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Abstract

This paper is about scheduling parallel jobs, i.e. which can be executed

on more than one machine at the same time. Malleable jobs is a special

class of parallel jobs. The number of machines a malleable job is executed

on may change during its execution.

In this work, we consider the NP-hard problem of scheduling malleable

jobs to minimize the total weighted completion time (or mean weighted

flow time). For this problem, we introduce the class of “ascending” sched-

ules in which, for each job, the number of machines assigned to it cannot

decrease over time while this job is being processed.

We prove that, under a natural assumption on the processing time

functions of jobs, the set of ascending schedules is dominant for the prob-

lem. This result can be used to reduce the search space while looking for

an optimal solution.

Keywords: combinatorial optimization; parallel scheduling; total com-

pletion time; malleable jobs.
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1 Introduction

With the emergence of new production, communication and parallel computing

system, the usual scheduling requirement that a job is executed only on one pro-

cessor has become, in many cases, obsolete and unfounded. Therefore, parallel

jobs scheduling is becoming more and more widespread.

The malleable jobs is a special class of the parallel jobs. The number of

processors assigned to a malleable job may change during its execution. For

an overview of malleable jobs scheduling, we refer to [5], [6], and [9], for an

application in parallel optimization, to [1], and for an application in textile

industry to [13]. Rapine et al. [12] considered on-line scheduling of malleable

jobs.

Recently, Blazewicz et al. [2] studied the problem of scheduling malleable

jobs to minimize the makespan. They presented the procedure which converts

an optimal solution for the relaxed problem, in which the number of processors

allocated to a task is not required to be integer, into an optimal solution for

the original problem in O(n) time. Caramia and Drozdowski [4] considered the

problem of scheduling malleable jobs with special processing time functions to

minimize the total completion time. They showed that, once the order in which

jobs are completed is fixed, an optimal schedule can be determined in polynomial

time by solving a linear program. Another polynomial algorithm was presented

for a restricted case with agreeable jobs. In the general, not agreeable case, this

algorithm becomes an approximation algorithm with performance ratio at most

2.

We now define the problem which we consider in this paper. A set N =

{1, . . . , n} of preemptive jobs should be processed on a set M = {1, . . . ,m} of

identical machines. pj(q) is the processing time of a job j if executed continu-

ously on q machines, 1 ≤ q ≤ m. For presentation purposes, we set pj(0) =∞.
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δj is the maximum number of machines job j can occupy at any time moment.

Any schedule π is a sequence of a set K(π) of intervals in which the number

of machines assigned to each job does not change. For an interval Il ∈ K(π) we

denote as dl(π) its length, and as qlj(π) the number of machines occupied by

job j in Il, qlj(π) ≤ δj . Let Hj(π) be the processed part of job j in this schedule:

Hj(π) =
∑

Il∈K(π)

dl(π)

pj(qlj(π))
, (1)

where dl(π)/pj(0) = 0 for any Il ∈ K(π) and any j ∈ N . In a feasible schedule

π, we should have Hj(π) = 1 for any job j.

We denote by Cj(π) the completion time of job j in schedule π. The objective

is to find a schedule π which minimizes the total weighted completion time

F (π) =
∑
j∈N

wjCj(π). (2)

Note that function (2) is equivalent to the mean weighted flow time, as all the

jobs available for processing from time 0. In the standard scheduling notation,

the problem is denoted as P |var, δj |
∑
wjCj , see [5].

The problem we consider is a generalisation of the problem to schedule

preemptive non-parallel jobs (δj = 1, ∀j ∈ N) on identical parallel machines

to minimize the total weighted completion time, denoted as P |pmtn|
∑
wjCj .

McNaughton [10] showed that there is always an optimal schedule without pre-

emption, i.e. this problem is equivalent to P ||
∑
wjCj . As the latter problem

is NP-hard in the strong sense, see problem SS13 in Garey and Johnson [7], our

problem is also NP-hard in the strong sense.

The contribution of this paper is an important dominance rule for the prob-

lem. We will show that, under a natural assumption, there exists an optimal

schedule in which, for each job, the number of processors assigned to it does not

4



decrease over time while this job is being processed. We say that such schedules

have the ascending property. This result can be used to reduce the search for

an optimal schedule of the problem to this class of dominant schedules.

The structure of the paper is the following. The result is proved in Section 2.

