
The Prominence of Stabilization Techniques
in Column Generation: the case of Freight

Transportation

Ruslan Sadykov1,2 Alexander A. Lazarev3

Arthur Pessoa4 Eduardo Uchoa4

François Vanderbeck2,1

1
Inria Bordeaux,

Talence, France

2
University
Bordeaux,

Talence, France

3
Institute of

Control Sciences,
Moscow, Russia

4
Univ. Federal
Fluminense

Niteroi, Brazil

Odysseus 2015
Ajaccio, France, June 1

1 / 21



Contents

Freight railcar routing application

Column generation approach

Stabilization

Results and conclusions

2 / 21



The freight car routing application: overview

initial car distribution transportation demands
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Specificity of freight rail transportation in Russia

I Freight car
blocking

I Freight train
scheduling

I Locomotives
management

I Personnel
management

The state company

I Assignment of
transportation
demands to freight
cars

I Freight car routing

Independent freight car
management companies

Transp. costs matrix
Transp. times matrix

car movements

Distances are large, and average freight train speed is low
(≈ 300 km/day): discretization in periods of 1 day is reasonable
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The freight car routing application: input and output
Input

I Railroad network (stations)
I Initial location of cars (sources)
I Transportation demands and associated profits
I Transportation times between stations
I Costs: transfer costs and standing (waiting) daily rates;

Output: operational plan

I A set of accepted demands and their execution dates
I Empty and loaded cars movements to meet the demands

(car routing)

Objective
Maximize the total net profit
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Similar applications in the literature

[Fukasawa et al., 2002]

I Train schedule is known
I Cars should be assigned to trains to be transported
I Discretization by the moments of arrival and departure of

trains.
I Smaller time horizon (7 days)

Other works
I [Holmberg et al., 1998]
I [Löbel, 1998]
I [Lulli et al., 2011]
I [Caprara et al., 2011]
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Commodity graph [Stratonnikov and Shiryaev, 2012]
Commodity c ∈ C represents the flow (movements) of cars of
type c.

Graph Gc = (Vc,Ac) for commodity c ∈ C:

· · ·

· · ·

· · ·

station 1

station 2

station 3

· · · · · · · · · · · ·

· · · · · · · · · · · ·
waiting arc

empty transfer arc

loaded transfer arc

time

Each vertex v ∈ Vc represent location of cars of type c on a
certain station at a certain time standing at a certain rate
ga — cost of arc a ∈ Ac
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Multi-commodity flow formulation

Notations
Q — set of demands,
Cq — set of car types compatible with demand q ∈ Q,
nmax

q — maximum number of cars to assign to demand q ∈ Q,
~nc

v — number of cars of type c situated initially in vertex v ∈ V .

Variables
xc

a ∈ Z+ — flow size along arc a ∈ Ac , c ∈ C

min
∑
c∈C

∑
a∈Ac

gaxc
a∑

c∈Cq

∑
a∈Acq

xc
a ≤ nmax

q ∀q ∈ Q

∑
a∈δ−(v)

xc
a −

∑
a∈δ+(v)

xc
a = ~nc

v ∀c ∈ C, v ∈ Vc

xc
a ∈ Z+ ∀c ∈ C,a ∈ Vc
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Path reformulation

I Sc — set of type c car “sources” = {v ∈ Vc : ~nv > 0})
I Pc

s — set of paths (type c car routes) from source s ∈ Sc

Variables
I λp — flow size along path p ∈ Pc

s , s ∈ Sc , c ∈ C

min
∑
c∈C

∑
s∈Sc

∑
p∈Ps

gpath
p λp∑

c∈Cq

∑
s∈Sc

∑
p∈Pc

s : q∈Qpath
p

λp ≤ nmax
q ∀q ∈ Q

∑
p∈Pc

s

λp = ~nc
s ∀c ∈ C, s ∈ Sc

λp ∈ Z+ ∀c ∈ C, s ∈ Sc ,p ∈ Pc
s
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Column generation for path reformulation
I Pricing problem decomposes to shortest path problems,

one for each source
I slow: number of sources are thousands

I To accelerate, for each c ∈ C, we search for an in-tree of
shortest paths to the terminal vertex from all s ∈ Sc

