Constraint Programming

Lecture 1. Constraint Satisfaction Problems

Ruslan Sadykov

INRIA Bordeaux — Sud-Ouest

Informatiques | mathématiques

6th January 2022

- ▶ 5 lectures/exercice labs + 5 computer labs.
- Exercice labs : solving exercises on a paper
- ▶ 2-3 labs : introduction to a CP solver
- ► 2-3 labs : project
- Evaluation: 50% of the mark for the project + 50% of the mark for the exam (TD notés).
- Course web-page :

```
www.math.u-bordeaux.fr/
~sadykov/teaching/MSE3315C/
```

- ▶ 5 lectures/exercice labs + 5 computer labs.
- Exercice labs : solving exercises on a paper
- ▶ 2-3 labs : introduction to a CP solver
- ► 2-3 labs : project
- Evaluation: 50% of the mark for the project + 50% of the mark for the exam (TD notés).
- Course web-page :

```
www.math.u-bordeaux.fr/
~sadykov/teaching/MSE3315C/
```

- ▶ 5 lectures/exercice labs + 5 computer labs.
- Exercice labs : solving exercises on a paper
- 2-3 labs : introduction to a CP solver
- ► 2-3 labs : project
- Evaluation: 50% of the mark for the project + 50% of the mark for the exam (TD notés).
- Course web-page :

```
www.math.u-bordeaux.fr/
~sadykov/teaching/MSE3315C/
```

- ▶ 5 lectures/exercice labs + 5 computer labs.
- Exercice labs : solving exercises on a paper
- 2-3 labs : introduction to a CP solver
- 2-3 labs : project
- Evaluation: 50% of the mark for the project + 50% of the mark for the exam (TD notés).
- Course web-page :

```
www.math.u-bordeaux.fr/
~sadykov/teaching/MSE3315C/
```

- ▶ 5 lectures/exercice labs + 5 computer labs.
- Exercice labs : solving exercises on a paper
- 2-3 labs : introduction to a CP solver
- 2-3 labs : project
- Evaluation: 50% of the mark for the project + 50% of the mark for the exam (TD notés).
- Course web-page :

```
www.math.u-bordeaux.fr/
~sadykov/teaching/MSE3315C/
```

- ▶ 5 lectures/exercice labs + 5 computer labs.
- Exercice labs : solving exercises on a paper
- 2-3 labs : introduction to a CP solver
- 2-3 labs : project
- Evaluation: 50% of the mark for the project + 50% of the mark for the exam (TD notés).
- Course web-page :

```
www.math.u-bordeaux.fr/
~sadykov/teaching/MSE3315C/
```

Contents

Introduction

Applications of Constraint Programming

Constraint Satisfaction Problems

Modelling examples

Solving Constraint Satisfaction Problems

Solving technology

A solving technology offeres methods and tools for :

- Modelling constraint problems in declarative and/or
- Solving constraint problems intelligently

Search: Explore the space of candidate solutions Inference: Reduce the space of candidate solutions Search: Exploit solutions to easier (sub)problems

A solver is a software that takes a model as input and tries to solve the modelled problem.

Combinatorial (=discrete) optimisation covers satisfaction and optimisation problems, for variables over *discrete sets*

Source : Pierre Flener

Modelling vs. Programming

Examples of solving technologies

General-purpose solvers, taking a model as input:

- Boolean satisfiability (SAT)
- SAT modulo theories (SMT)
- ► (Mixed) integer linear programming (IP and MIP)
- Constraint Programming (CP)
- **.**..
- Hybrid technologies

Techniques, usually without modelling and solvers:

- Dynamic programming (DP)
- Greedy algorithms
- Approximation algorithms
- Generic algorithms (GA)
- **.**..

Constraint Programming Technology

Constraint Programming (CP) offeres methods and tools for :

- Modelling constraint problems in a high-level language and
- Solving constraint problems intelligently by :
 - either default search upon pushing a button
 - or systematic search guided by user-given strategies
 - or local search guided by user-given (meta-)heuristics
 - or hybrid search

plus inference, called propagation, but little relaxation.