In subsection 2.1, we present the construction of a family of schedules for a

given schedule. This construction will be used to prove the dominance rule. In

subsection 2.2, the assumption is introduced. Subsection 2.3 contains the main

theorem which proves the result. Conclusions are drawn in Section 3.

2 Ascending property

We first introduce some definitions.

Definition 1. A piece of a job within a given schedule is a maximal non-

preemptive part of it processed on one machine.

The completion and starting time of a piece u of a job j in a schedule π will

be denoted as Cuj (π) and Suj (π). When there is no ambiguity, we will use just

Cuj and Suj . The completion time Cj(π) of a job j in a schedule π is equal to

the maximum completion time for all pieces of job j.

Definition 2. A piece of a job in a schedule is terminal if its completion time

is equal to the completion time of the job it belongs to. A non-terminal piece

is early.

Definition 3. A schedule is ascending (or has the ascending property) if it

does not contain early pieces (all its pieces are terminal). In other worlds, an

ascending schedule does not use preemption.

An illustration of the definitions is presented in Figure 1, where pieces s and

v are early and all other pieces are terminal. Thus, the schedule in Figure 1 is

not ascending.
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Figure 1: Illustration of the definitions

2.1 A family of schedules

We consider a non-ascending feasible schedule π. Then, there is an early piece

in π. Let s be an early piece with the latest completion time among all early

pieces of π, and let a be the corresponding job. See an example in Figure 1.

Also, for a job j ∈ N , let Vj be the set of pieces of job j completed strictly after

Csa(π) in π, and let Uj be the set of pieces of j started at Csa(π) or after and

completed strictly after Csa(π) in π, Uj ⊆ Vj . Note that, by the choice of piece

s, the pieces in Vj are terminal in π for any job j ∈ N . We denote as |Vj | and

|Uj | the number of jobs in Vj and Uj .

We will now construct a family of schedules π(ε). Basically, in each schedule

π(ε), the length of piece s of job a is changed by ε ∈ R, and this change

is “compensated” by a change of the completion and starting times of other

pieces. This transformation is carried out in such a way that

(i) the starting time of each piece is not larger than its completion time,

(ii) if two pieces of a same job do not overlap in π then, in π(ε), they also do

not overlap or one piece immediately precedes the other,

(iii) if two pieces of a same job overlap in π then, in π(ε), they also overlap or

one piece immediately precedes the other,

(iv) terminal pieces in π are also terminal in π(ε).
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Figure 2: Job a in schedule π and its changes in schedule π(ε)

A schedule π(ε) which satisfies these conditions will be called admissible.

A formal construction of admissible schedules π(ε) will be now presented. In

π(ε), the starting and completion times of each piece u of each job j are changed

by ∆Suj (ε) and ∆Cuj (ε) with respect to schedule π. In π(ε), the completion time

of each job j are changed by ∆Cj(ε) with respect to schedule π. Note that these

functions can take negative values.

For a fixed ε, values ∆Suj (ε) and ∆Cuj (ε) are computed in the following way.

Value ∆Csa(ε) is equal to ε. For each job j and u 6∈ Uj , ∆Suj (ε) = 0. For each

job j and u 6∈ Vj ∪ {s}, ∆Cuj (ε) = 0. For each job j and each piece u ∈ Uj ,

change ∆Suj (ε) of its starting time is equal to change ∆Cvi (ε) of the completion

time of the piece v of job i which immediately precedes u in π (such piece always

exist, as Suj (π) ≥ Csa(π)).

For each job j and each v ∈ Vj , values ∆Cvj (ε) are equal to ∆Cj(ε) in order

to keep pieces in Vj terminal. For each job j, value ∆Cj(ε) should be taken

in such a way that the processed part Hj(π(ε)) defined in (1) remains equal to

one. Informally speaking, ∆Cj(ε) should “compensate” changes ∆Suj , u ∈ Uj ,

and change ∆Cas if j = a. See an illustration for job a in Figure 2.

We will now introduce additional notations which will allow us to determine
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values ∆Cj(ε). For a job j ∈ N such that Uj 6= ∅ or j = a, let

Iα(ε) = [α−(ε), α+(ε)] =
[

min
t∈A(ε)

t, max
t∈A(ε)

t
]
, where A(ε) =

{
Cas (π), Cas (π) + ε

}
.

Iβj (ε) = [β−j (ε), β+
j (ε)] =

[
min

t∈Bj(ε)
t, max
t∈Bj(ε)

t
]
, where Bj(ε) =

⋃
u∈Uj

{
Suj (π), Suj (π)+∆Suj (ε)

}
.

