, o, f) and V in(i, o, f) be these values. To solve the problem, we need to
find the best direct first path terminating at a state Sout(n,m, f) or Sin(n,m, f).

In a state Sout(i, o, f) or Sin(i, o, f), by definition, we have

0 ≤ ft ≤ min{ait, bot}, ∀t ∈ To.

Let AB = maxi,o,t min{ait, bot}, then the overall number of states |S| can be

13

estimated as

|S| =
n∑

i=1

m∑
o=1

∏
t∈To

(
min{ait, bot}+ 1

)
= O(nm ·ABq),

as q = maxm
o=1 |To|. This number is pseudopolynomial if q is fixed, and expo-

nential otherwise. Now we are going to prove that the number of direct first
states is polynomial.

For this, we will need some additional notations. Let Pout(i, o, f) and
Pin(i, o, f) be the sets of paths which contain states Sout(i, o, f) and Sin(i, o, f)
respectively.

Lemma 1.

1. For any two direct first paths P ′ ∈ Pout(i, o, f ′) and P ′′ ∈ Pout(i, o, f ′′),
f ′ 6= f ′′, if, for some type t′ ∈ To, f ′t′ < f ′′t′ , then f ′t ≤ f ′′t for all types
t ∈ To.

2. Analogously, for any two direct first paths P ′ ∈ Pin(i, o, f ′) and P ′′ ∈
Pin(i, o, f ′′), f ′ 6= f ′′, if, for some type t′ ∈ To, f ′t′ < f ′′t′ , then f ′t ≤ f ′′t for
all types t ∈ To.

Proof. We will prove this lemma by induction.
Suppose that claim 2 of the lemma is true for i = i∗ and for any o < o∗.

We will prove claim 1 of the lemma for i = i∗ and o = o∗. Without loss of
generality, let P ′ ∈ Pin(i∗, o′, f̄ ′), o′ < o∗, and P ′′ ∈ Pin(i∗, o′′, f̄ ′′), o′′ < o∗.

As f ′t′ < f ′′t′ , in product flow P ′, truck Ii∗ unloads directly to Oo∗ less units
of product type t′ than in product flow P ′′. Therefore, Ii∗ transfers directly to
trucks Oo, o′ ≤ o < o∗, more units of product type t′ in product flow P ′ than
to trucks Oo, o′′ ≤ o < o∗, in product flow P ′′. As P ′ and P ′′ are direct first
product flows, there are two possible cases:

• o′ = o′′ and f̄ ′t′ > f̄ ′′t′ . Then, as P ′ ∈ Pin(i∗, o′, f̄ ′) and P ′′ ∈ Pin(i∗, o′, f̄ ′′),
by induction, f̄ ′t ≥ f̄ ′′t for all types t ∈ To′ .

• o′ < o′′.

In both cases, for every t ∈ To∗ , truck Ii∗ cannot not transfer less units of
product type t to all trucks Oo, o′ ≤ o < o∗, in product flow P ′, than to all
trucks Oo, o′′ ≤ o < o∗, in product flow P ′′, as the both product flows are direct
first. Therefore, f ′t ≤ f ′′t for all t ∈ To∗ .

Analogously, if we suppose that claim 1 is true for all i < i∗ and for o = o∗,
we can prove claim 2 for i = i∗ and o = o∗.

As the base of the induction for claim 1 we can take the case i∗ = 2. In this
case, we can only have o′ < o′′, as, for any fixed o∗, there is only one direct first
path which contains a state Sin(2, o∗, f).

Analogously, as the base of the induction of claim 2, we can take the case
o∗ = 2.

14

Proposition 4. The overall number of direct first states is O(qnmmin{n,m}).

Proof. In a state Sout(i, o, f) or Sin(i, o, f), we will call a value ft, t ∈ To,
canonical, if it is at its bounds: ft = 0 or ft = min{ait, bot}.

