Freight railcar routing problem arising in Russia

Ruslan Sadykov1
Vitaliy Shiryaev3

Alexander A. Lazarev2
Alexey Stratonnikov3

1INRIA Bordeaux, Talence, France
2Institute of Control Sciences, Moscow, Russia
3JSC Freight One, Moscow, Russia

EURO 2013
Rome, Italy, July 2
Contents

Problem description

Solution approaches

Numerical results and conclusions
The freight car routing problem: overview

initial car distribution

transportation demands
Specificity of freight rail transportation in Russia

- The fleet of freight railcars is owned by independent freight companies
- Forming and scheduling or trains is done by the state company
 - It charges a cost for transferring cars and determines (estimated) travel times
 - Cost for the transfer of an empty car depends on the type of previously loaded product
- Distances are large, and average freight train speed is low (≈ 300 km/day): discretization in periods of 1 day is reasonable
The freight car routing problem: input and output

Input

- Railroad network (stations)
- Initial locations of cars (sources)
- Transportation demands and associated profits
- Costs: transfer costs and standing (waiting) daily rates;

Output: operational plan

- A set of accepted demands and their execution dates
- Empty and loaded cars movements to meet the demands (car routing)

Objective

Maximize the total net profit
Data: overview

- T — planning horizon (set of time periods);
- I — set of stations;
- C — set of car types;
- K — set of product types;
- Q — set of demands;
- S — set of sources (initial car locations);
- M — empty transfer cost function;
- D — empty transfer duration function;
Demands data

For each order \(q \in Q \)

- \(i^1_q, i^2_q \in I \) — origin and destination stations;
- \(k_q \in K \) — product type
- \(C_q \subseteq C \) — set of car types, which can be used for this demand
- \(n^\text{max}_q \) (\(n^\text{min}_q \)) — maximum (minimum) number of cars, needed to fulfill (partially) the demand
- \(r_q \in T \) — release time of demand
- \(\Delta_q \in \mathbb{Z}_+ \) — maximum delay for starting the transportation
- \(\rho_{qt} \) — profit from delivery of one car with the product, transportation of which started at period \(t, t \in [r_q, r_q + \Delta_q] \)
- \(d_q \in \mathbb{Z}_+ \) — transportation time of the demand
- \(w^1_q(w^2_q) \) — daily standing rate charged for one car waiting before loading (after unloading) the product at origin (destination) station
Sources and car types data

For each source $s \in S$

- $\vec{i}_s \in I$ — station where cars are located
- $\vec{c}_s \in C$ — type of cars
- $\vec{r}_s \in T$ — period, starting from which cars can be used
- \vec{w}_s — daily standing rate charged for cars
- $\vec{k}_s \in K$ — type of the latest delivered product
- $\vec{n}_s \in \mathbb{N}$ — number of cars in the source

For each car type $c \in C$

- Q_c — set of demands, which a car of type c can fulfill
- S_c — set of sources for car type c
Contents

Problem description

Solution approaches

Numerical results and conclusions
Commodity graph

Commodity $c \in C$ represents the flow (movements) of cars of type c.

Graph $G_c = (V_c, A_c)$ for commodity $c \in C$:
Graph definition

- **vertex** v_{cit}^{wk} — stay of cars of type $c \in C$ at station $i \in I$ at daily waiting rate w at period $t \in T$, where $k \in K$ is the type of unloaded product. **Flow balance** is

$$b(v_{cit}^{wk}) = \begin{cases} \vec{n}_{s}, & \exists s \in S_c : \vec{i}_{s} = i, \vec{r}_{s} = t, \vec{w}_{s} = w, \vec{k}_{s} = k, \\ 0, & \text{otherwise.} \end{cases}$$

- **waiting arc** a_{cit}^{wk} — waiting of cars of type $c \in C$ from period $t \in T$ to $t + 1$ at station $i \in I$ at daily rate w, $k \in K$ is the type of previously loaded product. **Cost** $g(a)$ is w.

- **empty transfer arc** $a_{cijt}^{w'w''k}$ — transfer of empty cars of type $c \in C$ waiting at station $i \in I$ at daily rate w' to station $j \in I$ where they will wait at daily rate w'', such that the type of latest unloaded product is $k \in K$, and transfer starts at period $t \in T$. **Cost** is $M(c, i, j, k)$.

