Constraint Programming

Lab 3.

20 January 2022

1 Global constraints all-diff and GCC

Achieve arc-consistency for this constraints :

1. all-different $\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right)$,
where $D_{X_{1}}=\{1,3\}, D_{X_{2}}=\{4,5\}, D_{X_{3}}=\{2,3\}, D_{X_{4}}=\{4\}, D_{X_{5}}=\{4,5,6,7\}, D_{X_{6}}=\{6,7\}$.
2. $\operatorname{GCC}\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}, X_{8}, X_{9}, a, b, c, d, e, l=\{1,1,1,0,0\}, u=\{3,2,1,2,2\}\right)$,
où $D_{X_{1}}=\{a, b\}, D_{X_{2}}=\{a, b\}, D_{X_{3}}=\{a, b\}, D_{X_{4}}=\{a, b\}, D_{X_{5}}=\{a, b, c\}, D_{X_{6}}=\{b, c, d, e\}$,
$D_{X_{7}}=\{c, e\} D_{X_{8}}=\{a, b\}, D_{X_{9}}=\{c, e\}$.

2 A snack in the kindergarden [Exam]

8 children have a snack. Each one has a right to take one fruit. There are 2 apples, 2 pears, 1 orange, 1 grapefruit, and 3 bananas. Favourite fruits of children are :

François	apples
Arthur et Tomas	apples, pears
Maxime	pears
Emma	pears, bananas
Marie	oranges, grapefruits
Lisa et Mathilde	oranges, bananas

If Emma takes a pear, can other children take their favourite fruits? Answer this question using the propagation algorithm for a global constraint.

3 Global constraint disjunctive

We have the following CSP :

- 4 variables : $X_{1}, X_{2}, X_{3}, X_{4}$.
- Domains : $D_{X_{1}}=[0,18], D_{X_{2}}=[3,9], D_{X_{3}}=[1,10], D_{X_{4}}=[13,24]$.
- One constraint : disjunctive $\left(X_{1}, X_{2}, X_{3}, X_{4}, p=\{4,3,4,2\}\right)$.

Could you reduce the domains of variables?

4 Global constraint element

We consider the following CSP

- Variables : X, Y, Z.
- Domains : $D_{X}=\{5,6,7,8\}, D_{Y}=\{1,3,5\}, D_{Z}=\{2,4\}$.
- Constraint : $X=v_{Y}+w_{Z}$, where $v=[1,5,3,4,1]$ and $w=[4,1,4,2,5]$

Make this CSP arc-consistent.

5 Send More Money - continuation

Solve the following cryptogramme by using a dynamic variable instantiation heuristic (model with carried numbers)

	S	E	N	D
+	M	O	R	E
M	O	N	E	Y

6 Queens problem

1. Solve the 6 -queens problem using the Forward Checking algorithm.
2. If we maintain arc-consistency (algorithm $M A C$), can we solve this problem faster?