Consider set Pout(i, o, f) of direct first product flows. Any such product
flow is in Pin(i′, o, f ′) for some i′ > i, where f ′ is computed according to (22).
Suppose that 0 < f ′t < min{ai′t, bot} for a product type t ∈ To. As the product
flow is direct first, this can happen only if Oo becomes full for units of product
type t when receiving product units from Ii′ . Therefore, Oo cannot be loaded
with units of product type t directly from subsequent incoming trucks. We
conclude that, for a each product type t ∈ To, there is at most one direct first
path in Pout(i, o, f) which contains a state Sin(i′, o, f ′), i′ > i, with a non-
canonical value f ′t .

Consider now set Pin(i, o, f) of direct first product flows. Any such product
flow is in Pout(i, o′, f ′) for some o′ > o, where f ′ is computed according to (20).
Suppose that 0 < f ′t < min{ait, bo′t} for a product type t ∈ To. As the product
flow is direct first, this can happen only if Ii unloads directly to Oo′ all available
units of product type t. Therefore, Ii cannot unload any more units of product
type t directly to subsequent outgoing trucks. We conclude that, for a each
product type t ∈ To, there is at most one direct first path in Pin(i, o, f) which
contains a state Sout(i, o′, f ′), o′ > o, with a non-canonical value f ′t .

We can say that, each canonical value ft, t ∈ To, in a direct first state
Sout(i, o, f) “begets” at most one non-canonical value f ′t in a direct first state
Sin(i′, o, f ′), i′ > i, which itself can beget one non-canonical value f ′′t in a
direct first state Sout(i′, o′′, f ′′), o′′ > o, and so on. Thus, each canonical value
ft, t ∈ To, in a direct first state Sout(i, o, f) “begets” at most 2 ·min{n,m} non-
canonical values in all states. The same holds for each canonical value ft, t ∈ To,
in a direct first state Sin(i, o, f). Therefore, for fixed i∗ and o∗, in all states
Sin/out(i∗, o∗, t), all canonical values ft, t ∈ To∗ , “beget” O(qmin{n,m}) non-
canonical values in all states. Consequently, the total number of non-canonical
values ft for all product types in all states isO(qnm·min{n,m}). This dominates
the total number of canonical values which is O(qnm).

We fix again values i∗ and o∗, and define the following lexicographic order
for direct first states Sout(i∗, o∗, f). State Sout(i∗, o∗, f ′) is lexicographically
smaller than state Sout(i∗, o∗, f ′′), f ′′ 6= f ′, if and only if f ′t ≤ f ′′t for all t ∈ To∗ .
It is always possible to compare in this way two direct first states, as we cannot
have f ′t′ < f ′′t′ and f ′t′′ > f ′′t′′ for any two types t′, t′′ ∈ To∗ by Lemma 1.

In order to pass from a state Sout(i∗, o∗, f) to the lexicographically next
state, at least one of values ft, t ∈ To∗ , should be increased. Therefore, the total
number of direct first states Sout(i∗, o∗, f) does not exceed the total number of
values ft for all product types t ∈ To∗ . Analogously, the same holds for the
direct first states Sin(i∗, o∗, f).

Consequently, the total number of direct first states does not exceed the total
number of values ft for all product types in all states, i.e. O(qnm ·min{n,m}).

15

4.3 The algorithm

Given the description of the states, the dynamic programming algorithm is
straightforward. We consider the direct first states in a topological order. From
each state, we make all possible moves along direct first paths. A complication
consists in the fact that we do not know a priori which states are direct first and
which are not. Therefore, the states are created dynamically. Each time we move
to a state Sin/out(i, o, f), we verify whether this state has been visited before.
If yes, we retrieve it and update the corresponding best value V in/out(i, o, f). If
not, we create the state and store the best value.

We now estimate the complexity (denoted as ρ) of checking whether a state
has been created. Given fixed values i∗ and o∗, for each t ∈ To∗ , the number of
different values ft in states Sin/out(i∗, o∗, f) is O(nm), as each canonical value ft
in other states “begets” at most one value ft in states Sin/out(i∗, o∗, f). Similarly
to the proof of Proposition 4, it can be then shown that the number of direct
first states Sin/out(i∗, o∗, f) is O(qnm). As these states can be lexicographically
ordered, the storage and the search of these states can be done using a binary
tree. The lexicographic comparison between two states can be done inO(q) time.
Therefore, to check whether a state Sin/out(i, o, f), has been already created and
retrieve the best value for it, we need ρ = O

(
q log(qnm)

)
operations.

