Constraint Programming

Lab 4.

27 January 2022

1 Representing integers

What domains are represented by

1. $\{[[x \leq 6]], \neg[[x \leq 2]]\}$
2. $\{[[x \leq 9]], \neg[[x \leq 4]], \neg[[x=6]], \neg[[x=8]]\}$
3. $\{[[x=4]]\}$
4. $\{[[x \leq 5, \neg[[x \leq 4]]\}$
5. $\{[[x \leq 7, \neg[[x \leq 1]], \neg[[x=8]]\}$
6. $\{[[x=4]],[[x=7]]\}$
7. $\{\neg[[x \leq 7]],[[x \leq 1]]\}$

2 Explanations

Give the resulting domain and explanation for each of the following examples

1. $D\left(x_{1}\right)=\{2, \ldots, 4\}, D\left(x_{2}\right)=\{1, \ldots, 4\}: x_{1}+1 \leq x_{2}$
2. $D\left(x_{1}\right)=D\left(x_{2}\right)=D\left(x_{3}\right)=D\left(x_{4}\right)=\{1,2\}$: all-different $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
3. $D\left(x_{1}\right)=\{2,3\}, D\left(x_{2}\right)=\{1,4\}, D(b)=\{$ false, true $\}: b \Leftrightarrow x_{1}=x_{2}$
4. $D\left(x_{1}\right)=D\left(x_{2}\right)=\{1, \ldots, 4\}, D\left(x_{3}\right)=\{3\}, D\left(x_{4}\right)=\{1, \ldots, 4\}: 2 x_{1}+x_{2}+3 x_{3}+x_{4} \leq 12$

3 Lazy Clause Generation

- $D\left(x_{1}\right)=D\left(x_{2}\right)=D\left(x_{3}\right)=D\left(x_{4}\right)=D\left(x_{5}\right)=D\left(x_{6}\right)=\{1, \ldots, 5\}, D\left(b_{1}\right)=D\left(b_{2}\right)=\{$ false, true $\}$
- Constraints
- $b_{1} \vee b_{2}$
- $b_{1} \Leftrightarrow x_{1} \geq x_{6}$
- $b_{2} \Leftrightarrow x_{1} \geq 4$
$-x_{1}+x_{2}+x_{3}+x_{4} \leq 11$
- $x_{4} \geq x_{5}$
- $x_{3} \geq x_{5}$
$-x_{5}+x_{6} \leq 8$
- Assume decisions in order : $x_{6} \geq 4, x_{5} \geq 2, x_{2} \geq 4$
- Build the implication graph, determine the 1UIP (First Unique Implication Point) Nogood (which is a clause). Show the result after backjumping

