
Putting everything together - a staff scheduling problem

Learning objective
Use OPL scheduling keywords and
syntax to model a simple staff
scheduling problem

Key terms
• alternative resource
• resource pool
• surrogate constraint

The business problem
You are now going to use OPL to create a model representing a
staff scheduling problem. This is a classic type of task-based
scheduling problem to model.

A telephone company must schedule customer requests for
installation of different types of telephone lines:

• First (or principal) line
• Second (or additional) line
• ISDN (digital) line

Each request has a requested due date; a due date can be missed,
but the objective is to minimize the number of days late.

These three request types each have a list of tasks that must be completed in order to
complete the request. There are precedence constraints associated with some of the
tasks. Each task has a fixed duration and also may require certain fixed quantities of
specific types of resources.

The resource types are

• Operator
• Technician
• CherryPicker (a type of crane)
• ISDNPacketMonitor
• ISDNTechnician.

The tasks types, along with their durations and resource requirements are outlined in
the following table:

ResourcesDurationTask type

Operator1MakeAppointment

Technician1FlipSwitch

Technician x 23InteriorSiteCall

• Technician
• ISDNTechnician
• ISDNPacketMonitor

3ISDNInteriorSiteCall

• Technician x 2
• CherryPicker

2ExteriorSiteCall

Technician1TestLine

Each request type has a set of task types that must be executed. Some of the tasks must
be executed before other tasks can start:

Preceding tasksTask typeRequest type

FlipSwitchFirstLineInstall

FlipSwitchTestLine

© Copyright IBM Corporation 2009. All rights reserved.160

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 4: Putting everything together - a staff scheduling problem



Preceding tasksTask typeRequest type

MakeAppointmentSecondLineInstall

MakeAppointmentInteriorSiteCall

InteriorSiteCallTestLine

MakeAppointmentISDNInstall

MakeAppointmentISDNInteriorSiteCall
ExteriorSiteCall

InteriorSiteCall,
ExteriorSiteCall

TestLine

The data
The following resources are available:

ID/NameResource

"Patrick"Operator

"JohnTec"Technician

"PierreT"Technician

"VIN43CP"CherryPicker

"VIN44CP"CherryPicker

"EQ12ISD"ISDNPacketMonitor

"RogerTe"ISDNTechnician

The requests that need to be scheduled are:

Due dateRequest TypeRequest Number

22FirstLineInstall0

22SecondLineInstall1

1FirstLineInstall2

21ISDNInstall3

21SecondLineInstall4

22ISDNInstall5

© Copyright IBM Corporation 2009. All rights reserved. 161

Lesson 9: Scheduling in OPL with CP Optimizer / Topic 4: Putting everything together - a staff scheduling problem



Model the staff scheduling problem

You are now going to perform a series of steps in the Staff Scheduling workshop based on
this problem.

What is the objective?
In business terms, we might say the objective is “to improve on-time performance.” However,
this is a qualitative statement that is difficult to model. In order to find a modeling
representation (i.e. quantifiable) of the idea, we need to turn things around; instead of
maximizing something abstract, we find a number that needs to be kept to a minimum. Thus,
our objective becomes:

To minimize the total number of late days (days beyond the due date when requests are
actually finished).

What are the unknowns?
The unknowns are:

• When each task will start
• Which resource will be assigned to each task

Before you begin to work with the lab files, here is an overview of what you are going to do.
Each task will be decomposed step by step to demonstrate the process.

How to model this situation:
1. The task type FlipSwitch requires a Technician, and there are two Technicians.

For each task of this type, you create three interval decision variables. Two of these
intervals are optional, meaning they may or may not appear in the solution.

2. To constrain such that when an optional interval is present, it is scheduled at exactly
the same time as the task interval, use a synchronize constraint.

3. To ensure that the appropriate number of worker intervals are used, write a constraint
that requires that the sum of that the sum of present worker intervals is equal to the
number of resources required.

Details of the intervals for FlipSwitch
• One optional represents JohnTec being assigned to the task
• The other optional represents PierreT being assigned to the task.
• The third interval represents the task itself, and is used in other constraints.

In general, if there are multiple resources with identical properties, it is best to model
them as a resource pool. However, one can imagine that in this example new
constraints related to workers' days-off could be added, so here each worker is treated
as an individual resource.