Recall that from a state Sin(i, o, f) it is only possible to move to a state
Sout(i, o′, f ′), where o < o′ ≤ lo(i) + 1. When we make such a move, truck Ii
transfers directly to every truck Oj , o < j ≤ o′, as much products as possible.

The formal procedure for making moves from a state Sin(i, o, f) is presented
in Algorithm 1. The complexity of this procedure is O

(
m(q + ρ)

)
.

1 for t = 1 to T do r[t]← ait;
2 for t ∈ To do r[t]← ait − ft;
3 v← V in(i, o, f);
4 for j← o+ 1 to lo(i) + 1 do
5 for t ∈ Tj do
6 dt[t]← min{r[t], bjt};
7 v← v + ct · dt[t];
8 if i ≤ li(j) then
9 if state Sout(i, j, {dt[t]}t∈Tj) does not exist then

10 create it: V out(i, j, {dt[t]}t∈Tj)← −∞;

11 if v > V out(i, j, {dt[t]}t∈Tj) then

12 V out(i, j, {dt[t]}t∈Tj)← v;

13 for t ∈ Tj do r[t]← r[t]− dt[t];

Algorithm 1: Algorithm to make moves from a state Sin(i, o, f).

From a state Sout(i, o, f) it is only possible to move to a state Sin(i′, o, f ′),
where i < i′ ≤ li(o) + 1. When we make such a move, truck Oo receives directly

16

from every truck Ik, i < k ≤ i′, as much products as possible.
The formal procedure for making moves from a state Sin(i, o, f) is presented

in Algorithm 2. The complexity of this procedure is O
(
n(q + ρ)

)
.

1 for t ∈ To do r[t]← ft;
2 v← V out(i, o, f);
3 for k← i+ 1 to li(o) + 1 do
4 for t ∈ To do
5 dt[t]← min{bot − r[t], akt};
6 v← v + ct · dt[t];
7 if o ≤ lo(k) then
8 if state Sin(k, o, {dt[t]}t∈To

) does not exist then
9 create it: V in(k, o, {dt[t]}t∈To

)← −∞;

10 if v > V in(k, o, {dt[t]}t∈To
) then

11 V in(k, o, {dt[t]}t∈To)← v;

12 for t ∈ To do r[t]← r[t] + dt[t];

Algorithm 2: Algorithm to make moves from a state Sout(i, o, f).

In the complete procedure, presented as Algorithm 3, we look through all
the created states and make all possible moves from them as described above.
To obtain an optimum product flow, it suffices to store, for each state, along the
value V , the previous state on the path which gives this value. At the end of the
algorithm, the best path and the corresponding product flow can be obtained
by backtracking from the state which gives the best solution.

1 for t ∈ T1 do dt[t]← min{a1t, b1t};
2 v←∑

t∈T1
ct · dt[t];

3 V in(1, 1, {dt[t]}t∈T1
)← v;

4 V out(1, 1, {dt[t]}t∈T1
)← v;

5 for i← 1 to n do
6 for o← 1 to m do
7 run Algorithm 1 for all created states Sin(i, o, f);

8 for o← 1 to m do
9 run Algorithm 2 for all created states Sout(i, o, f);

10 return max
{
V out(n,m, f), V in(n,m, f)

}
Algorithm 3: The full algorithm

Proposition 5. The complexity of the dynamic programming algorithm is
O
(
q2nm ·min{n,m} · (n+m) · log(qnm)

)
.

Proof. To obtain the complexity Calg of the algorithm, it suffices, for each group

17

of states Sout and Sin, to multiply the number of direct first states by the
complexity of the procedure which makes all the moves from a state:

Calg =
(
O(n(q + ρ)) +O(m(q + ρ))

)
·O(qnm ·min{n,m})

= O
(
q2nm ·min{n,m} · (n+m) · log(qnm)

)
.

