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Introduction
®00

Two-machine flow-shop problem F2|STg,| > C;

Input data: A set I of n jobs composed of 2 operations

@ The first operation is processed on machine 1, the second on machine 2
@ Foralliel, sl.2 is the sequence-independent setup time on machine 2

@ Assumption: data are integer and deterministic

| A\

Constraints

@ Each machine can process only one operation at a time

@ Operations of a same job cannot be processed simultaneously

Objective

Find a schedule that minimizes the sum of the completion times of the jobs on
the second machine.
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Example
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Cost of the schedule: 6 + 14 +20 =40
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Properties of the problem

Strongly NP-hard [Conway et al., 1967]

Dominating solutions

There is a least one optimal schedule that is:

@ active (operations are performed as soon as possible, no unforced
idle time)

@ such that the sequences of the jobs on both machines are the
same (permutation schedule) [Conway et al., 1967, Allahverdi et
al., 1999]

— The problem comes to find one optimal sequence of jobs.
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Literature

Lower bounds and exact algorithms

@ L.B.: Single machine problems
[Ignall and Schrage, 1965], [Ahmadi and Bagchi, 1990], [Della Croce et
al., 1996], [Allahverdi, 2000]
Branch-and-bound, up to 10, 15 and 30 jobs (p; < 20), 20 jobs (p; < 100)

@ L.B.: Lagrangian relaxation of precedence constraints
[van de Velde, 1990], [Della Croce et al, 2002], [Gharbi et al., 2013]
Branch-and-bound, up to 20 and 45 jobs (p; < 10)

@ L.B.: linear relaxation of a positional/assignment model
[Akkan and Karabati, 2004], [Hoogeven et al., 2006], [Haouari and
Kharbeche, 2013], [Gharbi et al., 2013] : 35 jobs (p; < 100)

@ L.B.: Lagrangian relaxation of the job cardinality ctr., flow model
[Akkan and Karabati, 2004]
Branch-and-bound, up to 60 jobs (p; < 10), 45 jobs (p; < 100)
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°

Contribution

Branch-and-bound based on the network flow model of [Akkan and
Karabati, 2004]

Improvements
Stronger lower bound by using a larger size network

@ Advantages

e Stronger Lagrangian relaxation bound
o Allows integration of dominance rules inside the network

@ Disadvantages
@ (Too) high memory and CPU time requirements
— Reduction of the size of the network using Lagrangian cost
variable fixing

Extension to sequence-independent setup times
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@ Lower bounds
@ Network flow formulation
@ Extended network flow formulation
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

L= C[2k] = C[lk]: time lag elapsed between the completion of the job in
position k on machine 1 and on machine 2

Total completion time
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

Li = C[zk] — C[lk]: time lag elapsed between the completion of the job in

position k on machine 1 and on machine 2

Total completion time

1 :
p3+L;

2=t C[zk] ==t ((” —k+ l)pEk] i LZ)
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

Recursive formula for lag: L; = max {O, L + [k] p[k]} +p[2k]

Total completion time

p; + L3

i I I

| 2 2

Sk Gy = it (1= k+ Doy + L)
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Network flow formulation [Akkan et Karabati, 2004]

Lag-based models

The contribution of a job to the objective function only depends on:

@ lIts position in the sequence
@ lts lag, which is directly deduced from the lag of the preceding job

Structure of the network

@ One node = a pair (position, lag)
@ One arc = the processing of a job

o initial node determines the position
o terminal node determines the lag

— The cost of an arc is the corresponding contribution to the
objective function
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Network flow formulation [Akkan et Karabati, 2004]: G,

p1=010,7); p,=(7,3); p3=(1,3)

cost=37

Shortest path + Each job is processed exactly once
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Lower bounds
000e0

Network flow formulation [Akkan et Karabati, 2004]: G,

p1=010,7); p,=(7,3); p3=(1,3)

Shortest path + Each job i sed once — L.B. by Lagrangian relaxation
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Network flow formulation [Akkan et Karabati, 2004]: G,

Disadvantage: many infeasible paths — "weak" lower bound
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Extended network flow formulation: G,

Structure of the network

@ One node = a triplet (position, lag, job)
@ One arc = the processing of a job
e initial node determines the position and the job
e terminal node determines the lag and the next job
— The cost of an arc is the corresponding contribution to the
objective function
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Lower bounds
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Extended network G, - Example of reduction

Jobs cannot be processed twice consecutively
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Extended network G, - Example of reduction
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Extended network G, - Example of reduction

It p! +57 <p; +s7,p} +5; <p?+s7,and p; <p?theni—
=7 -, [Allahverdi, 2000]
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Extended network G, - Example of reduction

Given a position &, a lag £ and a sub-sequence o':
@ f(k,£,0): cost of scheduling o at (k,£)
@ L(k,£,0): lag of the last job of o scheduled at (k,£)

Dominance

Sub-sequence o is dominated at (k, £) by sub-sequence o if:

@ The set of jobs in o and ¢’ is the same

o f(k,t,0)>f(k,t,0")