Iγj (ε) = [γ−j (ε), γ+
j (ε)] =

[
min
t∈Γj(ε)

t, max
t∈Γj(ε)

t
]
, where Γj(ε) =

{
Cj(π), Cj(π)+∆Cj(ε)

}
.

See an illustration of these intervals in Figure 2. If Ua = ∅ then Iβa (ε) = ∅.

We fix a valueM which is greater than the makespan (maximum completion

time) of any schedule without idle time. We can setM =
∑
j∈N max

δj
q=1 pj(q)+

1. Let πα(ε) be the schedule in which the starting and completion times of all

pieces are the same as in π(ε) except that

• pieces in Ua are removed,

• the completion time of all pieces in Va \ Ua is equal to M.

Let πβ(ε) be the schedule in which the starting and completion times of all

pieces are the same as in π(ε) except that, for each piece j ∈ N ,

• pieces which are not in Vj are removed.

• the completion time of all pieces in Vj is equal to M,

Let πγ(ε) be the schedule in which the starting and completion times of all

pieces are the same as in π(ε) except that, for each piece j ∈ N ,

• pieces which are not in Vj are removed.

• the starting time of all pieces in Vj is equal to 0,

Let H
[t−,t+]
j (π) be the processed part of job j ∈ N in interval [t−, t+] in

schedule π. It is formally defined as Hj(π) in (1) except that set K(π) of

intervals is limited to interval [t−, t+]. Thus, Hj(π) = H
[0,M]
j (π).

8



Let also ∆Hj(ε) = Hj(π(ε))−Hj(π), and for a job j ∈ N such that Uj 6= ∅

or j = a, let

∆Zα(ε) = H [α−(ε),α+(ε)]
a (πα(ε))−H [α−(ε),α+(ε)]

a (πα(0)),

∆Zβj (ε) = H
[β−j (ε),β+

j (ε)]

j (πβ(ε))−H [β−j (ε),β+
j (ε)]

j (πβ(0)),

∆Zγj (ε) = H
[γ−j (ε),γ+

j (ε)]

j (πγ(ε))−H [γ−j (ε),γ+
j (ε)]

j (πγ(0)).

If Ua = ∅, then ∆Zβa (ε) = 0. Note that schedule π is equivalent to π(0).

There are three types of changes to do with job a in order to pass from

schedule π(0) to schedule π(ε): change of Csa(π), changes of Sua (π), u ∈ Ua, and

changes of Cva , v ∈ Va. These three changes can be done consecutively, using

two intermediate schedules. Schedule π(ε) is admissible, and thus conditions

(i) and (ii) are satisfied. Therefore, there always exists an order in which these

three types of changes can be made such that

• when performing change ∆Csa(ε), in interval Iα(ε), the assignment of job

a to machines is the same in πα(0) and before the change, and the same

in πα(ε) and after the change;

• when performing changes ∆Sua (ε), u ∈ Ua, in interval Iβ(ε), the assign-

ment of job a to machines is the same in πβ(0) and before the changes,

and the same in πβ(ε) and after the changes;

• when performing changes ∆Cva(ε), v ∈ Va, in interval Iγ(ε), the assign-

ment of job a to machines is the same in πγ(0) and before the changes,

and the same in πγ(ε) and after the changes.

From this reasoning, it follows that

∆Ha(ε) = ∆Zα(ε) + ∆Zβa (ε) + ∆Zγa (ε). (3)
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For jobs j ∈ N , j 6= a and Uj 6= ∅, the reasoning is the same except that

there is no change of Csa(π). Then,

∆Hj(ε) = ∆Zβj (ε) + ∆Zγj (ε), ∀j ∈ N, j 6= a, Uj 6= ∅. (4)

In order to keep schedule π(ε) feasible, ∆Hj(ε) should be equal to 0. From

(1), for each j ∈ N , we have ∆Zγj (ε) = ∆Cj(ε)/pj(|Vj |). Therefore, using (3)

and (4), we have

∆Cuj (ε) =



−pa
(
|Va|

)
·
(
∆Zβj (ε) + ∆Zα(ε)

)
, j = a, u ∈ Va,

ε, j = a, u = s,

−pj
(
|Vj |
)
·∆Zβj (ε), j 6= a, Uj 6= ∅, u ∈ Vj ,

0, otherwise.