Slogan of CP:

Constraint Program = Model [+ Search]

Source : Pierre Flener

Limitations of CP

CP is definitely not

- a magic method
 - A priori, it is not better than other methods (integer linear programming, dynamic programming, local search, etc...)
 - It depends on the problem type!
- a « press button » method, at least for the moment
 - It is necessary to understand the method (what is going on « inside » it)
 - It is necessary to « guide » the solution

Source : Antoine Jeanjean

Objectives of the course

- To know for which (classes of) problems the CP methods is good
- To know how to model efficiently these problems
- To know which modelling languages and CP solvers exist and to know how to use them
- To understand how these solvers work inside

Particularities of CP

- We work with decision problems constraint satisfaction problems (CSP)
 (if an optimisation problem, a series of CSPs is solved)
- Large modelling possibilities (non-linear, logical, explicit constraints)
- Use of problem constraints in an active way to limit the search space (Additional constrains may make a problem easier)

Particularities of CP

- We work with decision problems constraint satisfaction problems (CSP)
 (if an optimisation problem, a series of CSPs is solved)
- Large modelling possibilities (non-linear, logical, explicit constraints)
- Use of problem constraints in an active way to limit the search space (Additional constrains may make a problem easier)

Particularities of CP

- We work with decision problems constraint satisfaction problems (CSP)
 (if an optimisation problem, a series of CSPs is solved)
- Large modelling possibilities (non-linear, logical, explicit constraints)
- Use of problem constraints in an active way to limit the search space

(Additional constrains may make a problem easier)

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			თ	5	
		8		4	7			
								6
		9		5		3	8	2

- There are 81 cells where a digit from 1 to 9 can be put
- We need to put digits to cells in such a way that every row (column, or a block of 9 cells) contains different numbers

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			တ	5	
		8		4	7			
								6
		9		5		ვ	8	2

- ► There are 81 cells where a digit from 1 to 9 can be put
- We need to put digits to cells in such a way that every row (column, or a block of 9 cells) contains different numbers

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

- There are 81 cells where a digit from 1 to 9 can be put
- We need to put digits to cells in such a way that every row (column, or a block of 9 cells) contains different numbers

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			တ	5	
		8		4	7			
								6
		9		5		3	8	2

- There are 81 cells where a digit from 1 to 9 can be put
- We need to put digits to cells in such a way that every row (column, or a block of 9 cells) contains different numbers

We have just (almost) formulated a Constraint Satisfaction problem(!)

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			თ	5	
		8		4	7			
								6
		9		5		ვ	8	2

- ► There are 81 cells where a digit from 1 to 9 can be put
- We need to put digits to cells in such a way that every row (column, or a block of 9 cells) contains different numbers

We have just (almost) formulated a Constraint Satisfaction problem(!)

In CP, the problem is solved more or less the same way you solve a sudoku(!)

Contents

Introduction

Applications of Constraint Programming

Constraint Satisfaction Problems

Modelling examples

Solving Constraint Satisfaction Problems

Application domains

- Location problems
- Diagnosis and verification
- Planning problems
- Scheduling and timetabling problems
- Cutting and packing
- Logistic problems

Real-life application I — Car Sequencing

Source : Alan M. Frisch

Real-life application II — Steel mill slab design

- \blacktriangleright The mill can make σ different slab sizes.
- For each order $j \in J$, we know a *colour* (route through the mill) and a *weight*
- We need to pack orders onto slabs such that the total slab capacity is minimized subject to
 - capacity (slab size) constraints
 - colour constraints (no more than p colours per slab)

Steel mill slab design — an example solution

- ► Slab sizes : $\sigma = \{1, 2, 4\}$.
- 9 orders
- 5 different colours
- Maximum number of different colours per slab is 2

Source : Alain Frisch

Real-life application III — Sports scheduling

There several sport teams. In the championship, each team should play with each other team. We need a schedule : for each round we need to determine the pairs of teams playing with each other. We can have additional constraints.