The partial schedule up to the end of &’ will be less costly

® L(k,l,0)=L(k,L,0")
The partial schedule after o’ will not be more costly

B. Detienne, R. Sadykov, S. Tanaka Two-machine flow-shop 21/43



Lower bounds
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Extended network G, - Example of reduction

C fk=1,020,0 =/, /) =77
| Lk=1,0=0,0=(J,,J5) =0

flk=1,L=0,0=(J3,J,)) =22
L(k= 1,13110,0 =(J,J)) =7
k=2 | k=3 | k=4

Example: |o| = 2 allows us to remove some arcs
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Lagrangian cost variable fixing

Additional input data
An upper bound UB of the optimum is known

@ Assume that one dominant optimal solution satisfies hypothesis &
The optimal path goes through a given arc
@ Compute a (Lagrangian) lower bound LB, under h

@ If LB, > UB, then h is not satisfied in any optimal dominant
solution

The arc can be removed from the graph
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Lagrangian cost variable fixing (1)

Removing arcs from the network @
Hypothesis: the path goes through e

[Ibaraki and Nakamura, 1994]

Given Lagrangian multipliers 7t SP(w, )

SP(e) = SP(@,v) + cost(e) + SP(w, x)

If SP(e) — Zj n;> UB,
then e is part of no optimal solution.

Computing SP(e) for all e € E is done in O(|E|)-time
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Lagrangian cost variable fixing (2)

Removing arcs from the network
[Detienne et al., 2012]

Given Lagrangian multipliers 7

and a job J; SP_;(w, )

SP_;(a,b) : SP fromato b
going through no arc representing J;

SP,(e) = SP_/(@,v) + cost(e) + SP_,(w, *)

If SP;(e) — Z n;> UB,
then e is part of no optlmal solution.

SP_,(0,v)

Computing SP;(e) for all e € E and i € [ is done in O(n|E|)-time
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Lagrangian cost variable fixing (2)

Removing arcs from the network
[Detienne et al., 2012]

Given Lagrangian multipliers 7
and a job J;

SP;(w, %)
SP_;(w, %)

SP_(0,v) SP;(a,b) : SPfromato b
SP(0, V going through exactly one arc representing J;

/ SP_,(e) = min{SP_,(8,v) + cost(e) + SP,(w, %),
SP(0,v) + cost(e) + SP_;(w, *)}

If SP;(e) — Z n;> UB,
then e is part of no optlmal solution.

Computing SP;(e) for all e € E and i € I is done in O(n|E|)-time
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© Branch-and-bound
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Branch-and-bound

Preprocessing

Initial upper bound

A good feasible solution is obtained by a local search procedure
Dynasearch [Tanaka, 2010]

Pre-computation of lower bounds

Construction of network G4

@ Lagrangian cost variable fixing (subgradient procedure)
@ Construction of the extended network G, from G;

@ Lagrangian cost variable fixing (subgradient procedure)
o

For the best Lagrangian multipliers, SP;(v, *) and SP_;(v, ) are
stored foreachi€landveV
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Branch-and-bound

Branching scheme

Solution space explored

@ Feasible sequences of jobs = Feasible constrained paths in G,

@ Depth-First Search, starting from start node {

Current sequence o (= path) is extended with job J; iff:

@ There is a corresponding arc in G,
@ All predecessors of J; are in o and J; is not in o

@ The sequence of the last 5 jobs obtained would not be dominated by one
of its permutations

@ The sequence is not dominated by a previously explored sequence
(Memory Dominance Rule, [Baptiste et al., 2004], [T'Kindt et al., 2004],
[Kao et al., 2008))
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Branch-and-bound

Lower bound for o = path ending at v in G,

Lower bound coming from jobs not sequenced yet

LB, = cost(o) + max SP;(v, x) — Z ;
i¢o i¢o

<

Lower bound coming from sequenced jobs

LB, = cost(0) + max SP_;(v, *) — Z ;
€0 i$0'

A\

Computing max{LB;, LB,} is done in &(n)-time.
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Branch-and-bound

Tentative upper bound

Weakness of the approach
If the initial upper bound is too large, variable fixing is not efficient.

Overall procedure

@ Build and filter G, using the initial upper bound (dynasearch)
@ If G, is sufficiently small, run the Branch-and-Bound, STOP
@ Build and filter G, using a tentative upper bound

© Run the Branch-and-Bound

@ If a feasible solution is found, it is optimal, STOP

© Otherwise, increase the tentative upper bound and go to 3
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Numerical results

@ Numerical results
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Numerical results

No setup times - F,|| > C;

Coded in C++ (MS VS 2012)
MS Windows 8 laptop with 16GB RAM and Intel Core i7 @2.7GHz

@ Randomly generated [Akkan and Karabati, 2004], [Haouari and
Kharbeche 2013]

@ Upto 100 jobs, p! and p? are drawn from 2[1, 100]

Results for 100—job instances (40 instances)

@ Avg. time: 216 s., Max. time: 602 s.