Finally, we present a dominance rule which speeds up the algorithm. It
is quite easy to see that state Sout(i, o, f ′) dominates state Sout(i, o, f ′′) if
f ′t ≤ f ′′t , ∀t ∈ To, and V out(i, o, f ′) ≥ V out(i, o, f ′′). Indeed, when we are
in state Sout(i, o, f ′), for each product type t, more units can be potentially
unloaded directly to an outgoing truck, and the total cost of the product units
already unloaded directly to an outgoing truck is larger. The same holds for
states Sin. In practice, making moves only from non-dominates states decreases
significantly the running time of the algorithm.

4.4 Numerical tests

We have tested our dynamic programming algorithm on randomly generated
instances of the following sizes:

n = 100, 200, 400
m = 100, 200, 400
|T | = 5, 10, 20
q = 1, 2, 4

In all test instances, all data are integer, and the capacity of the temporary
storage is infinite. Two types of instances were generated.

In the instances of type 1, values ct are uniformly distributed in interval
[1, 10], and values ait are uniformly distributed in interval [0, amax], where
amax = 100. We fix this parameter, as preliminary experiments showed that
the computation time of the algorithm weakly depends on amax: if amax is
multiplied by 100, computation time increases only by 10%.

In the instances of type 2, product types are divided into three equal groupes:
with small, medium and large product units. Number of product types in each
group is almost equal. Values ct and ait are generated in the following way:

small product units ait ∈ [0, 5] ct ∈ [25, 100]
medium product units ait ∈ [5, 25] ct ∈ [5, 25]
big product units ait ∈ [25, 100] ct ∈ [1, 5]

In the instances of both types, values bot were generated in such a way that,
for each o, at most q values are non-zero and condition (1) is satisfied. Let bavt
be the average value for bot:

bavt =

∑n
i=1 ait

m · q/|T | .

18

m = 100 m = 200 m = 400
|S| RT |S| RT |S| RT

n = 100 24.2 0.03 58.0 0.10 125.4 0.26
n = 200 49.5 0.09 121.8 0.26 269.9 0.73
n = 400 97.9 0.26 242.4 0.74 554.2 2.20

Table 1: Numerical results for different number of incoming and outgoing trucks

|T | = 5 |T | = 10 |T | = 20
|S| RT |S| RT |S| RT

q = 1 119.6 0.31 100.2 0.27 70.6 0.19
q = 2 174.0 0.48 168.5 0.48 141.8 0.46
q = 4 236.4 0.70 270.7 0.88 261.4 0.92

Table 2: Numerical results for different number of types and different values q

Then, for each t, values bot, which are randomly chosen to be non-zero, are uni-
formly distributed in range

[
1
3b

av
t , 53b

av
t

]
, and slightly adjusted to satisfy equal-

ities (1).
For each quadruple of parameters (n,m, |T |, q) and each instance type, 10

instances were generated. Thus, the total number of generated instances is 1620.
The algorithm was implemented using the programming language C++. The

experiments were done on a portable computer with an Intel Core i7 2.0 GHz
processor using a single thread (no parallelization) and 8Gb of Ram.

Computational results showed that both the number of created states and
the solution time for the instances of different types are similar. These statistics
are 10% larger for the instances of type 1. This shows that instances in which the
costs of product types depend on their size are not harder than “non-correlated”
instances.

Results for different instance sizes are presented in Tables 1 and 2. Here |S|
is the number of created states, and RT is the running time in seconds. Each
number in these tables is aggregate for 180 instances with the same characteris-
tics: either with the same number of incoming and outgoing trucks in Table 1,
or with the same number of types and the same value q in Table 2. These results
show that the dynamic programming algorithm is very fast for the generated
test instances. Moreover, it scales well: multiplication of parameter n or m by
two increases the running time only by a factor of three, and multiplication of
parameter q by two at most doubles the running time. Dependence on parame-
ter |T | is more complex, as the theoretical complexity of the algorithm does not
depend on it. When parameter q is small, increasing |T | decreases the running
time, while the latter does not much depend on |T | when q = 4. The easiest
instances are those with a large ratio |T |/q. In this case, for a fixed product
type, few trucks demand units of this type, i.e. there are less decisions to make.

