
Constraint Programming
Lab 2. Scheduling with OPL

Ruslan Sadykov

INRIA Bordeaux—Sud-Ouest

17 February 2022



Typical scheduling problem

Time intervals — activities, operations, or jobs to do, optional or
obligatory

Temporal constraints — possible relations between the starting
and completion times of activities

Specialised constraints — complex relations between activities
due to the state and capacities of resources

Cost functions
I Necessary time to complete all activities

(makespan)
I Cost for non-execution of optional activities
I Penalties for violating due dates of certain

activities



Intervals

Syntax

dvar interval <taskName> <switches>

I Time window

dvar interval masonry in 0..20 ;

I Job size (processing time)

dvar interval windows size 5 in 0..7 ;

I Optional job

dvar interval garden optional;



Intervals : linked variables

endOf — end of interval (completion time of job)
startOf — start of interval (starting time of job)
lengthOf — interval duration (can be different from the size if

preemptions are allowed)
sizeOf — size of interval

presenceOf — 1, if interval is present, 0 otherwise (for
optional intervals)



Intensity : calendar functions

Syntax

dvar interval <taskName> intensity F;

Here F is a step (piecewise constant) function.

Example
A job should be done during a week by a worker who works
full-time during first five days and half-time on Saturday

stepFunction F = stepwise(100->5 ; 50->6 ; 0->7) ;
dvar interval decoration size 5..5 in 1..7 intensity F;



Precedence constraints

Syntax

endBeforeStart(a,b[,z])

Example
The ceiling should be dried during 2 days before being painted :

endBeforeStart(ceiling, painting, 2)

Other constraints
endBeforeStart

endAtStart

endAtEnd

startAtStart

startAtEnd



Cumulative constraints

Syntax

cumulFunction <functionName> = <function_expression> ;

where expression can use step, pulse, stepAtStart,
stepAtEnd

Cumulative function can be constrained :

cumulFunction workersUsage = ... ;
...
workersUsage <= NbWorkers;



Function pulse

Syntax

cumulFunction f = pulse(u, v, h) ;
cumulFunction f = pulse(a, h) ;
cumulFunction f = pulse(a, hmin, hmax) ;

Example

cumulFunction f =
pulse(A, 1)
+ pulse(B, 1) ;

temps

f

interval A

interval B

1
2



Functions step

Syntax

cumulFunction f = step(u, h) ;
cumulFunction f = stepAtStart(a, h) ;
cumulFunction f = stepAtEnd(a, hmin, hmax) ;

Example

cumulFunction f =
step(2, 4)
+ stepAtStart(A, -3)
+ stepAtEnd(B, 2) ;

temps

f

interval A
interval B

1
2
3
4



Sequencing

Sequencing variable represents a total order of a set of intervals.

Syntax

dvar sequence <seqName> in <intervalName> [types T] ;

Attention
Order of intervals does not necessarily establish the relative
position of intervals in time.

Example

dvar sequence workers[w in WorkerNames] in
all(h in Houses,t in TskNames : Worker[t]==w) itvs[h][t]
types all(h in Houses,t in TskNames : Worker[t]==w) h;



Disjunctive global constraint
Syntax

noOverlap (<sequenceName> [,M]) ;

Example
I The set of activities should be scheduling a single machine.
I There is setup time necessary to pass from one activity to

another, this setup time depends on the type of activities.
I No overlapping of activities in time.

tuple triplet { int id1; int id2; int value; } ;
{triplet} M = { <i,j,ftoi(abs(i-j))> |

i in Types, j in Types } ;
dvar interval A[i in 1..n] size d[i] ;
dvar sequence p in A types T;
subject to {

noOverlap(p, M) ;
} ;



Alternative activities

Interval a is executed if and only if one of intervals in B is
executed. In this case, they are synchronized.

Syntax

alternative(a,B) ;

a

b1

b2

b3

Example

alternative(tasks[h] [t],
all(s in Skills : s.task==t)
wtasks[h] [s]) ;



Spanning activities

Interval a « spans » all intervals executed in B : a starts in the
beginning of the first interval in B and completed at the end of
the last one.

Syntax

span(a,B) ;

a

b1 b2

b3b4

b5

Example

span(house[i],
all(t in tasks : t.house == i)
tasks[t]) ;



Synchronized activities

All intervals executed in B start and complete at the same time
as interval a.

Syntax

synchronize(a,B) ;

Example

synchronize(task[i], all(o in opers : o.task == i)
tiopers[o]) ;