@ Tentative upper bound is useless
Root gap ~ 7 x 1074

@ Variable fixing reduces the number of arcs by a factor 5
Avg.: ~ 166K nodes, ~ 1.4M arcs, Max.: 239K nodes, 2.9M arcs
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Numerical results

Sequence-independent setup times - F,|STg| > C;

@ Subset of the testbed of [Gharbi et al., 2013]
@ Upto 100 jobs, p!, p? and s7 are drawn from %[1,100]

Results for 100—job instances (200 instances)
@ Avg. time: 935 s., Max. time: 6443 s.

@ Tentative upper bound is critical
Reduces the number of arcs from 18.5M to 2.2M at the root node
@ Lagrangian Variable fixing + Tentative upper bound reduce the
number of arcs by a factor 17
Avg.: ~ 237K nodes, ~ 2.2M arcs, Max.: 440K nodes, 4.9M arcs
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Numerical results

Conclusion

Contributions

@ New lower bound for F2|| > C; and F2|STg| . C;

@ Efficient management of the size of the extended network

@ Dominance rules are embedded in the structure of the network

@ The lower bound is used with success in an exact solving approach

@ All 100-job instances of our test bed are solved in less than two hours
98% are solved in less than one hour

Future directions

@ Use Successive Sublimation Dynamic Programming instead of
Branch-and-Bound

@ Adapt for other min-sum objective functions?

@ Adapt for more than two machines permutation flowshop?
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Numerical results

Thank you for your attention
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Numerical results
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Network flow formulation [Akkan et Karabati, 2004]: G,

@ V;,A, : sets of nodes and arcs

® x,, i : amount of flow on the arc representing j between nodes v and w

min E CV,WJXV,WJ

(vwi)ed,

St Xy = DL Xy VeV —{(0,0),(n+1,0)}

(v,wi)€A, (w,vi)€A,

Z xv,wJZI Vj=1,...,n

(vwi)eA,

z xO,wJ =1

(0,w,j)eA,
xv,wJ € {0: 1} V(V: Waj) € El
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Numerical results
oeo

Lower bound by Lagrangian relaxation

@ V,,A, : sets of nodes and arcs

® x,,,; : amount of flow on the arc representing j between nodes v and w

n
L(m) = min Z Cv,wﬁv,wﬂ‘Z u ( Z Xy 1)

(vwi)eA, J=1 (vw):(v,wi)€A,

SO X=Xy VeV —{(0,0),(n+1,0)}

(v,wi)eA, (w,vi)EA,

Z - + usl =T ///l/
fren,

D5 o=l
(0,w,)€A,

xv,w,J € {0’ 1} V(V; W’J) € Al
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Numerical results
ocoe

Lower bound by Lagrangian relaxation

@ V|,A, : sets of nodes and arcs

@ x,,,; : amount of flow on the arc representing j between nodes v and w

L(7t) = min Z (va,,"‘ﬂ' Xy Zn

(v,wyj)€A,
s.t. Z xv,w,j = Z xw,vJ VV € Vl - {(0: 0): (l’l + 1: 0)}
(v,wi)eA, (w,v)EA,
£rWEA,
D, Fowi=1
(0,w.)eA,;
xv,WJ' € {0’ 1} V(V’ W:]) € Al

Subproblem: shortest path in the network
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Numerical results
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

° CE'}d: completion time of the job in position k on machine m

° Li: time lag elapsed between the completion of the job in position
k on machines 1 and 2

2 1 _ 2 1 2
L= Cl—Cly=max{0,I  +s —plu}+2%

Ji Jr

c 2 1 c 2
Ly + 511 =Py 2 Ly =Py
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Numerical results
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Lag-based models [Akkan and Karabati], [Gharbi et al.]

Lag variables

° CE’,’d completion time of the job in position k on machine m

° L‘. time lag elapsed between the completion of the job in position
k on machines 1 and 2

2 _ 2 1 2
= Gy —Clyg = max{0,Z¢_, + 2 —ply |+

c c_7¢C 2
1L, +s[]>p[]—>L3—L2+sm p[]+pm
B

Ji J J3

L‘+s

< 1 _)LC — 2
[21 =P 7 2T P
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Numerical results
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Lag-based models

Formulating the objective function

Minimizing the sum of completion times:

Z Cly = Z (G + 1)
z(zp ey

n

((n —k+ l)p[lk] + L,C()

=

—_
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Numerical results
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Example

r1=3,5); pp=0,4); p3=02,7)

3+7 3+7+2
0 3 =10 =12
Ji J3
Ji - J3
8 14 21

Cost of the schedule: (3 x3+5)+(7x2+4)+(2x1+9)=43
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Numerical results
°

Lower bound for o = path ending at v in G,

Lower bound coming from jobs not sequenced yet

LB, = cost(o) + max SP;(v, x) — Z ;
i¢o i¢o

<

Lower bound coming from sequenced jobs

LB, = cost(0) + max SP_;(v, *) — Z ;
€0 i$0'

A\

Computing max{LB;, LB,} is done in &(n)-time.
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