(5)

In practice, for a fixed ε, values ∆Suj (ε) and ∆Cuj (ε) should be computed in a

non-decreasing order of values Suj (π) and Cuj (π) in order to avoid cycles in the

computation.

We will now determine values ε, for which schedule π(ε) is admissible. By

condition (i), for each piece, its starting time does not exceed its completion

time:

Suj (π) + ∆Suj (ε) ≤ Cuj (π) + ∆Cuj (ε),

∀j ∈ N, ∀u.
(6)

Let ε1 < 0 be the smallest value and ε1 > 0 be the largest value such that (6)

is satisfied for all ε ∈
[
ε1, ε1

]
.

By condition (ii), if a piece u of j precedes another piece v of j in π, u still
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precedes v in π(ε):

Cuj (π) + ∆Cuj (ε) ≤ Svj (π) + ∆Svj (ε),

∀j ∈ N, ∀u, v : Cuj (π) ≤ Svj (π).
(7)

Let ε2 ≤ 0 be the smallest value and ε2 ≥ 0 be the largest value such that (7)

is satisfied for all ε ∈
[
ε2, ε2

]
.

The condition (iii) concerning two overlapping pieces of a same job in π is

satisfied as long as

Cuj (π) + ∆Cuj (ε) ≥ Svj (π) + ∆Svj (ε),

∀j ∈ N, ∀u, v : Suj (π) ≤ Svj (π) < Cuj (π).
(8)

Let ε3 < 0 be the smallest value and ε3 > 0 be the largest value such that (8)

is satisfied for all ε ∈
[
ε3, ε3

]
.

The condition (iv) is satisfied, i.e. terminal pieces in π remain terminal in

π(ε), as long as

Cuj (π) + ∆Cuj (ε) ≤ Cvj (π) + ∆Cvj (ε),

∀j ∈ N, ∀u, v : u 6∈ Vj , v ∈ Vj .
(9)

Let ε4 < 0 be the smallest value and ε4 > 0 be the largest value such that (9)

is satisfied for all ε ∈
[
ε4, ε4

]
.

Note that ε2 and ε2 can be equal to zero. In this situation, the completion

time of on piece and the starting time of another piece of the same job coincide

in π. Other values ε1, ε3 and ε4 are non-zero because of (6), (8) and (9)

correspondingly and the fact that functions ∆Suj (ε) and ∆Cuj (ε) are continuous.

The continuity follows from (5) and the definition of functions ∆H
[t−,t+]
j and

∆Z.
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Let us denote

ε = max {ε1, ε2, ε3, ε4} ≤ 0 and

ε = min {ε1, ε2, ε3, ε4} ≥ 0.

We can conclude that, as long as ε ∈ [ε, ε], schedule π(ε) is admissible. In-

terval [ε, ε] is not empty, as schedule π(0) is equivalent to π, which is trivially

admissible.

Also, if ε ∈ [ε, ε], schedule π(ε) is feasible, as it satisfies (5), and conditions

(i) and (ii). The latter condition suffices to see that the number of pieces of job

j ∈ N executed simultaneously does not exceed δj , as π(0) is feasible.

Example. To illustrate the family of schedules introduced, we consider an

example for the work preserving case [5], in which, the processing time function

for every job j ∈ N is pj(q) = pj(1)/q. In this case, in any feasible schedule, the

“surface” of each job remains the same, and functions ∆Cj(ε) are computed as

∆Cvj (ε) =



∑
u∈Ua

∆Suj (ε)− ε
|Va|

, j = a and v ∈ Va,

ε, j = a and v = s,∑
u∈Uj

∆Suj (ε)

|Vj |
, j 6= a and v ∈ Vj ,

0, otherwise.

An example of changes ∆S(ε) and ∆C(ε) for a fixed ε = ε = ε1 is illustrated

in Figure 3. There are one early piece of job a and three early pieces of job f

in schedule π = π(0). As the completion time of the early piece of job a is the

largest, this piece is chosen as piece s. Note that, schedule π(−4) has one early

piece less than schedule π(0).
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Figure 3: An example of transformation (ε = ε = ε1 = −4) for the work
preserving case.

2.2 A natural assumption

Suppose that, the processing speed of any job is an non-decreasing and concave

function of the number of processors allocated to this job:

∀j ∈ N, ∀q ∈ {1, . . . , δj−1}, 1

pj(q)
− 1

pj(q − 1)
≥ 1

pj(q + 1)
− 1

pj(q)
≥ 0, (10)

where 1/pj(0) = 0. This assumption can be interpreted as “the more machines

are allocated to a job, the less is the gain in the processing speed of this job”.