Resource pools are explained in the section on surrogate constraints.

Modeling the precedence constraints
To model that some tasks in a request must occur before other tasks in the same request,
you use the precedence constraint endBeforeStart.

While the data for this problem does not require there to be any delay between tasks, you
can add a delay to the model to allow for the possibility of a delay.

In the Staff Scheduling workshop, perform theDeclare task interval and precedences
step.

Now you will begin the hands-on part of this exercise, and build the staff scheduling model
step by step.

© Copyright IBM Corporation 2009. All rights reserved.162

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem



You can perform this lab using the HTML workshop, or by following the instructions in the
workbook. The HTMLworkshop will give you direct access to OPL documentation pages that
can help you with the lab.

Declare task interval and precedences
Objective

• Start building a scheduling model using some basic CP Optimizer constructs.

Actions
• Examine data and model files
• Define the tasks and precedences
• Solve the model and examine the output

References
interval
endBeforeStart

Examine data and model files
1. Import the sched_staffWork project into the OPL Projects navigator (Leave theCopy

projects into workspace box unchecked) and open the step1.mod and data.dat
files.

The .mod file represents a part of what the finished model will look like. Most of the
model is already done.

Note that there is no objective function. At this point, you have what is called
a satisfiability problem. Running it will determine values that satisfy the
constraints, without the solution necessarily being optimal.

2. Examine closely how the data declarations for the model are formulated.
3. Note especially, the declaration of the set demands. This creates a set whose members

come from the tuple Demand, which is a tuple of tuples (RequestDat and TaskDat).
This set is made sparse by filtering it such that only task/request pairs that are found
in the tuple set recipes are included. Effectively, it creates a sparse set of required
tasks to be performed in a request and operations (the same tasks associated with a
given resource). Only valid combinations are in the set.

This is a good example of the power of tuple sets to create sparse sets of complex
data.

4. The file sched_staff.dat instantiates the data as outlined in the problem definition.
it instantiates

• ResourceTypes
• RequestTypes
• TaskTypes
• resources
• requests
• tasks
• recipes
• dependencies
• requirements

Discuss howmodel and data files are related with your instructor and fellow students.

Define the tasks and precedences

© Copyright IBM Corporation 2009. All rights reserved. 163

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem



You are now ready to start declaring decision variables and constraints. At this point, we will
define only the tasks, and the precedence rules that control them.

1. Declare an interval decision value to represent the time required to do each
request/operation pair in the set demands. Name the decision variable titasks:

dvar interval titasks[d in demands] size d.task.ptime;

2. An important aspect of the modeling is expressing the precedence constraints on the
tasks (demands). These constraints can be expressed using the constraint
endBeforeStart.

The step1.mod file already contains the preparatory declarations:

forall(d1, d2 in demands, dep in dependencies :
d1.request == d2.request &&
dep.taskb == d1.task.type &&
dep.taska == d2.task.type)

Examine these declarations with your instructor to understand clearly what theymean.

3. Write the endBeforeStart constraint.
4. Compare with the solution in

<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\step1.mod.

Solve the model and examine the output
1. Solve the model by right clicking the Step1 run configuration and selecting Run this

from the context menu.
2. Look at the results in the Solutions output tab. Can you determine what the displayed

values represent?
3. Look at the Engine log and Statistics output tabs, and note that this model is, for

the moment, noted as a “Satisfiability problem.”
4. Close Step1.mod.

Modeling the objective
To model the objective you need to determine the end time of each request. The request itself
can be seen as an interval with a variable length. The request interval must cover, or span,
all the intervals associated with the tasks that comprise the request.

You create the objective by finding the difference between the end time and the due date and
minimizing it.

Now perform the next step of the Staff Schedulingworkshop,Compute the end of a task
and define the objective and the first substep of the Define the resource constraints
step: Review the needs.

Compute the end of a task and define the objective
Actions

• Compute the time needed for each request
• Transform the business objective into the objective function
• Solve the model and examine the output

References
span
all
maxl

© Copyright IBM Corporation 2009. All rights reserved.164

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem



Compute the time needed for each request
1. Open Step2.mod for editing.
2. The requests are modeled as interval decision variables. Write the following declaration

in the model:

dvar interval tirequests[requests];

3. Write a span constraint to link this decision variable to the appropriate titasks
instances .

Use the all quantifier to associate the required tasks for each request with
the appropriate duration.

