
Lab 5: Steel mill inventory matching
Workshop overview
In this workshop, you will practice using IBM® ILOG CP Optimizer to solve a steel mill inventory
matching problem. We first present a description of the problem the production manager faces. Then
you'll get a chance to derive the CPmodel from this description andmodel the problem using the OPL
IDE. You'll also get a chance to experiment with search phases and alternative formulations to improve
the solution speed.

Problem description
The steel mill has an inventory of steel slabs, of a finite number of different capacities (sizes), that
are used to manufacture different types of steel coil. During production, some of the steel from the
slabs is lost. The production manager has to decide which steel slabs to match with which coil orders
in order to minimize the total loss. In optimization terms, the problem can be described as follows:

• Objective
• Minimize the total loss

• Decision variables
• Which slab should be matched with which coil order
• The capacity of each slab used

• Constraints
• A coil order can be built from at most one slab, although each slab can be used to fill

several coil orders.
• Each type of steel coil requires a specific production process, with each such process

encoded by a color designated by a number between 1 and 88. A slab can be used for
at most two different coil production processes or colors.

• Each steel coil order has an associated weight, and the total weight of all coil orders
matched with a slab must be less than the capacity of that slab.

• The amount of loss from each slab equals the capacity of the slab minus the total
weight of all coil orders assigned to that slab.

• The total loss is the sum of losses from all slabs.
• An unlimited quantity of steel slabs of each capacity is available.

Problem data
There are 111 coil orders and 21 different slab sizes, namely 12, 14, 17, 18, 19, 20, 23, 24, 25, 26, 27,
28, 29, 30, 32, 35, 39, 42, 43, and 44. The table below gives theweight and color data for 5 coil orders.
The complete data set can be seen in the data file, which can be found in the exercise folder referred
to below.

ColorWeightCoil order

73301

74302

75303

62110

42111

Even though an unlimited quantity of steel slabs is available, you can use an upper bound of 111 on
the total number of steel slabs because of the obvious solution of using one slab per coil order.

Exercise folder
<trainingDir>\OPL63.labs\SteelMill\work

© Copyright IBM Corporation 2009. All rights reserved.42



Step 1: Solve the problem using CP Optimizer and the OPL
IDE
Actions

• Declare the data
• Declare the decision variables
• Define the objective function
• Define the constraints
• Solve the problem

Reference
constraint programming

Declare the data
1. In the OPL IDE, import the project by selecting File >Import >Existing Projects into

Workspace, and choosing the SteelMill_work project from the exercise folder
<trainingDir>\OPL63.labs\Steelmill\work. Leave theCopyprojects intoworkspace
box unchecked.

2. Expand the project to see the contents. For this step, you'll only work with the following:
• Model file: steelmill_work.mod
• Settings file: steelmill_work.ops
• Data file: steelmill_work.dat
• Run configuration: naive model (default)

3. Open themodel file, steelmill_work.mod, and see that the following data has been declared:
• The number of coil orders: int nbOrders = ...;;
• The weight of each coil order: int weight[1..nbOrders] = ...;;

Now use similar syntax to declare the following:

• The integer number of steel slabs available: nbSlabs
• The integer number of colors: nbColors
• The integer number of distinct slab capacities: nbCap
• An integer array for the actual capacities associated with each index in nbCap:

capacities
• An integer array for the colors associated with each coil order: colors

4. The remaining completed items in the data declaration part of the model file are used later
in the model, and are as follows:

• maxCap: This is the greatest available capacity and will be used to define the domain
of the decision variables for slab capacity.

• caps: This is the set of available capacities (with the same content as the array
capacities) and is used in a later substep to define the capacity constraints for each
slab.

5. Open the data file, steelmill_dat.dat, to see how the data is instantiated.

Declare the decision variables
1. In the model file, steelmill_work.mod, tell OPL that you're using CP by adding the line

using CP;; at the top.
2. In the section titled /* Decision variables */, the two decision variables have already

been declared as follows:
• dvar int where[1..nbOrders] in 1..nbSlabs: This variable is used to determine

which slab each coil order is assigned to, and is therefore indexed over all orders with
domain of all slab numbers.