Note that the work preserving processing time function mentioned above satis-

fies inequalities (10).

The assumption on the concavity of the processing speed functions is quite

natural and can be encountered in the literature, for example in [3]. Note also

that assumption (10) is related to the monotonous penalty assumption [6, 11].
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The latter assumes that, for any job j ∈ N and for all q ∈ {1, . . . , δj − 1},

pj(q) ≥ pj(q + 1) and q · pj(q) ≤ (q + 1) · pj(q + 1). (11)

The first inequality of (11) is equivalent to the second inequality of (10).

Multiplying the first inequality of (10) by p(q + 1) · p(q), we have

pj(q) ≤ 2 · pj(q + 1)− pj(q + 1) · pj(q)
pj(q − 1)

. (12)

We will now show by induction that the second inequality of (11) follows from

(12). If q = 1 then, from (12), pj(1) ≤ 2 · pj(2), as 1/pj(0) = 0. If q > 1 then,

by induction, (q − 1) · pj(q − 1) ≤ q · pj(q). Using this and (12), we have

pj(q) ≤ 2 · pj(q + 1)− pj(q + 1) · pj(q)
q
q−1 · pj(q)

=
q + 1

q
· p(q + 1).

We have just shown that (10) implies (11). The reverse is not true. For

example, the processing time function such that pj(1) = 8, pj(2) = 6, pj(3) = 4,

satisfies (11) but not (10). Therefore, (10) is a restriction of the monotonous

penalty assumption, but a generalization of the work preserving assumption.

2.3 The main result

Under assumption (10), functions ∆Cuj (ε) have a useful property, as shown in

the next lemmas.

We will need the following notations. By definition, ∆Zα(ε), ∆Zβj (ε), and

∆Suj (ε) are continuous piecewise linear functions of ε. Let now (∆Zα)′(ε) be

a subderivative of function ∆Zα(ε), (∆Zβj )′(ε) be a subderivative of function

∆Zβj (ε), and (∆Suj )′(ε) be a subderivative of function ∆Suj (ε).

Lemma 1. If inequalities (10) hold for j = a then function ∆Zα(ε) is convex
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time

piece s

Csa(π)

ε
0

1
2
3
4

ε3

qs(ε)

Figure 4: Illustration for Lemma 1

in interval [ε, ε].

Proof. Let qs(ε) be the number of machines assigned to job a at time moment

Csa(π) + ε in schedule πα without taking into account the machine where piece

s is processed. See an illustration in Figure 4.

By the definition of ∆Zα(ε), we have

(∆Zα)′(ε) =
1

pa
(
qs(ε) + 1

) − 1

pa
(
qs(ε)

) .
When ε ∈ [ε3,M], function qs(ε) is non-increasing, as in πα, there are no pieces

of job a started in (ε3,M]. Thus, in this interval, (∆Zα)′(ε) is non-decreasing

by (10), and therefore, ∆Zα(ε) is convex in [ε, ε] ⊂ [ε3,M].

Lemma 2. If inequalities (10) hold then functions ∆Cvj (ε) defined in (5) are

concave in interval [ε, ε].

Proof. Functions ∆Cvj (ε), v 6∈ Vj , are concave by definition (5). The concavity

of other functions we will prove by induction. We consider jobs j ∈ N , Vj 6= ∅,

in a non-decreasing order of their completion times in π. Let j′ be is the first

such job. Then for each v ∈ Vj′ , either ∆Svj′(ε) = 0 or ∆Svj′(ε) = ε by definition.
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time

Csa(π)

∆Su3
j (ε)

∆Su2
j (ε)

∆Su1
j (ε)

qu3(0) = 2

qu2(0) = 1

qu1(0) = 0

Figure 5: Illustration for Lemma 2: job j in schedule πβ

Therefore, by (5), for each v ∈ Vj′ , ∆Cvj′(ε) is linear and thus concave function

for any ε.

Let now j be a non-first job in the order defined in the previous paragraph.

Consider any piece v ∈ Vj . If Svj (π) < Csa(π) then ∆Svj (ε) = 0. Otherwise

∆Svj (ε) is concave in interval [ε, ε], as all functions ∆Cui (ε), Cui (π) ≤ Svj (π) <

Cj(π), are concave in this interval by induction.

