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Course organisation

5 lectures/exercice labs + 5 computer labs.
Exercice labs : solving exercises on a paper
2-3 labs : introduction to a CP solver

2-3 labs : project

Evaluation : 50% of the mark for the project + 50% of the
mark for the exam (TD notés).

Course web-page :

vVvYyyvyy

v

www.math.u-bordeaux.fr/
~sadykov/teaching/MSE3315C/
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Solving technology

A solving technology offeres methods and tools for :

» Modelling constraint problems in declarative
and/or

» Solving constraint problems intelligently
Search : Explore the space of candidate solutions
Inference : Reduce the space of candidate solutions
Search : Exploit solutions to easier (sub)problems
A solver is a software that takes a model as input and tries to
solve the modelled problem.

Combinatorial (=discrete) optimisation covers satisfaction and
optimisation problems, for variables over discrete sets

Source : Pierre Flener
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Modelling vs. Programming
problem

specification

what ? (declarative) how ? (imperative)
model algorithm
automatic! manual!
program program

Source : Pierre Flener
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Examples of solving technologies
General-purpose solvers, taking a model as input :

» Boolean satisfiability (SAT)

» SAT modulo theories (SMT)

» (Mixed) integer linear programming (IP and MIP)
» Constraint Programming (CP)
>

» Hybrid technologies
Techniques, usually without modelling and solvers :
» Dynamic programming (DP)
» Greedy algorithms
» Approximation algorithms
» Generic algorithms (GA)
>
Source : Pierre Flener
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Constraint Programming Technology

Constraint Programming (CP) offeres methods and tools for :
» Modelling constraint problems in a high-level language
and
» Solving constraint problems intelligently by :

» either default search upon pushing a button

» or systematic search guided by user-given strategies
» or local search guided by user-given (meta-)heuristics
» or hybrid search

plus inference, called propagation, but little relaxation.

Slogan of CP :

Constraint Program = Model [+ Search]

Source : Pierre Flener
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Limitations of CP

CP is definitely not
> a magic-method
» A priori, it is not better than other methods (integer linear

programming, dynamic programming, local search, etc...)
> |t depends on the problem type !

> a-<press-button—-— method, at least for the moment

> It is necessary to understand the method (what is going on
«inside » it)
> It is necessary to « guide » the solution

Source : Antoine Jeanjean
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Objectives of the course

» To know for which (classes of) problems the CP methods is
good

» To know how to model efficiently these problems

» To know which modelling languages and CP solvers exist
and to know how to use them

» To understand how these solvers work inside
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Particularities of CP

» We work with decision problems — constraint satisfaction
problems (CSP)
(if an optimisation problem, a series of CSPs is solved)
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Particularities of CP

» We work with decision problems — constraint satisfaction
problems (CSP)

(if an optimisation problem, a series of CSPs is solved)
» Large modelling possibilities
(non-linear, logical, explicit constraints)

» Use of problem constraints in an active way to limit the
search space
(Additional constrains may make a problem easier)

10/41



Introductive example — Sudoku

3 4 5 7
6|2
7 1 9
2 3
3
1 6 5
7
6
82
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Introductive example — Sudoku

3

4

5

7

»

2
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—

4

»

9

5

3

8

» There are 81 cells where a digit from
1 to 9 can be put

» We need to put digits to cells in such
a way that every row (column, or a
block of 9 cells) contains different
numbers

We have just (almost) formulated a Constraint Satisfaction

problem(!)
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Introductive example — Sudoku

3 4 5 7
6|2 8 4
7 1 g | » There are 81 cells where a digit from
D) 6 3]s 1 to 9 can be put
2 3| » We need to put digits to cells in such
1/3]6 95 a way that every row (column, or a
8 4|7 block of 9 cells) contains different
6 numbers
9 5 3/8[2

We have just (almost) formulated a Constraint Satisfaction
problem(!)

In CP, the problem is solved more or less the same way you
solve a sudoku(!)
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Application domains

Location problems

Diagnosis and verification

Planning problems

Scheduling and timetabling problems
Cutting and packing

Logistic problems

vVvYvyVvyVvyy
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Real-life application | — Car Sequencing

Production Requirements:
Model A Model B ModelC  Model D

Options (v = required, X = not)- ‘ﬁ @ ” @

Sunroof e v v ®
Radio cassette v 4 v v
Asr-conditioning v v X v
Anti-rust treatment X v v v
Power brakes v X v X
Total:
Number of cars required: 30 30 20 40 120

o . C D B D C+
[ __WApra-yay . _
AR R R A

Work area for
Work area for sunroof radio cassette

Capacity Constraint: 3/3 Capacity Constraint- 2/3

Source : Alan M. Frisch
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Real-life application Il — Steel mill slab design
» The mill can make o different slab sizes.