4. Check your solution against
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step2.mod.

Transform the business objective into the objective function
The business objective requires the model to minimize the total number of late days (days
beyond the due date when requests are actually finished). To do this in the model, you need
to write an objective function that minimizes the time for each request that exceeds the due
date.

1. Calculate the number of late days for each request:
The data element requests is the set of data that instantiates the tuple
RequestDat. The duedate is included in this information.

•

• The interval tirequests represents the time needed to perform each request.
• Subtract the duedate from the date on which tirequests ends.

Use the endof function to determine the end time of tirequests.

2. Include a test that discards any negative results (requests that finish early) from the
objective function.

Use the maxl function to select the greater of:
• the difference between due date and finish date
• 0

3. Minimize the sum of all the non-negative subtractions, as calculated for each request.

Check the solution in
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step2.mod.

Solve the model and examine the output
1. Solve the model by right clicking the Step2 run configuration and selecting Run this

from the context menu.
2. Look at the Engine log and Statistics output tabs, and note that the model is now

reported as a “Minimization problem,” after the addition of the objective function.
Scroll down a little further and notice the number of fails reported.

3. Look at the results in the Solutions output tab. You will notice that an objective is
now reported, in addition to the values of titasks and tirequests.

Review the needs
So far, you have defined the following constraints as identified in the business problem, as
outlined in the workbook:

• For each demand task, there are exactly the required number of task-resource
operation intervals present.

© Copyright IBM Corporation 2009. All rights reserved. 165

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem



• Each task precedence is enforced.
• Each request interval decision variable spans the associated demand interval decision

variables.

You now need to meet the following needs, not yet dealt with in the model:

• Each task-resource operation interval that is present is synchronized with the
associated task's demand interval.

• There is no overlap in time amongst the present operation intervals associated with
a given resource.

• At any given time, the number of overlapping task-resource operation intervals for
a specific resource type do not exceed the number of available resources for that type.

Modeling the alternative resources
The task type FlipSwitch requires a technician. There are two technicians, i.e. there are
two alternative resources, available to do the same task. You want to be able to optimize
how each of these is used relative to the objective.

To create the alternative resources, you declare optional intervals for each possible
task/resource pair.

To constrain a resource so that it cannot be used by more than one task at a given time, you
need to ensure that there is no overlap in time amongst the intervals associated with a given
resource.

How to model this situation:
1. Create a sequence decision variable from those intervals
2. Place a noOverlap constraint on the sequence decision variable.

Now perform the rest of the Define the resource constraints step.

Assign workers to tasks
It is now time to deal with the question of who does what. We know from the data that there
is more than one resource, in some cases, capable of doing a given task. How do we decide who
is the best one to send on a particular job?

The key idea in representing a scheduling problem with alternative resources is:

• Model each possible task-resource combination with an optional interval decision
variable.

• Link these with an interval decision variable that represents the entire task itself (using
a synchronize constraint).

1. Open Step3.mod for editing.
2. You will see that a new data declaration has been added:

tuple Operation {
Demand dmd;
ResourceDat resource;

};
{Operation} opers = {<d, r >| d in demands, m in requirements, r
in resources : d.task.type == m.task && r.type == m.resource};

The members of the tuple set opers are the set of tasks assigned to a resource.

3. There is also a new decision variable associated with this tuple set that calculates the
time required for each operation:

dvar interval tiopers[opers] optional;

© Copyright IBM Corporation 2009. All rights reserved.166

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem



Note that this variable is optional. If one of the optional interval variables is present
in a solution, this indicates that the resource associated with it is assigned to the
associated task.

Remember that in this model a task is called a demand, and a task-resource
pair is called an operation.

4. Declare a sequence decision variable named workers, associated with each resource.

Use all to connect each resource used in an operation to its related
tiopers duration:

dvar sequence workers[r in resources] in all(o in opers :
o.resource == r) tiopers[o];

5. Constrain this decision variable using a noOverlap constraint to indicate the order
in which a resource performs its operations.