Let tuj (ε) be the number of machines assigned to pieces in Vj \Uj of job j at

time moment Suj (πβ) + ∆Suj (ε) in schedule πβ .

We now fix an arbitrary order O for pieces in Uj . For each piece u ∈ Uj , let

qu(ε) be the number of pieces u ∈ Vj such that

Svj (πβ) + ∆Svj (ε) < Suj (πβ) + ∆Suj (ε) or

Svj (πβ) + ∆Svj (ε) = Suj (πβ) + ∆Suj (ε) and v precedes u in order O.

See illustration of values qu(ε) for fixed ε = 0 in Figure 5.

By the definition of ∆Zβj (ε), and (1), we have

(∆Zβj )′(ε) =
∑
u∈Uj

(∆Suj )′(ε) ·

(
1

pj
(
tuj (ε) + qu(ε)

) − 1

pj
(
tuj (ε) + qu(ε) + 1

))︸ ︷︷ ︸
≤0 by (10)

.

Remember that ∆Suj (ε) are concave functions in [ε, ε], and thus subderiva-
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I ′ I ′′

(∆Svj )′(ε′) (∆Svj )′(ε′′)
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(∆Suj )′(ε′)
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(∆Svj )′(ε′′)

Suj (πβ(ε))

Suj (πβ(ε))

Svj (πβ(ε))

Svj (πβ(ε))

Figure 6: Functions ∆Suj (ε′) and their subderivatives around the border between
intervals I ′ and I ′′ (possible variants)

tives (∆Suj )′(ε) are non-increasing functions in it. Moreover, functions tuj (ε)

are non-decreasing, as in πβ , there are no pieces of job j completed before M.

Therefore, by (10), in intervals where functions qu(ε) are constant, subderivative

(∆Zβj )′(ε) is a non-decreasing function.

Now we will see what happens on the borders of these intervals, where some

functions qu(ε) change their value. Consider two adjacent maximal intervals

I ′ and I ′′ (I ′ is on the left of I ′′) in which functions qu(ε) are constant, and

functions tuj (ε) are equal to τ . Let function qu(ε), u ∈ Uj , take value q′u(ε) in

I ′ and value q′′u(ε) in I ′′.

Suppose we have q′u(ε)+τ = q′′v (ε)+τ = ρ−1, q′′u(ε)+τ = q′v(ε)+τ = ρ, and

q′′x(ε) = q′x(ε) for any other pieces x ∈ Uj . Then, on the border between I ′ and

I ′′, starting time Suj (πβ(ε)) of piece u ∈ Uj “overtake” starting time Svj (πβ(ε))

of piece v ∈ Uj , i.e. Suj (πβ(ε)) ≤ Svj (πβ(ε)), ε ∈ I ′, and Suj (πβ(ε)) ≥ Svj (πβ(ε)),

ε ∈ I ′′. By the definition of functions qu(ε), there should exist two points ε′ ∈ I ′

and ε′′ ∈ I ′′ such that, for any ε′ ≥ ε′, ε′ ∈ I ′, and for any ε′′ ≤ ε′′, ε′′ ∈ I ′′, we

have (∆Suj )′(ε′) > (∆Svj )′(ε′) and (∆Suj )′(ε′′) > (∆Svj )′(ε′′). See illustration in
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Figure 6. As subderivatives (∆Suj )′(ε) are non-increasing, we have

µ = (∆Suj )′(ε′)− (∆Svj )′(ε′′) > 0,

ν = (∆Suj )′(ε′′)− (∆Svj )′(ε′) ≤ µ.
(13)

Now, (∆Zβj )′(ε′′)− (∆Zβj )′(ε′) is equal to

(∆Svj )′(ε′′) ·
(

1

pj(ρ− 1)
− 1

pj(ρ)

)
− (∆Svj )′(ε′) ·

(
1

pj(ρ)
− 1

pj(ρ+ 1)

)
+

(∆Suj )′(ε′′) ·
(

1

pj(ρ)
− 1

pj(ρ+ 1)

)
− (∆Suj )′(ε′) ·

(
1

pj(ρ− 1)
− 1

pj(ρ)

)
(13)
=

µ ·
(

1

pj(ρ)
− 1

pj(ρ− 1)

)
− ν ·

(
1

pj(ρ+ 1)
− 1

pj(ρ)

)
,

which is a non-negative value by assumption (10) and by µ ≥ ν, µ > 0.