- **loaded transfer arc** a_{cqt} — transportation of demand $q \in Q$ by cars of type $c \in C$ starting at period $t \in T \cap [r_q, r_q + \Delta_q]$. **Cost** is $-\rho_{qt}$.
Multi-commodity flow formulation

Variables

- $x_a \in \mathbb{Z}_+$ — flow size along arc $a \in A_c, c \in C$
- $y_q \in \{0, 1\}$ — demand $q \in Q$ is accepted or not

\[
\min \sum_{c \in C} \sum_{a \in A_c} g(a) x_a
\]

\[
\sum_{c \in C_q} \sum_{a \in A_{cq}} x_a \leq n_q^{\text{max}} y_q \quad \forall q \in Q
\]

\[
\sum_{c \in C_q} \sum_{a \in A_{cq}} x_a \geq n_q^{\text{min}} y_q \quad \forall q \in Q
\]

\[
\sum_{a \in \delta^-(v)} x_a - \sum_{a \in \delta^+(v)} x_a = b(v) \quad \forall c \in C, v \in V_c
\]

$0 \leq x_a \quad \forall c \in C, a \in V_c$

$0 \leq y_q \leq 1 \quad \forall q \in Q$

We concentrate on solving its LP-relaxation
Path reformulation

- \(P_s \) — set of paths (car routes) from source \(s \in S \)

Variables

- \(\lambda_s \in \mathbb{Z}_+ \) — flow size along path \(p \in P_s, s \in S \)

\[
\begin{align*}
\min \quad & \sum_{c \in C} \sum_{s \in S_c} \sum_{p \in P_s} g_p^{\text{path}} \lambda_p \\
\sum_{c \in C} \sum_{s \in S_c} \sum_{p \in P_s} \lambda_p &= \tilde{n}_s \quad \forall c \in C, s \in S_c \\
\lambda_p &\in \mathbb{Z}_+ \quad \forall c \in C, s \in S_c, p \in P_s \\
y_q &\in \{0, 1\} \quad \forall q \in Q
\end{align*}
\]
Column generation for path reformulation

- Pricing problem decomposes into shortest path problems for each source
 - **slow**: number of sources are thousands
- To accelerate, for each commodity $c \in C$, we search for a shortest path in-tree to the terminal vertex from all sources in S_c
 - **drawback**: some demands are severely “overcovered”, bad convergence
- We developed iterative procedure which removes covered demands and cars assigned to them, and the repeats search for a shortest path in-tree
Iterative pricing procedure for commodity $c \in C$

```
foreach demand $q \in Q_c$ do \hspace{1em} unc$\text{vcCars}_q \leftarrow n^\text{max}_q$;
foreach source $s \in S_c$ do \hspace{1em} rm$\text{Cars}_s \leftarrow \tilde{n}_s$;
iter \leftarrow 0;
repeat
\hspace{1em} Find an in-tree to the terminal from sources $s \in S_c$, rm$\text{Cars}_s > 0$;
\hspace{1em} Sort paths $p$ in this tree by non-decreasing of their reduced cost;
\hspace{1em} foreach path $p$ in this order do
\hspace{2em} if $\bar{g}_p < 0$ and unc$\text{vcCars}_q > 0$, \forall $q \in Q_p^{\text{path}}$, then
\hspace{3em} Add variable $\lambda_p$ to the restricted master;
\hspace{3em} $s \leftarrow$ the source of $p$;
\hspace{3em} rm$\text{Cars}_s \leftarrow$ rm$\text{Cars}_s - \min\{rm$\text{Cars}_s$, unc$\text{vcCars}_q\}$;
\hspace{3em} unc$\text{vcCars}_q \leftarrow$ unc$\text{vcCars}_q - \min\{rm$\text{Cars}_s$, unc$\text{vcCars}_q\}$;
\hspace{2em} iter \leftarrow iter + 1;
until unc$\text{vcCars}_q > 0$, \forall $q \in Q_c$, or rm$\text{Cars}_s > 0$, \forall $s \in S_c$, or
iter = nbPricIter;
```
Flow enumeration reformulation