» For each order j € J, we know a colour (route through the
mill) and a weight
> We need to pack orders onto slabs such that the total slab
capacity is minimized subject to
» capacity (slab size) constraints
» colour constraints (no more than p colours per slab)

Source : Alain Frisch

15/41



Steel mill slab design — an example solution
» Slab sizes : 0 = {1,2,4}.
> 9 orders
» 5 different colours
» Maximum number of different colours per slab is 2

h
€
b f
a
.

(size 4)  (size 3) (size3) (sizel) (sizel) (sizel)

Source : Alain Frisch

[m] = = =
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Real-life application Il — Sports scheduling

There several sport teams. In the championship, each team
should play with each other team. We need a schedule : for
each round we need to determine the pairs of teams playing
with each other. We can have additional constraints.

Round 1 | Round2 | Round 3 | Round4 | Round 5 | Round 6 | Round 7
1vs8 2vs 8 4vs7 3vs 6 3vs7 1vs5 2vs4
2vs 3 1vs7 3vs8 5vs7 1vs4 6vs8 5vs 6
4vs5 3vs5 1vs6 4vs 8 2vs 6 2vs7 7vs8
6vs7 4vs 6 2vs5 1vs2 5vs 8 3vs4 1vs3
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A «fun » application — Domino portraits

Aim : find a good approximation of an
image using the dominos from an
integer number of boxes.

Example on the right : A portrait of
George Boole, and then a sequence
of domino portraits generated using 1,
4, 16 domino boxes.

Source : (Cambazard, Horan, O’'Mahony, O’Sullivan, 2008)
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Success stories by CP users and contributors

e £l
cadence o, FICO
Google IEF. (@

JEPPESEN ORACLE’
@ QUINTIQ B RedPrairie m@

SAP4 SIEMENS Szmcron
THALES XEFROX,

Success stories : CP = technology of choice in scheduling,
configuration, personnel rostering, timetabling, ...

Source : Pierre Flener
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Real-life application at Bouygues e-lab

» Table plans for the group conferences

» Planning for interior works on construction sites
» Personnel planning

» Marketing campaign planning

» Projects exploiting the CP method

» Aids planning (on TF1)
» Planning for « call-centers »

Source : Antoine Jeanjean
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Other applications

More applications of the web-site

www.csplib.org

There are 88 applications !
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Constraint Satisfaction Problem (CSP)

CSP is a triple (X, D, C), where :
» Xis the set of variables {x1,...,xn},

» D is the set of domains {Dy,, ..., Dx,} (sets of possible
values) for these variables,

» Cis the set of constraints

{C,‘(X,'1,...,an.)}’.€|0| .

Every constraint C; restricts the values that variables
{Xi,,- .., Xj,} can take simultaneously.
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Domains

The domains can be
» finite sets :

{1,2,...,n}, {2,3,5}, {red,black,blue};
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Domains

The domains can be
» finite sets :

{1,2,...,n}, {2,3,5}, {red,black,blue};

» intervals :
[0,K], [1.2,5.9];

» trees (not in this course).
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Constraints
Constrains can be

> logic :
x=1ory=3, x=2=y=4,
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Constraints

Constrains can be
> logic :
x=1ory=3, x=2=y=4,

» arithmetic :
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(x,¥) €{(0,0),(1,0),(2,2)}, (x,y,2) € {(1,2,3),(2,3,4)};
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Constraints

Constrains can be
> logic :
x=1ory=3, x=2=y=4,

» arithmetic :
x>y, z=2x+3y-5;

» explicit (tuples of possible values) :

(x,y) € {(0,0),(1,0),(2,2)}, (x,y,2) €{(1,2,8),(2,3,4)};
» complex (global) :

all —different(Xq,...,Xn).

