The Prominence of Stabilization Techniques in Column Generation: the case of Freight Transportation

Ruslan Sadykov^{1,2} Alexander A. Lazarev³ Arthur Pessoa⁴ Eduardo Uchoa⁴ François Vanderbeck^{2,1}

Contents

Freight railcar routing application

Column generation approach

Stabilization

Results and conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○
 2/21

The freight car routing application: overview

Specificity of freight rail transportation in Russia

The state company

- Freight car blocking
- Freight train scheduling
- Locomotives management
- Personnel management

Transp. costs matrix Transp. times matrix

car movements

Independent freight car management companies

- Assignment of transportation demands to freight cars
- Freight car routing

Specificity of freight rail transportation in Russia

The state company

- Freight car blocking
- Freight train scheduling
- Locomotives management
- Personnel management

Transp. costs matrix Transp. times matrix

car movements

Independent freight car management companies

- Assignment of transportation demands to freight cars
- Freight car routing

Distances are large, and average freight train speed is low (\approx 300 km/day): discretization in periods of 1 day is reasonable

The freight car routing application: input and output Input

- Railroad network (stations)
- Initial location of cars (sources)
- Transportation demands and associated profits
- Transportation times between stations
- Costs: transfer costs and standing (waiting) daily rates;

The freight car routing application: input and output Input

- Railroad network (stations)
- Initial location of cars (sources)
- Transportation demands and associated profits
- Transportation times between stations
- Costs: transfer costs and standing (waiting) daily rates;

Output: operational plan

- A set of accepted demands and their execution dates
- Empty and loaded cars movements to meet the demands (car routing)

Objective

Maximize the total net profit

Similar applications in the literature

[Fukasawa et al., 2002]

- Train schedule is known
- Cars should be assigned to trains to be transported
- Discretization by the moments of arrival and departure of trains.
- Smaller time horizon (7 days)

Similar applications in the literature

[Fukasawa et al., 2002]

- Train schedule is known
- Cars should be assigned to trains to be transported
- Discretization by the moments of arrival and departure of trains.
- Smaller time horizon (7 days)

Other works

- [Holmberg et al., 1998]
- [Löbel, 1998]
- [Lulli et al., 2011]
- [Caprara et al., 2011]

Commodity graph [Stratonnikov and Shiryaev, 2012] Commodity $c \in C$ represents the flow (movements) of cars of type c.

Graph $G_c = (V_c, A_c)$ for commodity $c \in C$:

Each vertex $v \in V_c$ represent location of cars of type c on a certain station at a certain time standing at a certain rate g_a — cost of arc $a \in A_c$

Multi-commodity flow formulation

Notations Q — set of demands, C_q — set of car types compatible with demand $q \in Q$, n_q^{\max} — maximum number of cars to assign to demand $q \in Q$, \vec{n}_v^c — number of cars of type *c* situated initially in vertex $v \in V$.

Variables

 $x_a^c \in \mathbb{Z}_+$ — flow size along arc $a \in A_c$, $c \in C$

Multi-commodity flow formulation

Notations Q — set of demands, C_q — set of car types compatible with demand $q \in Q$, n_q^{max} — maximum number of cars to assign to demand $q \in Q$, \vec{n}_v^{c} — number of cars of type *c* situated initially in vertex $v \in V$.

Variables $x_a^c \in \mathbb{Z}_+$ — flow size along arc $a \in A_c, c \in C$

$$\begin{array}{ll} \min \ \sum\limits_{c \in C} \sum\limits_{a \in A_c} g_a x_a^c \\ & \sum\limits_{c \in C_q} \sum\limits_{a \in A_{cq}} x_a^c \leq n_q^{\max} \quad \forall q \in \mathcal{Q} \\ & \sum\limits_{a \in \delta^-(v)} x_a^c - \sum\limits_{a \in \delta^+(v)} x_a^c = \vec{n}_v^c \qquad \forall c \in \mathcal{C}, v \in V_c \\ & x_a^c \in \mathbb{Z}_+ \qquad \forall c \in \mathcal{C}, a \in V_c \end{array}$$

Contents

Freight railcar routing application

Column generation approach

Stabilization

Results and conclusions

Path reformulation

- ► S_c set of type *c* car "sources" = { $v \in V_c : \vec{n}_v > 0$ })
- ▶ P_s^c set of paths (type *c* car routes) from source $s \in S_c$

Variables

▶ λ_p — flow size along path $p \in P_s^c$, $s \in S_c$, $c \in C$

$$egin{aligned} \min & \sum\limits_{c \in C} \sum\limits_{s \in S_c} \sum\limits_{p \in P_s} g_p^{path} \lambda_p \ & \sum\limits_{c \in C_q} \sum\limits_{s \in S_c} \sum\limits_{p \in P_s^c: \; q \in Q_p^{path}} \lambda_p \leq n_q^{\max} \quad orall q \in Q \ & \sum\limits_{p \in P_s^c} \lambda_p = ec{n}_s^c \qquad orall c \in C, s \in S_c \ & \lambda_p \in \mathbb{Z}_+ \qquad orall c \in C, s \in S_c, p \in P_s^c \end{aligned}$$

Column generation for path reformulation

- Pricing problem decomposes to shortest path problems, one for each source
 - slow: number of sources are thousands

Column generation for path reformulation

- Pricing problem decomposes to shortest path problems, one for each source
 - slow: number of sources are thousands
- ► To accelerate, for each c ∈ C, we search for an in-tree of shortest paths to the terminal vertex from all s ∈ S_c
 - drawback: some demands are severely "overcovered", bad convergence

