
Lab 6: Staff Scheduling
Problem Description
In this workshop youwill model a staff scheduling problem using CPOptimizer's specialized scheduling
keywords and syntax.

Principles of the problem:
• A telephone companymust schedule customer requests for three different types of installations

(request types).
• Each request has a requested due date; a due date can be missed, but the objective is to

minimize the number of days late.
• The three request types each have a list of tasks that must be completed in order to complete

the request.
• There are precedence constraints associated with some of the tasks.
• Each task has a fixed duration and also may require certain fixed quantities of specific types

of resources.
• There are specific resource types and fixed numbers of resources of each type available.

Problem data
There are 3 different types of requests:

• FirstLineInstall
• SecondLineInstall
• ISDNIntall

There are 6 task types:

• MakeAppointment
• FlipSwitch
• InteriorSiteCall
• ISDNInteriorSiteCall
• ExteriorSiteCall
• TestLine

There are 5 resource types:

• Operator
• Technician
• CherryPicker (a type of crane)
• ISDNPacketMonitor
• ISDNTechnician

The details of the problem, constraining conditions, objective and advice on how to model them is
found in the workbook for this training.

Exercise folder
<trainingDir>\OPL63.labs\Scheduling\Staff\work\sched_staffWork

© Copyright IBM Corporation 2009. All rights reserved. 49



Step 1: Declare task interval and precedences
Objective

• Start building a scheduling model using some basic CP Optimizer constructs.

Actions
• Examine data and model files
• Define the tasks and precedences
• Solve the model and examine the output

References
interval

endBeforeStart

Examine data and model files
1. Import the sched_staffWork project into the OPL Projects navigator (Leave the Copy

projects into workspace box unchecked) and open the step1.mod and data.dat files.

The .mod file represents a part of what the finished model will look like. Most of the model
is already done.

Note that there is no objective function. At this point, you have what is called a
satisfiability problem. Running it will determine values that satisfy the constraints,
without the solution necessarily being optimal.

2. Examine closely how the data declarations for the model are formulated.
3. Note especially, the declaration of the set demands. This creates a set whose members come

from the tuple Demand, which is a tuple of tuples (RequestDat and TaskDat). This set is
made sparse by filtering it such that only task/request pairs that are found in the tuple set
recipes are included. Effectively, it creates a sparse set of required tasks to be performed
in a request and operations (the same tasks associated with a given resource). Only valid
combinations are in the set.

This is a good example of the power of tuple sets to create sparse sets of complex data.

4. The file sched_staff.dat instantiates the data as outlined in the problem definition. it
instantiates

• ResourceTypes
• RequestTypes
• TaskTypes
• resources
• requests
• tasks
• recipes
• dependencies
• requirements

Discuss how model and data files are related with your instructor and fellow students.

Define the tasks and precedences
You are now ready to start declaring decision variables and constraints. At this point, we will define
only the tasks, and the precedence rules that control them.

1. Declare an interval decision value to represent the time required to do each request/operation
pair in the set demands. Name the decision variable titasks:

© Copyright IBM Corporation 2009. All rights reserved.50



dvar interval titasks[d in demands] size d.task.ptime;;

2. An important aspect of the modeling is expressing the precedence constraints on the tasks
(demands). These constraints can be expressed using the constraint endBeforeStart.

The step1.mod file already contains the preparatory declarations:

forall(d1, d2 in demands, dep in dependencies :
d1.request == d2.request &&
dep.taskb == d1.task.type &&
dep.taska == d2.task.type)

Examine these declarations with your instructor to understand clearly what they mean.

3. Write the endBeforeStart constraint.
4. Compare with the solution in

<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\step1.mod.

Solve the model and examine the output
1. Solve the model by right clicking the Step1 run configuration and selecting Run this from

the context menu.
2. Look at the results in theSolutions output tab. Can you determine what the displayed values

represent?
3. Look at the Engine log and Statistics output tabs, and note that this model is, for the

moment, noted as a “Satisfiability problem.”
4. Close Step1.mod.

© Copyright IBM Corporation 2009. All rights reserved. 51



Step 2: Compute the end of a task and define the objective
Actions

• Compute the time needed for each request
• Transform the business objective into the objective function
• Solve the model and examine the output

References
span

all

maxl

Compute the time needed for each request
1. Open Step2.mod for editing.
2. The requests are modeled as interval decision variables. Write the following declaration in

the model:

dvar interval tirequests[requests];;

3. Write a span constraint to link this decision variable to the appropriate titasks instances
.

Use the all quantifier to associate the required tasks for each request with the
appropriate duration.

4. Check your solution against
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step2.mod.

Transform the business objective into the objective function
The business objective requires the model to minimize the total number of late days (days beyond
the due date when requests are actually finished). To do this in the model, you need to write an
objective function that minimizes the time for each request that exceeds the due date.

1. Calculate the number of late days for each request:
The data element requests is the set of data that instantiates the tuple RequestDat.
The duedate is included in this information.

•

• The interval tirequests represents the time needed to perform each request.
• Subtract the duedate from the date on which tirequests ends.

Use the endof function to determine the end time of tirequests.

2. Include a test that discards any negative results (requests that finish early) from the objective
function.

Use the maxl function to select the greater of:
• the difference between due date and finish date
• 0

3. Minimize the sum of all the non-negative subtractions, as calculated for each request.

Check the solution in
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step2.mod.

Solve the model and examine the output
1. Solve the model by right clicking the Step2 run configuration and selecting Run this from

the context menu.