25/41



Arity of constraints

Constraint can have an arbitrary arity :
» A constraint is unary if it contains one variable (x = 4)
» A constraint is binary if it contains two variables (x + y = 9)
» A constraint is n-ary if it contains n variables

The notion « n-ary » is used for a constraint such that the
number of variables it contains is not known a priori (for
example, all — different)
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Solutions

Solution is an assignment of values (v4, ..., v,) to variables
(x1,...,Xn) such that

> the values are in domains of variables : v; € Dy;, Vj;

» all constrains C; are satisfied.
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Solution is an assignment of values (v4, ..., v,) to variables
(x1,...,Xn) such that

> the values are in domains of variables : v; € Dy;, Vj;
» all constrains C; are satisfied.

A CSP is satisfiable if it has a solution.

Solve a CSP < determine if it is satisfiable or not.
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Solutions

Solution is an assignment of values (v4, ..., v,) to variables
(x1,...,Xn) such that

> the values are in domains of variables : v; € Dy;, Vj;
» all constrains C; are satisfied.

An example

» Variables : x, y and z.
» Domains : Dy = D, = D, = {1,2,3}.
» One constraint : x + y = z.
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Solutions

Solution is an assignment of values (v4, ..., v,) to variables
(x1,...,Xn) such that

> the values are in domains of variables : v; € Dy;, Vj;

» all constrains C; are satisfied.

An example

» Variables : x, y and z.

» Domains : Dy = D, = D, = {1,2,3}.
» One constraint : x + y = z.

» Solutions : (1,1,2), (1,2,3), (2,1,3).

27/41



Problem types in CP

» Find a solution, if one exists (classic).
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Problem types in CP

» Find a solution, if one exists (classic).
» Find all solutions.

» Find a solution which minimizes of maximizes a criterion
(solved using dichotomy).
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Dichotomy

General algorithm (minimisation)

Find a lower bound (LB) and upper
bound (UB) for the value of the
objective function;

while UB — LB is large do

test « LB+ UBz;LB;

if exists a solution < test then
L UB < test;

save this solution;

else
L LB < test;

Example

uB

LB
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Dichotomy

General algorithm (minimisation)

Find a lower bound (LB) and upper
bound (UB) for the value of the
objective function;

while UB — LB is large do

test «+ LB+ UBZ;LB;

if exists a solution < test then
L UB < test;

save this solution;

else
L LB < test;

Example

1.
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Espagne

Pologne

Source : Philippe Baptiste
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Example | — Map coloring

Pays-bas

Belgique
DD 2

Y

France Suisse Autriche Hongrie
/ 2 D ID“ 2 s .
00% b 2009 2

Espagne
2L X))

Bosnie

2294

Lituanie
¥y Y

Portugal
¥ )

Croatie

LY

Source : Philippe Baptiste
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Example | — Map coloring

Pologne

==
=
=
=

Espagne

Source : Philippe Baptiste
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Example Il — N queens

Given a chessboard with N x N cells, put N queens in such a
way that no queen is able to capture another one.

‘&‘ » Variables :

» Domains :

c&’ » Constraints :
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queen in column J.

‘&’ » Domains : Dy, = {1,..., N}, Vi.
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Example Il — N queens

Given a chessboard with N x N cells, put N queens in such a
way that no queen is able to capture another one.

Y

i

¥

» Variables : x; — position of the
queen in column J.
» Domains : Dy, = {1,..., N}, Vi.
» Constraints :
> Xi # X, Vi,j,1 <i<j<N,
> X E X+ (—10),1<i<j<N,
> X # X+ (i—j),1<i<j<N.
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Example Il — N queens

Given a chessboard with N x N cells, put N queens in such a
way that no queen is able to capture another one.

Y

i

¥

» Variables : x; — position of the

queen in column J.
» Domains : Dy, = {1,..., N}, Vi.
» Constraints :
» all-different(Xq,...,Xn),
> X #£ X+ (—0),1<i<j<N,
> xi A Xx+(I—j),1<i<j<N.

32/41



Example Il — Sudoku

3 4 5 7
6|2 8
7 1
2 6 3
1/3]6 5
8 417
9 5 8

Constraints :

» Variables :
» Domains :
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Example Il — Sudoku

3 4

5

7

2

~

1

6

3

113]6

8

4

9

5

3

Constraints :

» Variables : x; — digit in cell (7, j).
» Domains : Dy, = {1,...,9}, V(i,)).

» The digits in each line are different :
all-different(Xj,Xjp,...,Xig), 1 <i <9,
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Example Il — Sudoku

3 4 5 7
6|2 8
7 1
2 6 3
1/3]6 5
8 417
9 5 8

Constraints :

» Variables : x; — digit in cell (7, j).
» Domains : Dy, = {1,...,9}, V(i,)).