Column generation for path reformulation

- Pricing problem decomposes to shortest path problems, one for each source
 - slow: number of sources are thousands
- ► To accelerate, for each c ∈ C, we search for an in-tree of shortest paths to the terminal vertex from all s ∈ S_c
 - drawback: some demands are severely "overcovered", bad convergence
- We developed an iterative procedure:

repeat

Find an in-tree T from all non-exhausted sources;

foreach path p in T in the order of its reduced cost do

Find n' — the maximum number of cars able to follow p;

if n' > 0 then

Add λ_p to the restricted master;

Reduce by n' the number of cars in the source of p;

Reduce by n' the volume of all demands covered by p;

until iteration limit k or all demands are covered or all sources are exhausted;

Diving Heuristic

Master problem solution λ^* can be fractional, so we apply the diving heuristic [Joncour et al., 2010]

- use Depth-First Search
- at each node of the tree
 - select *least fractional* column λ
 _p : rounded value [λ
 _p] > 0
 - add $\lceil \bar{\lambda}_{\rho} \rfloor$ to the partial solution
 - update right-hand-side of the master constraints
 - apply preprocessing, which may lead to a change in the pricing problem variables bounds
 - solve the updated master LP

Contents

Freight railcar routing application

Column generation approach

Stabilization

Results and conclusions

< □ > < @ > < 클 > < 클 > 트⊨ - 의익 ↔ 13/21

Column generation in the dual space

 $L(\pi)$ — Lagrangian dual function

Column generation in the dual space

 $L(\pi)$ — Lagrangian dual function

Column generation in the dual space

 $L(\pi)$ — Lagrangian dual function

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ / 王昌

Dual Price Smoothing [Wentges, 1997]

$$\tilde{\pi}^t = \alpha \hat{\pi} + (1 - \alpha) \pi^t$$

$$(\pi^{\mathsf{in}},\eta^{\mathsf{in}}):=(\hat{\pi},\hat{L})$$

$$(\pi^{\mathsf{out}},\eta^{\mathsf{out}}) := (\pi^t,\eta^t)$$

15/21

Auto-adaptative α -schedule [Pessoa et al., 2014]

Contents

Freight railcar routing application

Column generation approach

Stabilization

Results and conclusions

Stabilization results

Real-life instances: 40-140 days horizon, 1,025 stations, up to 5,300 demands, 11 car types, 12,651 cars, and 8,232 sources. Up to \approx 230 thousands nodes and 7.5 millions arcs.

Stabilization results

Real-life instances: 40-140 days horizon, 1,025 stations, up to 5,300 demands, 11 car types, 12,651 cars, and 8,232 sources. Up to \approx 230 thousands nodes and 7.5 millions arcs.

19/21

Diving heuristic results

All instances solved to optimality by the diving heuristic. (means Lagrangian bound is equal to the optimal solution value).

Diving heuristic results

All instances solved to optimality by the diving heuristic. (means Lagrangian bound is equal to the optimal solution value).

Conclusions

- A freight car routing application can be modelled as the multi-commodity flow problem
- Non-stabilized column generation implementation is not competitive with Cplex
- Generic combined stabilization with a single parameter gives up to 85x speed-up
- Generic diving heuristic allows us to obtain optimal integer solutions for real-life instances up to 3 times faster than Cplex.
- Column-and-row generation [Sadykov et al., 2013] gives better results that the stabilized column generation, but the diving heuristic cannot be directly applied

References I

Caprara, A., Malaguti, E., and Toth, P. (2011). A freight service design problem for a railway corridor. *Transportation Science*, 45(2):147–162.

du Merle, O., Villeneuve, D., Desrosiers, J., and Hansen, P. (1999). Stabilized column generation. *Discrete Mathematics*, 194(1-3):229–237.

Fukasawa, R., de Aragão, M. P., Porto, O., and Uchoa, E. (2002). Solving the freight car flow problem to optimality. *Electronic Notes in Theoretical Computer Science*, 66(6):42 – 52.

Holmberg, K., Joborn, M., and Lundgren, J. T. (1998). Improved empty freight car distribution. *Transportation Science*, 32(2):163–173.

Joncour, C., Michel, S., Sadykov, R., Sverdlov, D., and Vanderbeck, F. (2010). Column generation based primal heuristics. *Electronic Notes in Discrete Mathematics*, 36:695 – 702.

Löbel, A. (1998).

Vehicle scheduling in public transit and lagrangean pricing. *Management Science*, 44(12):1637–1649.

References II

- Lulli, G., Pietropaoli, U., and Ricciardi, N. (2011). Service network design for freight railway transportation: the italian case. *Journal of the Operational Research Society*, 62(12):2107–2119.
- Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F. (2014). Automation and combination of linear-programming based stabilization techniques in column generation. Technical Report hal-01077984, HAL Inria, https://hal.inria.fr/hal-01077984.

Sadykov, R., Lazarev, A. A., Shiryaev, V., and Stratonnikov, A. (2013). Solving a freight railcar flow problem arising in russia. In Frigioni, D. and Stiller, S., editors, *13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems*, volume 33 of *OpenAccess Series in Informatics (OASIcs)*, pages 55–67, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Stratonnikov, A. and Shiryaev, V. (2012).

A large-scale linear programming formulation for railcars flow management (in Russian).

In Fifth Russian conference on Optimization Problems and Economic Applications, Omsk, Russia.

Wentges, P. (1997).

Weighted dantzig–wolfe decomposition for linear mixed-integer programming. *International Transactions in Operational Research*, 4(2):151–162.