• dvar int capacity[1..nbSlabs] in 0..maxCap: This variable is used to
determine the capacity of each slab, and is therefore indexed over all slab numbers,
with domain of all values between 0 and the maximum available capacity.

© Copyright IBM Corporation 2009. All rights reserved.44



3. Declare an integer decision expression called load indexed over the slabs. Assign the value
of load to equal the sum of the weights of all coil orders assigned to a slab.

First write the expression to sum the weights of all coil orders. Next, use the where
variable, together with the logical equals (==), to write an expression that evaluates
to 1 if an order is assigned to a slab and 0 otherwise. Multiply this expression with
the weight to add only the weight of orders assigned to the slab.

4. Declare another integer decision expression called colorAssigned indexed over the colors
and the slabs. Complete the declaration with an expression to assign the value of
colorAssigned to be 1 if any coil orders assigned to a given slab have a particular color and
0 otherwise.

First use the where variable and the logical equals (==) that you used for the load
expression to determine whether an order is assigned to a slab (1) or not (0). Next, in
the same expression, use the logical OR statement (or) to create an “or” over all
assigned orders with the particular color. Be sure to check the syntax for the logical
OR statement in the online documentation at Language Quick Reference > OPL
keywords.

Define the objective function
1. In the section titled Objective function, write the objective to minimize total loss. The

total loss is defined as the sum, over all slabs, of the slab capacity minus the slab load.

Define the constraints
1. In the section titled Constraints and within the subject to block, you'll see a forall

constraint declaration that uses the caps set to restrict the domain of the capacity variable.
Because the capacity variable has a domain enumerated from a set, its domain cannot be
defined during data declaration as follows:

dvar int capacity[1..nbSlabs] in caps;; // NOT ALLOWED

Instead, a continuous domain has to be defined at declaration, and the domain then has to be
restricted in the constraint block.

2. Add a constraint within this same forall block to state that the slab load must be less than
or equal to the slab capacity.

3. Add a constraint called colorCt for each slab that states that the number of colors assigned
to that slab must be less than or equal to 2.

Use the colorAssigned decision expression.

4. Your model is complete at this point. If you have any remaining errors, check the solution or
check with your instructor before attempting to solve the model.

Solve the model
1. In the OPL Projects Navigator, expand the Run Configurations for your project. right

click naive model (default) and select Run this from the context menu.
2. Select the Engine log output tab to see the solution progress.
3. Let the model run for about a minute and then click the red stop button (you can see the

solution time scrolling by periodically on the left side of the log).
4. Scroll to the start of the log and notice that the first solution found (under the Best column),

is around 1000. Scroll to the end of the log and notice that the best solution found after about
a minute is around 30. In the next step you'll get a chance to implement a search phase to
improve performance.

© Copyright IBM Corporation 2009. All rights reserved. 45



Step 2: Implement a search phase
Actions

• Add a search phase
• Solve the model

Reference
what is a search phase?

Add a search phase
In this exercise you'll write a search phase to guide CPOptimizer in the selection of decision variables
during the solution search. For the steel mill problem, an intuitive search strategy is to first assign
orders to slabs (first search on the where decision variable), and afterwards assign capacities to each
slab (next search on the capacity decision variable).

If you're confident that your model is correct, you can continue working with it. Otherwise, you can
continue with the searchPhase_work.mod file. These instructions assume you're using the latter
file, which contains themodel up to this point, together with some instructions on how to do implement
the search phase.

1. Scroll down to the section titled Search phase. You'll write the search phase within the
execute statement.

2. Define the script variable f to access the CP search modifier factory.
3. Define a search phase, phase1, on the where variable using the searchPhase method.
4. Define another search phase, phase2, on the capacity variable.
5. Use the setSearchPhase method to set the search to first use phase1, and next phase2.
6. If you have any errors, check the solution or check with your instructor before attempting to

solve the model.