» The digits in each line are different :
all-different(Xj,Xjp,...,Xig), 1 <i <9,

» The digits in each column are different :
all—different(XU, Xoj; - - . ,ng), 1<j<9,

» The digits in each block 3 x 3 are different :
all-different(Xak41,3/+1, X3k+1,3/14+2; - - - » X3k+3,3/+3),

0<k,I<2.
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Example IV - Giving a change

We are interested in modelling a vending machine. A user inserts
coins for a total value of T eurocents, then he selects a drink for the
price of P eurocents. We need to calculate the change to give,
knowing that the machine has E; coins of 2€, E; coins of 1€, Csg
coins of 50 eurocents, Csg coins of 20 eurocents, and Cyq coins of 10
eurocents.

» Variables : Xg2, X1, Xcs0, Xc20, XC10-
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Example IV - Giving a change

We are interested in modelling a vending machine. A user inserts
coins for a total value of T eurocents, then he selects a drink for the
price of P eurocents. We need to calculate the change to give,
knowing that the machine has E; coins of 2€, E; coins of 1€, Csg
coins of 50 eurocents, Csg coins of 20 eurocents, and Cyq coins of 10
eurocents.

» Variables : Xg2, X1, Xcs0, Xc20, XC10-
» Domains : Dy, = {0,1,...,E}, Dy, ={0,1,..., E¢},...
» Constraint :

200xg2 + 100xg1 + 50xc50 + 20Xcog + 10xc10 =T — P
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Example IV - Giving a change

We are interested in modelling a vending machine. A user inserts
coins for a total value of T eurocents, then he selects a drink for the
price of P eurocents. We need to calculate the change to give,
knowing that the machine has E; coins of 2€, E; coins of 1€, Csg
coins of 50 eurocents, Csg coins of 20 eurocents, and Cyq coins of 10
eurocents.

» Variables : Xg2, X1, Xcs0, Xc20, XC10-
» Domains : Dy, ={0,1,..., Es}, Dy, = {0,1,...,E},...

» Constraint :

200xg2 + 100xg1 + 50xc50 + 20Xcog + 10xc10 =T — P

» |f we want to minimize a number of coins to give, we need to
specify the objective function :

min Xg2 + Xg1 + Xcs0 + Xc20 + Xc1o
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Main idea

The method of Constraint Programming (which solves a CSP)
is based on working with partial solutions and enumeration
tree :

» We assign a value to a variable and see if all constraints
are still satisfied.

> If not, we « backtrack » and try another value.

» To avoid complete enumeration, each time a variable takes
a value, incompatible (with this decision) variables are
removed (this process called propagation).
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Enumeration tree

root
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An example of simple propagation

D={1,2,3,4,5,6,7,8,9}
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An example of simple propagation

D={1,2,34587289
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An example of simple propagation

D={1,2,34.58.78.9}
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An example of simple propagation

D={1,234758.789}
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An example of advanced propagation
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An example of advanced propagation
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An example of advanced propagation
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An example of complete solution

%

N

Problem : assign values from 1 to 8 to vertices, each value
should appear once, consecutive values should not be
assigned to adjacent vertices

Source : Patrick Prosser
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An example of complete solution

%

Be ready to do a backtrack.

Which vertices are more difficult to enumerate ?
Which values are less restraining ?

Source : Patrick Prosser
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An example of complete solution

{1.2.3,4,5,6,7.8}

%

N

We can now remove several variables from the domains of
other vertices.

Source : Patrick Prosser
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An example of complete solution

{3,4,5,6} {3,4,5,6}

N

N

{3,4,5,6} {3,4,5,6}

We can now remove several variables from the domains of
other vertices.

Source : Patrick Prosser
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An example of complete solution
{3,4,58) {34,586}

%

N

{3,4,5,8} {Z,4,5,6}

We can now remove several variables from the domains of
other vertices.

Source : Patrick Prosser
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An example of complete solution
{£.5.6}

N

N

{#,4,5} {4,5,6}

We guess now a value for a vertex.
Be ready to do a backtrack.

Source : Patrick Prosser
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An example of complete solution

{5,8}

%

N

{4.5} {#.5.6}

We propagate this decision.
Source : Patrick Prosser
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An example of complete solution

A solution.

Source : Patrick Prosser
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Example : enumeration tree

root

O
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Example : enumeration tree

root

® solution
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