I drawback: some demands are severely “overcovered”, bad
convergence

I We developed an iterative procedure:
repeat

Find an in-tree T from all non-exhausted sources;
foreach path p in T in the order of its reduced cost do

Find n′ — the maximum number of cars able to follow p;
if n′ > 0 then

Add λp to the restricted master;
Reduce by n′ the number of cars in the source of p;
Reduce by n′ the volume of all demands covered by p;

until iteration limit k or all demands are covered or all sources are
exhausted ;
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Diving Heuristic

Master problem solution λ∗ can be fractional, so we apply the
diving heuristic [Joncour et al., 2010]

I use Depth-First Search
I at each node of the tree

I select least fractional column λ̄p :
rounded value dλ̄pc > 0

I add dλ̄pc to the partial solution

I update right-hand-side of the
master constraints

I apply preprocessing, which may
lead to a change in the pricing
problem variables bounds

I solve the updated master LP
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Column generation in the dual space

L(π) — Lagrangian dual function

π

η

L(π)

(πt , ηt )

Outer approximation
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Dual Price Smoothing [Wentges, 1997]

π̃t = απ̂ + (1− α)πt

(πin, ηin) := (π̂, L̂)

(πout, ηout) := (πt , ηt )

(πsep, ηsep) := α (πin, ηin) + (1− α) (πout, ηout)

OUT
SEP

IN

OUT

SEP
IN
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Auto-adaptative α-schedule [Pessoa et al., 2014]

L(π) =
L̂

πin

πout

π̃

g(π̃)

de
cr

ea
se
α

inc
re

as
e
α
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Penalty functions [du Merle et al., 1999]

πt = argmax
π∈Rm

+

{
Lt (π)− Ŝt (π)

}
L(π)

−Ŝ(π − π̂)

(π̂, L̂)

πq

Ŝq(πq − π̂q)

π̂

∆

γ = 0.9 · nmax
q

Here:

∆ =

∑
q∈Q |π1

q − π̂0
q|

|Q| · κ
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Stabilization results

Real-life instances: 40-140 days horizon, 1,025 stations, up to
5,300 demands, 11 car types, 12,651 cars, and 8,232 sources.
Up to ≈ 230 thousands nodes and 7.5 millions arcs.

40 60 80 100 120 140

1m

10m

1h

10h

planning horizon length, days

so
lu

tio
n

tim
e

(lo
g

sc
al

e)

No stabilization
Smoothing stabilization

Pen. func. stabilization (κ = 0.05)
Combined stabilization (κ = 0.1)

size CG Smooth Pen Comb
40 23 19 32 21
60 117 73 155 95
80 570 234 178 114

100 2481 607 278 152
120 8947 1465 410 213
140 28884 3069 756 338
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Diving heuristic results

All instances solved to optimality by the diving heuristic.
(means Lagrangian bound is equal to the optimal solution value).

40 60 80 100 120 140
1m

5m

10m

15m

20m

planning horizon length, days

so
lu

tio
n

tim
e

Column generation
Column generation + diving

Cplex 12.4

size CG +Diving Cplex
40 21 22 51
60 95 100 111
80 114 145 245

100 152 211 408
120 213 344 633
140 338 377 1127
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Conclusions

I A freight car routing application can be modelled as the
multi-commodity flow problem

I Non-stabilized column generation implementation is not
competitive with Cplex

I Generic combined stabilization with a single parameter
gives up to 85x speed-up

I Generic diving heuristic allows us to obtain optimal integer
solutions for real-life instances up to 3 times faster than
Cplex.

I Column-and-row generation [Sadykov et al., 2013] gives
better results that the stabilized column generation, but the
diving heuristic cannot be directly applied
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