Constraint Programming Lab 4.

27 January 2022

1 Representing integers

What domains are represented by

1. $\{[[x \le 6]], \neg[[x \le 2]]\}$ 2. $\{[[x \le 9]], \neg[[x \le 4]], \neg[[x = 6]], \neg[[x = 8]]]\}$ 3. $\{[[x = 4]]\}$ 4. $\{[[x \le 5, \neg[[x \le 4]]]\}$ 5. $\{[[x \le 7, \neg[[x \le 1]], \neg[[x = 8]]]\}$ 6. $\{[[x = 4]], [[x = 7]]\}$ 7. $([x \le 7]], [[x = 7]]\}$

7.
$$\{\neg [[x \le 7]], [[x \le 1]]\}$$

2 Explanations

Give the resulting domain and explanation for each of the following examples

- 1. $D(x_1) = \{2, \dots, 4\}, D(x_2) = \{1, \dots, 4\} : x_1 + 1 \le x_2$
- 2. $D(x_1) = D(x_2) = D(x_3) = D(x_4) = \{1, 2\}$: all-different (x_1, x_2, x_3, x_4)
- 3. $D(x_1) = \{2, 3\}, D(x_2) = \{1, 4\}, D(b) = \{false, true\} : b \Leftrightarrow x_1 = x_2$
- 4. $D(x_1) = D(x_2) = \{1, \dots, 4\}, D(x_3) = \{3\}, D(x_4) = \{1, \dots, 4\} : 2x_1 + x_2 + 3x_3 + x_4 \le 12$

3 Lazy Clause Generation

 $\begin{array}{l} - & D(x_1) = D(x_2) = D(x_3) = D(x_4) = D(x_5) = D(x_6) = \{1, \dots, 5\}, \ D(b_1) = D(b_2) = \{false, true\} \\ - & \text{Constraints} \\ - & b_1 \lor b_2 \\ - & b_1 \Leftrightarrow x_1 \ge x_6 \\ - & b_2 \Leftrightarrow x_1 \ge 4 \\ - & x_1 + x_2 + x_3 + x_4 \le 11 \\ - & x_4 \ge x_5 \\ - & x_3 \ge x_5 \\ - & x_5 + x_6 \le 8 \end{array}$

- Assume decisions in order : $x_6 \ge 4, x_5 \ge 2, x_2 \ge 4$
- Build the implication graph, determine the 1UIP (First Unique Implication Point) Nogood (which is a clause). Show the result after backjumping