19

5 Conclusion

In this paper, we considered the truck scheduling problem at a cross docking
terminal with two doors and the objective of minimizing the storage cost. We
showed that even a quite restricted version of this problem in NP-hard in the
strong sense. Also, we presented a polynomial dynamic programming algo-
rithm for the special case of the problem with fixed subsequences of incoming
and outgoing trucks. This algorithm allows us to determine the computational
complexity of this special case for the first time.

Numerical tests showed that the dynamic programming algorithm is very
fast for generated test instances with up to 400 incoming and 400 outgoing
trucks, 20 product types and q = 4. Also, it scales well when increasing the
instance size.

The contribution of the paper is mainly theoretical. However, some practical
interest in the dynamic programming algorithm comes from its potential use in
heuristics, in which the search neighbourhood is defined in terms of the truck
sequences. Thus, an important direction for a future research is to try to extend
the dynamic programming algorithm proposed here to more practical situations.
The most natural extension concerns the case with multiple doors. Here the
truck sequence should include not only departures but also arrivals of trucks.
An open question is whether the special case with fixed incoming and outgoing
truck sequences of the multiple doors problem is still polynomial or not.

The general case, in which the sequence of trucks is a part of the decision,
is also worthy of investigation. Note that the “direct first” property is valid for
the general case. If one finds additional structural properties of the problem,
this will contribute to development of an efficient exact enumeration-based algo-
rithm for the problem and its more realistic extensions (multiple doors, different
arriving times and departures due dates of trucks).

Acknowledgement

The author would like to thank all the referees for the constructive remarks
which allowed him to significantly improve the presentation of the paper.

References

[1] Uday M. Apte and S. Viswanathan. Effective cross docking for improving
distribution efficiencies. International Journal of Logistics Research and
Applications, 3(3):291–302, 2000.

[2] A. Boloori Arabani, S. Fatemi Ghomi, and M. Zandieh. A multi-criteria
cross-docking scheduling with just-in-time approach. The International
Journal of Advanced Manufacturing Technology, 49:741–756, 2010.

[3] Nils Boysen and Malte Fliedner. Cross dock scheduling: Classification,
literature review and research agenda. Omega, 38(6):413 – 422, 2010.

20

[4] Nils Boysen, Malte Fliedner, and Armin Scholl. Scheduling inbound and
outbound trucks at cross docking terminals. OR Spectrum, 32:135–161,
2010.

[5] Dirk Briskorn and Joseph Leung. Branch and bound algorithms for min-
imizing maximum lateness of trucks at a transshipment terminal. Opti-
mization Online, 2677, 2010.

[6] Feng Chen and Chung-Yee Lee. Minimizing the makespan in a two-machine
cross-docking flow shop problem. European Journal of Operational Re-
search, 193(1):59 – 72, 2009.

[7] S. Forouharfard and M. Zandieh. An imperialist competitive algorithm to
schedule of receiving and shipping trucks in cross-docking systems. The In-
ternational Journal of Advanced Manufacturing Technology, 51:1179–1193,
2010.

[8] Rim Larbi, Gülgün Alpan, Pierre Baptiste, and Bernard Penz. Scheduling
cross docking operations under full, partial and no information on inbound
arrivals. Computers and Operations Research, 38(6):889 – 900, 2011.

[9] Mohammad Yousef Maknoon, Pierre Baptiste, and Oumar Kone. Optimal
loading and unloading policy in cross docking platform. In Proceedings of
13th IFAC Symposium on Information Control Problems in Manufacturing,
pages 1263–1268, Moscow, Russia, June 2009.

[10] Ruslan Sadykov. A polynomial algorithm for a simple scheduling problem
at cross docking terminals. Research Report RR-7054, INRIA, 2009.

[11] Wooyeon Yu and Pius J. Egbelu. Scheduling of inbound and outbound
trucks in cross docking systems with temporary storage. European Journal
of Operational Research, 184(1):377 – 396, 2008.

21