- F_c — set of fixed flows for commodity $c \in C$

Variables

- $\omega_f \in \{0, 1\}$ — commodity c is routed accordingly to flow $f \in F_c$ or not

\[
\begin{align*}
\min & \sum_{c \in C} \sum_{f \in F_s} g_f^{\text{flow}} \omega_f \\
\sum_{c \in C_q} \sum_{f \in F_c} \sum_{a \in A_{cq}} f_a \omega_f & \leq n_q^{\text{max}} y_q \quad \forall q \in Q \\
\sum_{c \in C_q} \sum_{f \in F_c} \sum_{a \in A_{cq}} f_a \omega_f & \geq n_q^{\text{min}} y_q \quad \forall q \in Q \\
\sum_{f \in F_c} \omega_f & = 1 \quad \forall c \in C \\
\omega_p & \in \{0, 1\} \quad \forall c \in C, f \in F_c \\
y_q & \in \{0, 1\} \quad \forall q \in Q
\end{align*}
\]
Approach CGEF

- Pricing problem decomposes into minimum cost flow problem for each commodity
 - slow: very bad convergence
- “Column generation for extended formulations” (CGEF) approach: we disaggregate the pricing problem solution into arc flow variables, which are added to the master.
- The master then becomes the multi-commodity flow formulation with restricter number of arc flow variables, i.e. “improving” variables are generated dynamically

Proposition

If an arc flow variable x has a negative reduced cost, there exists a pricing problem solution in which $x > 0$.
(consequence of the theorem in [S. and Vanderbeck, 13])
Contents

Problem description

Solution approaches

Numerical results and conclusions
Tested approaches

- **DIRECT**: solution of the multi-commodity flow formulation by the *Clp* LP solver
 - Problem specific solver source code modifications
 - Problem specific preprocessing is applied (not public)
 - Tested inside the company

- **COLGEN**: solution of the path reformulation by column generation (*BaPCod* library and *Cplex* LP solver)
 - Initialization of the master by “doing nothing” routes
 - Stabilization by dual prices smoothing
 - Restricted master clean-up

- **COLGENEF**: “dynamic” solution of multi-commodity flow formulation by the CGEF approach (*BaPCod* library, *Lemon* min-cost flow solver and *Cplex* LP solver)
 - Initialization of the master by all waiting arcs
 - Only trivial preprocessing is applied
First test set of real-life instances

<table>
<thead>
<tr>
<th>Instance name</th>
<th>x3</th>
<th>x3double</th>
<th>5k0711q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of stations</td>
<td>371</td>
<td>371</td>
<td>1'900</td>
</tr>
<tr>
<td>Number of demands</td>
<td>1’684</td>
<td>3’368</td>
<td>7’424</td>
</tr>
<tr>
<td>Number of car types</td>
<td>17</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Number of cars</td>
<td>1’013</td>
<td>1’013</td>
<td>15’008</td>
</tr>
<tr>
<td>Number of sources</td>
<td>791</td>
<td>791</td>
<td>11’215</td>
</tr>
<tr>
<td>Time horizon, days</td>
<td>37</td>
<td>74</td>
<td>35</td>
</tr>
<tr>
<td>Number of vertices, thousands</td>
<td>62</td>
<td>152</td>
<td>22</td>
</tr>
<tr>
<td>Number of arcs, thousands</td>
<td>794</td>
<td>2’846</td>
<td>1’843</td>
</tr>
<tr>
<td>Solution time for DIRECT</td>
<td>20s</td>
<td>1h34m</td>
<td>55s</td>
</tr>
<tr>
<td>Solution time for COLGEN</td>
<td>22s</td>
<td>7m53s</td>
<td>8m59s</td>
</tr>
<tr>
<td>Solution time for COLGENEF</td>
<td>3m55s</td>
<td>>2h</td>
<td>43s</td>
</tr>
</tbody>
</table>
Real-life instances with larger planning horizon

1'025 stations, up to 6’800 demands, 11 car types, 12’651 cars, and 8’232 sources.
Up to \approx 300 thousands nodes and 10 millions arcs.

Convergence of COLGENEF in less than 15 iterations.
About 3% of arc flow variables at the last iteration.
Conclusions

- Three approaches tested for a freight car routing problem on real-life instances
- Approach COLGEN is the best for instances with small number of sources
- Problem-specific preprocessing is important: good results for DIRECT
- Approach COLGENEF is the best for large instances
- Combination of COLGENEF and problem-specific preprocessing would allow to increase discretization and improve solutions quality
Some practical considerations are not taken into account:

- Progressive standing daily rates
- Special stations for long-time stay (with lower rates)
- Compatibility between two consecutive types of loaded products.
- Penalties for refused demands
- Groups of cars are transferred faster and for lower unitary costs.