“Just enough” constraint
Another constraint states that for each demand task, there are exactly the required number of
task-resource operation intervals present (“just enough” to do the job – not more or less). The
presence of an optional interval can be determined using the presenceOf constraint:

forall(d in demands, rc in requirements : rc.task == d.task.type) {
sum (o in opers : o.dmd == d && o.resource.type == rc.resource)
presenceOf(tiopers[o]) == rc.quantity;

• Write this into the model file.

Check your work and solve the model
1. Compare your results with the contents of

<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step3.mod

Do not yet copy the synchronization constraint into yourwork copy. First you
are going to solve the model and observe the results.

2. Solve the model by right clicking the Step3 run configuration and selecting Run this
from the context menu.

3. Look at the Engine log and Statistics output tabs, and note that the number of
variables and constraints treated in the model has increased slightly.

4. The results in the Solutions output tab show values for four decision values now, as
well as the solution.

Synchronize simultaneous operations and observe the effects
1. Declare a constraint that synchronizes each task-resource operation interval that is

present with the associated task's demand interval:

forall (r in requests, d in demands : d.request == r)
synchronize(titasks[d], all(o in opers : o.dmd == d)

tiopers[o]);

2. Solve the model by right clicking the Step3 run configuration and selecting Run this
from the context menu.

3. Look at the Engine log and Statistics output tabs. The number of variables and
constraints treated in the model has increased significantly, as has the number of fails.

4. Look at the results in the Solutions output tab, and note, especially how values for
workers have changed from the previous solve.

5. Close Step3.mod.

© Copyright IBM Corporation 2009. All rights reserved. 167

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem



Surrogate constraints
While these constraints completely describe the model, at times it is beneficial to introduce
additional constraints that improve the search. Along with treating the resources individually,
you can also treat the set of resources of a given type as a resource pool. A resource pool
can be modeled using a cumulative function expression.

Each resource type has one cumulFunction associated with it. Between the start and end
of a task, the cumulFunction for any required resource is increased by the number of
instances of the resource that the task requires, using the pulse function.

A constraint that the cumulFunction never exceeds the number of resources of the given
type is added to the model.

These surrogate constraints on the cumulFunction expressions are crucial as they
enforce a stronger constraint when the whole set of resources of the tasks is not
chosen.

Complete the Staff Scheduling workshop by performing the Add a surrogate constraint
to accelerate search step.
You can perform this lab using the HTML workshop, or by following the instructions in the
workbook. The HTMLworkshop will give you direct access to OPL documentation pages that
can help you with the lab.

Add a surrogate constraint to accelerate search
Actions

• Declare the cumulative function
• Constrain the cumulative function
• Solve the model and examine the results

Reference
cumulFunction

Declare the cumulative function
1. Open Step4.mod for editing.
2. To model the surrogate constraint on resource usage, a cumulative function expression

is created for each resource type. Each cumulFunction is modified by a pulse function
for each demand. The amount of the pulse changes the level of the cumulFunction
by the number of resources of the given type required by the demand:

cumulFunction cumuls[r in ResourceTypes] =
sum (rc in requirements, d in demands : rc.resource == r &&

d.task.type == rc.task) pulse(titasks[d], rc.quantity);

Constrain the cumulative function
1. You will see that a new intermediate data declaration exists:

int levels[rt in ResourceTypes] = sum (r in resources : r.type ==
rt) 1;

This is used to test for the presence of a given resource in a resource type.

2. Write a constraint that requires, when a resource is present in a resource type, that the
value of the cumulFunction must not exceed the value of levels.

3. Compare your results with the contents of
<trainingDir>\OPL63.labs\Scheduling\Staff\solution\sched_staffSolution\Step4.mod

© Copyright IBM Corporation 2009. All rights reserved.168

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem



Solve the model and examine the results
• Solve the model by right clicking the Step4 run configuration and selecting Run this

from the context menu.
• If you look at the Engine log and Statistics output tabs, you will note a dramatic

improvement in the number of fails, thanks to the surrogate constraint.

© Copyright IBM Corporation 2009. All rights reserved. 169

Lesson 9: Scheduling in OPL with CP Optimizer / Practice: Model the staff scheduling problem