© Copyright IBM Corporation 2009. All rights reserved.52



2. Look at the Engine log and Statistics output tabs, and note that the model is now reported
as a “Minimization problem,” after the addition of the objective function. Scroll down a little
further and notice the number of fails reported.

3. Look at the results in the Solutions output tab. You will notice that an objective is now
reported, in addition to the values of titasks and tirequests.

© Copyright IBM Corporation 2009. All rights reserved. 53



Step 3: Define the resource constraints
Actions

• Review the needs
• Assign workers to tasks
• “Just enough” constraint
• Check your work and solve the model
• Synchronize simultaneous operations and observe the effects

References
synchronize

optional

sequence

Review the needs
So far, you have defined the following constraints as identified in the business problem, as outlined
in the workbook:

• For each demand task, there are exactly the required number of task-resource operation
intervals present.

• Each task precedence is enforced.
• Each request interval decision variable spans the associated demand interval decision

variables.

You now need to meet the following needs, not yet dealt with in the model:

• Each task-resource operation interval that is present is synchronized with the associated
task's demand interval.

• There is no overlap in time amongst the present operation intervals associated with a given
resource.

• At any given time, the number of overlapping task-resource operation intervals for a specific
resource type do not exceed the number of available resources for that type.

Assign workers to tasks
It is now time to deal with the question of who does what. We know from the data that there is more
than one resource, in some cases, capable of doing a given task. How do we decide who is the best one
to send on a particular job?

The key idea in representing a scheduling problem with alternative resources is:

• Model each possible task-resource combination with an optional interval decision variable.
• Link these with an interval decision variable that represents the entire task itself (using a

synchronize constraint).
1. Open Step3.mod for editing.
2. You will see that a new data declaration has been added:

tuple Operation {
Demand dmd;;
ResourceDat resource;;

};;
{Operation} opers = {<d, r >| d in demands, m in requirements, r in
resources : d.task.type == m.task && r.type == m.resource};;

The members of the tuple set opers are the set of tasks assigned to a resource.

3. There is also a new decision variable associated with this tuple set that calculates the time
required for each operation:

dvar interval tiopers[opers] optional;;

© Copyright IBM Corporation 2009. All rights reserved.54



Note that this variable is optional. If one of the optional interval variables is present in a
solution, this indicates that the resource associated with it is assigned to the associated task.

Remember that in this model a task is called a demand, and a task-resource pair is
called an operation.

4. Declare a sequence decision variable named workers, associated with each resource.

Use all to connect each resource used in an operation to its related tiopers
duration:

dvar sequence workers[r in resources] in all(o in opers : o.resource ==
r) tiopers[o];;

5. Constrain this decision variable using a noOverlap constraint to indicate the order in which
a resource performs its operations.

“Just enough” constraint
Another constraint states that for each demand task, there are exactly the required number of
task-resource operation intervals present (“just enough” to do the job – not more or less). The presence
of an optional interval can be determined using the presenceOf constraint:

forall(d in demands, rc in requirements : rc.task == d.task.type) {
sum (o in opers : o.dmd == d && o.resource.type == rc.resource)
presenceOf(tiopers[o]) == rc.quantity;;

• Write this into the model file.

Check your work and solve the model
1. Compare your results with the contents of

<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step3.mod

Do not yet copy the synchronization constraint into your work copy. First you are
going to solve the model and observe the results.

2. Solve the model by right clicking the Step3 run configuration and selecting Run this from
the context menu.

3. Look at the Engine log and Statistics output tabs, and note that the number of variables
and constraints treated in the model has increased slightly.

4. The results in the Solutions output tab show values for four decision values now, as well as
the solution.

Synchronize simultaneous operations and observe the effects
1. Declare a constraint that synchronizes each task-resource operation interval that is present

with the associated task's demand interval:

forall (r in requests, d in demands : d.request == r)
synchronize(titasks[d], all(o in opers : o.dmd == d) tiopers[o]);;

2. Solve the model by right clicking the Step3 run configuration and selecting Run this from
the context menu.

3. Look at the Engine log and Statistics output tabs. The number of variables and constraints
treated in the model has increased significantly, as has the number of fails.

4. Look at the results in the Solutions output tab, and note, especially how values forworkers
have changed from the previous solve.

5. Close Step3.mod.

© Copyright IBM Corporation 2009. All rights reserved. 55



Step 4: Add a surrogate constraint to accelerate search
Actions

• Declare the cumulative function
• Constrain the cumulative function
• Solve the model and examine the results

Reference
cumulFunction

Declare the cumulative function
1. Open Step4.mod for editing.
2. To model the surrogate constraint on resource usage, a cumulative function expression is

created for each resource type. Each cumulFunction is modified by a pulse function for
each demand. The amount of the pulse changes the level of the cumulFunction by the
number of resources of the given type required by the demand:

cumulFunction cumuls[r in ResourceTypes] =
sum (rc in requirements, d in demands : rc.resource == r && d.task.type
== rc.task) pulse(titasks[d], rc.quantity);;

Constrain the cumulative function
1. You will see that a new intermediate data declaration exists:

int levels[rt in ResourceTypes] = sum (r in resources : r.type == rt)
1;;

This is used to test for the presence of a given resource in a resource type.

2. Write a constraint that requires, when a resource is present in a resource type, that the value
of the cumulFunction must not exceed the value of levels.

3. Compare your results with the contents of
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step4.mod

Solve the model and examine the results
• Solve the model by right clicking the Step4 run configuration and selecting Run this from

the context menu.
• If you look at theEngine log andStatistics output tabs, youwill note a dramatic improvement

in the number of fails, thanks to the surrogate constraint.

© Copyright IBM Corporation 2009. All rights reserved.56