Solve the model
1. In the OPL Projects Navigator, expand the Run Configurations for your project. right

click search phase and select Run this from the context menu.
2. Select the Engine log output tab to see the solution progress.
3. Let the model run for about a minute and then click the red stop button (you can see the

solution time scrolling by periodically on the left side of the log).
4. Scroll to the start of the log and notice that the first solution found (under the Best column),

is around 20 –much better than the first best solution of 1000 without the search phase. Scroll
to the end of the log and notice that the best solution found after about a minute is around 8,
again an improvement compared to the solution of 30 without a search phase. In the next step
you'll get a chance to try and improve performance by changing the OPL model.

© Copyright IBM Corporation 2009. All rights reserved.46



Step 3: Improve the model
Actions

• Improve the model
• Solve the model

Improve the model
The key to understanding the model improvements in this exercise, is realizing that once the load on
a slab is known, its capacity becomes a trivial decision. Specifically, if the load is known, the capacity
of that slab will simply be the smallest available capacity just bigger than the load on the slab. In
this exercise, you'll take advantage of this knowledge to improve themodel by removing the capacity
decision variable.

1. In the same work project in the OPL IDE, open the betterModel_work.mod file.
2. In the Data declaration section of the model file, notice that a new line has been added:

int loss[c in 0..maxCap] = min(i in 1..nbCap : capacities[i] >= c)
capacities[i] -­ c;;

This line takes advantage of the fact that the load (and loss) is an integer and there are
therefore a finite number of possible values the load on a slab can take, namely all integer
values between 0 and maxCap. For each such value, the array above defines the loss to be the
smallest capacity just larger than the load (defined by using the min function), minus the
load. The array uses the index c and you'll see next how it can be used with the load values
instead.

3. In the Decision variables section, remove the capacity decision variable. All the other
variables remain the same.

4. Change your objective function to minimize the loss directly instead of using the capacity
and load decision variables.

Index the loss array with the load variable.

If you're familiar with MP, you'll notice here one of the major differences betweenMP
modeling and CP modeling: In CP a decision variable can be used to index an array,
as is shown here where the load variable is used as an index for the loss array.

5. In the Constraints section, remove the constraints that use the capacity decision variable,
seeing that they are no longer required when this variable doesn't exist.

6. Finally, in the Search phase section, remove phase2 seeing that you no longer have the
capacity variable.

7. If you have any errors, check the solution or check with your instructor before attempting to
solve the model.

Solve the model
1. In the OPL Projects Navigator, expand the Run Configurations for your project. right

click Better Model and select Run this from the context mneu.
2. Select the Engine log output tab to see the solution progress.
3. See that IBM ILOGCPOptimizer finds the optimal match between orders and slabs, resulting

in zero loss, in about 0.1 seconds.

The steel mill problem is a benchmark problem used to benchmark optimization
engine performance, and it's worth noting that IBM ILOG CP Optimizer is the first
constraint programming engine to be able to find an optimal solution to this problem.

© Copyright IBM Corporation 2009. All rights reserved. 47



Step 4: Use the pack constraint
Action

• Use the pack constraint

Reference
pack

Use the pack constraint
This part of the exercise is optional and shows you how to use one of IBM ILOG CP Optimizer's more
advanced constructs, namely the pack constraint. This constraint is generally used to assign items
into packs of finite capacity. In this sense, the orders are the items, and the slabs are the packs of
finite capacity to which the items are assigned (see the OPL Help for further information on the
pack constraint).

1. In the same project you've been working in, open the polished_work.mod file.
2. In the Data declaration section, see that a new property has been declared, namely

maxLoad. This is the sum of the weights of all coil orders.
3. In the Decision variables section, see that load is no longer a decision expression, but

is now an integer decision variable with domain between 0 and maxLoad. The reason for this
change is that the pack constraint does not accept a decision expression as an argument and
instead requires a decision variable.

4. In the Constraints section, look at the definition of the pack constraint and try to understand
it by comparing it with the explanation in OPL Help.

5. Run the model from the Polished Model Run Configuration and see that it also finds the
optimal solution of zero loss in around 0.1 seconds.

© Copyright IBM Corporation 2009. All rights reserved.48


