
Lab 7: House Building Calendar
Problem Description
In this workshop you will model a problem of scheduling the tasks involved in building multiple
houses in such a manner that minimizes the overall completion date of the houses.

Principles of the problem:
• There are five houses to be built.
• There are two workers:

Joe•
• Jim

• Each worker can only be assigned to a subset of the total list of tasks (different skills).
• Some tasks must take place before other tasks, and each task has a predefined size.
• Each worker has a calendar detailing the days on which he does not work:

Weekends•
• Public holidays
• Other days off

• On a worker’s day off, he does no work on his tasks.
• A worker's tasks may not be scheduled to start or end on a day off.
• Tasks that are in process by the worker are suspended during his days off (for example a task

may begin on Friday and finish on Monday with a weekend off in between).

Problem data
Here is the list of house construction tasks, giving the length of each task, the worker assigned to it,
and the precedence:

Preceding tasksWorkerSizeTask

–Joe35Masonry

masonryJoe15Carpentry

masonryJim40Plumbing

masonrJim15Ceiling

carpentryJoe5Roofing

ceilingJim10Painting

roofingJim5Windows

roofing
plumbing

Joe10Façade

roofing
plumbing

Joe5Garden

windows
facade

garden

painting

Jim5Moving

Exercise folder
<trainingDir>\OPL63.labs\Scheduling\Calendar\work\sched_calendarWork

© Copyright IBM Corporation 2009. All rights reserved. 57



Step 1: Declare data and decision variables
Actions

• Define a calendar for each worker
• Declare the decision variable

Reference
intensity

Define a calendar for each worker
1. Import the sched_calendarWork project into the OPL Projects Navigator (Leave the Copy

projects into workspace box unchecked) and open the calendar.mod and calendar.dat
files for editing.

2. Examine the first data declarations and their instantiations in the .dat file:
• The first two declarations, NbHouses and range Houses establish simple declarations

of how many houses to build, and a range that is constrained between 1 and that total
number.

• The next two declarations instantiate sets of strings that represent, respectively, the
names of the workers and the names of the tasks to perform.

• The declaration int Duration [t in TaskNames] = ...;; instantiates an array
named Duration indexed over each TaskNames instance.

• The declaration string Worker [t in TaskNames] = ...;; instantiates an array
named Worker indexed over each TaskNames instance.

• The tuple set Precedences instantiates task pairings in the tuple Precedence, where
each tuple instance indicates the temporal relationship between two tasks: the task
in before must be completed before the task in after can begin.

• The tuple Break indicates the start date, s, and end date, e of a given break period.
A list of breaks for each worker is instantiated as the array Breaks. Each instance of
this array is included in a set named Break.

3. Declare a tuple named Step with two elements:
• An integer value, v, that represents the worker’s availability at a given moment (0 for

on a break, 100 for fully available to work, 50 for a half-­day)
• An integer value, x, that represents the date at which the availability changes to this

value. Make this element the key for the tuple.

tuple Step {
int v;;
key int x;;
};;

4. Create a sorted tuple set such that at each point in time where the worker’s availability
changes, an instance of the tuple set is created. Sort the tuple set by date, and use a
stepfuncion named calendar to create the intensity values to be assigned to each
WorkerName

Use a stepwise function

:

sorted {Step} Steps[w in WorkerNames] =
{ <100, b.s >| b in Breaks[w] } union
{ <0, b.e >| b in Breaks[w] };;
stepFunction Calendar[w in WorkerNames] =
stepwise (s in Steps[w]) { s.v -­ >s.x;; 100 };;

When two consecutive steps of the function have the same value, these steps are
merged so that the function is always represented with the minimal number of steps.

© Copyright IBM Corporation 2009. All rights reserved.58



Declare the decision variable
1. Continue looking at the model file – the following interval decision variable is declared:

dvar interval itvs[h in Houses, t in TaskNames]
size Duration[t]
intensity Calendar[Worker[t]];;

2. Can you see how the Calendar function is associated with the decision variable in order to
ensure that the worker's availability is taken into account?

3. Discuss this with your instructor and fellow students.

© Copyright IBM Corporation 2009. All rights reserved. 59



Step 2: Define the objective function
Action

• Transform the business objective into the objective function

Transform the business objective into the objective function
The business objective requires the model to minimize the total number of days required to build five
houses. To do this in the model, you need to write an objective function that minimizes the maximum
time needed to build each house and arrive at a minimum final completion date for the overall
five-­house project.

1. Determine themaximum completion date for each individual house project using the expression
endOf on the last task in building each house (the moving task) and

2. Minimize the maximum of these expressions.

Check the solution in
<trainingDir>\OPL63.labs\Scheduling\Calendar\solution\sched_calendarSolution\calendar.mod.

© Copyright IBM Corporation 2009. All rights reserved.60



Step 3: Define constraints
Actions

• Write the precedence constraint
• Write the noOverlap constraint
• Write the forbidden start/end period constraint

References
noOverlap

forbidStart

forbidEnd

Write the precedence constraint
The precedence constraints in this problem are simple endBeforeStart constraints with no delay.

1. Write a single constraint that can be applied via the tuple set Precedences to each instance
of the interval decision variable itvs.

Use filtering on (p in Precedences) to separate out start dates and end dates.
Use arrays of the form [p.before] and [p.after].

2. Check your work against the file
<trainingDir>\OPL63.labs\Scheduling\Calendar\solution\sched_calendarSolution\calendar.mod.

Write the noOverlap constraint
1. Write a constraint that says the interval variables associated with a worker are constrained

to not overlap in the solution.
2. Check your work against the file

<trainingDir>\OPL63.labs\Scheduling\Calendar\solution\sched_calendarSolution\calendar.mod.

You may be surprised by the form of the noOverlap constraint in the solution. This form is
a shortcut that avoids the need to explicitly define the interval sequence variable when no
additional constraints are required on the sequence variable.

Write the forbidden start/end period constraint
1. Write a constraint, using forbidStart and forbidEnd, that forbids a task to start or end

on the associated worker's days off (i.e. when intensity = 0).
2. Check your work against the file

<trainingDir>\OPL63.labs\Scheduling\Calendar\solution\sched_calendarSolution\calendar.mod.

© Copyright IBM Corporation 2009. All rights reserved. 61