Therefore

max
ε∈I′

(∆Zβj )′(ε) ≤ min
ε∈I′′

(∆Zβj )′(ε). (14)

The inequality (14) for other adjacent pairs of maximal intervals, in which func-

tions qu(ε), u ∈ Uj , are constant, can be shown in the same manner. On borders

between these intervals, several functions qu(ε) change their value, and/or func-

tions tuj (ε) increase their value.

We have just shown that subderivative (∆Zβj )′(ε) is non-decreasing in inter-

val [ε, ε]. Therefore, function ∆Zβj (ε) is convex. Using Lemma 1 and formulae

(5), we can conclude that functions ∆Cuj (ε) are concave in [ε, ε].

Using Lemma 2, we will now prove the main result of the paper.

Theorem 1. If the inequalities (10) hold then there exists an optimal ascending

schedule.

Proof. First, there exists an optimal schedule in which each job has at most m

pieces, i.e. at most one piece per machine. Otherwise, pieces of the same job
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assigned to the same machine, could be joined together without increasing the

completion time of any job.

To prove the theorem, we will show that it is possible to transform an optimal

non-ascending schedule into another optimal schedule in which

• either the total number of pieces is strictly decreased,

• or the number of early pieces is strictly decreased.

Note that, in every feasible schedule, each job contains at least one terminal

piece. Therefore, applying this transformation to an optimal schedule at most

(m− 1) · n times, we can obtain an optimal schedule without early pieces.

Let π be an optimal non-ascending schedule of the problem. For π, we

construct the family of admissible schedules π(ε), ε ∈ [ε, ε], according to the

procedure described above.

Remember that

∆Cj(ε) =

 ∆Cvj (ε) for some v ∈ Vj , |Vj | > 0,

0, |Vj | = 0.

Then, by Lemma 2, functions ∆Cj(ε), j ∈ N , are concave in interval [ε, ε], as

well as the objective function F (π(ε)) = F (π)+
∑
j∈N wj∆Cj(ε). Therefore, as

π = π(0) is an optimal schedule and 0 ∈ [ε, ε], we should have F (π(ε)) = F (π)

or F (π(ε)) = F (π), meaning that at least one of schedules π(ε) and π(ε) is

optimal.

There are three cases.

1. ε = ε1 (or ε = ε1). Then one of the inequalities (6) is satisfied as an

equality, and the corresponding piece u of job j disappears in π(ε) (or in

π(ε)).

2. ε = max{ε2, ε3} (or ε = min{ε2, ε3}). Then one of the inequalities (7)
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u

v

↓

Figure 7: Combining two pieces into one

and (8) is satisfied as an equality, and the corresponding pieces u and v

of job j can be combined to one in π(ε) (or in π(ε)), as illustrated in

Figure 7.

3. ε = ε4 (or ε = ε4). Then one of the inequalities (9) is satisfied as an

equality, and the corresponding piece u of job j which was early in π

becomes terminal in π(ε) (or in π(ε)).

3 Conclusion

In the paper, we have introduced the ascending property for the problem of

scheduling malleable jobs to minimize the total weighted completion time. Then

we have showed that the set of ascending schedules is dominant given a natural

assumption that the gain of assigning an additional machine to a job does not

increase with the number of machines assigned to this job. This result can be

used to reduce significantly the search space while finding an optimal schedule

of the problem.

Note that, in order to find an optimum ascending schedule, the sequence

of job completion times must be determined. For the work preserving case,

Caramia and Drozdowski [4] showed that, once this sequence is known, the
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problem can be solved in polynomial time via the linear programming. There-

fore, a good alternative for solving the problem is to enumerate the sequences of

jobs without using the ascending property. However, our result can be applied

in a more general (and more practical) case. Additionally, our dominance rule

may be useful if one wants to develop a pure combinatorial algorithm without

referring to the linear programming.

As a possible further research direction we can mention that the complexity

status of a special case of our problem in which the processing time functions

are work preserving and job weights are unitary is still open. It was unknown

even for this special case whether the set of ascending schedules is dominant.

Therefore, our result potentially can help to determine the complexity status of

this important problem which can be denoted as P |var, pj(q) = pj/q, δj |
∑
Cj .

Note that recently Hendel and Kubiak [8] have shown that the latter problem

is polynomially solvable when only 2 machines are available.
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