Round 1	Round 2	Round 3	Round 4	Round 5	Round 6	Round 7
1 vs 8	2 vs 8	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
2 vs 3	1 vs 7	3 vs 8	5 vs 7	1 vs 4	6 vs 8	5 vs 6
4 vs 5	3 vs 5	1 vs 6	4 vs 8	2 vs 6	2 vs 7	7 vs 8
6 vs 7	4 vs 6	2 vs 5	1 vs 2	5 vs 8	3 vs 4	1 vs 3

A « fun » application — Domino portraits

Aim: find a good approximation of an image using the dominos from an integer number of boxes.

Example on the right: A portrait of *George Boole*, and then a sequence of domino portraits generated using 1, 4, 16 domino boxes.

Source: (Cambazard, Horan, O'Mahony, O'Sullivan, 2008)

Success stories by CP users and contributors

Success stories : CP = **technology of choice** in scheduling, configuration, personnel rostering, timetabling, ...

Source : Pierre Flener

Real-life application at Bouygues e-lab

- Table plans for the group conferences
- Planning for interior works on construction sites
- Personnel planning
- Marketing campaign planning
- Projects exploiting the CP method
 - Aids planning (on TF1)
 - Planning for « call-centers »

Source : Antoine Jeanjean

Other applications

More applications of the web-site

www.csplib.org

There are 88 applications!

Contents

Introduction

Applications of Constraint Programming

Constraint Satisfaction Problems

Modelling examples

Solving Constraint Satisfaction Problems

Constraint Satisfaction Problem (CSP)

CSP is a triple $\langle \mathbf{X}, \mathbf{D}, \mathbf{C} \rangle$, where :

- **X** is the set of variables $\{x_1, \ldots, x_n\}$,
- ▶ **D** is the set of domains $\{D_{x_1}, \ldots, D_{x_n}\}$ (sets of possible values) for these variables,
- **C** is the set of constraints

$$\left\{C_i(x_{i_1},\ldots,x_{n_i})\right\}_{i\in |C|}.$$

Every constraint C_i restricts the values that variables $\{x_{i_1}, \ldots, x_{i_n}\}$ can take simultaneously.

Domains

The domains can be

finite sets :

$$\{1,2,\ldots,n\},\quad \{2,3,5\},\quad \{\text{red},\text{black},\text{blue}\};$$

▶ intervals :

trees (not in this course).

Domains

The domains can be

finite sets :

$$\{1,2,\ldots,n\}, \quad \{2,3,5\}, \quad \{\text{red}, \text{black}, \text{blue}\};$$

intervals:

trees (not in this course).

Domains

The domains can be

finite sets :

$$\{1,2,\dots,n\}, \quad \{2,3,5\}, \quad \{\text{red}, \text{black}, \text{blue}\};$$

intervals :

trees (not in this course).

Constrains can be

► logic :

$$x = 1$$
 or $y = 3$, $x = 2 \Rightarrow y = 4$;

arithmetic :

$$x > y$$
, $z = 2x + 3y - 5$;

explicit (tuples of possible values) :

$$(x,y) \in \{(0,0),(1,0),(2,2)\}, (x,y,z) \in \{(1,2,3),(2,3,4)\};$$

complex (global):

all — different
$$(x_1, \ldots, x_n)$$
.

Constrains can be

► logic :

$$x = 1$$
 or $y = 3$, $x = 2 \Rightarrow y = 4$;

arithmetic :

$$x > y$$
, $z = 2x + 3y - 5$;

explicit (tuples of possible values) :

$$(x,y) \in \{(0,0),(1,0),(2,2)\}, (x,y,z) \in \{(1,2,3),(2,3,4)\};$$

complex (global) :

all – different
$$(x_1, \ldots, x_n)$$
.

Constrains can be

► logic :

$$x = 1$$
 or $y = 3$, $x = 2 \Rightarrow y = 4$;

arithmetic :

$$x > y$$
, $z = 2x + 3y - 5$;

explicit (tuples of possible values) :

$$(x,y) \in \{(0,0),(1,0),(2,2)\}, \quad (x,y,z) \in \{(1,2,3),(2,3,4)\};$$

complex (global) :

all – different
$$(x_1, \ldots, x_n)$$
.

Constrains can be

► logic :

$$x = 1$$
 or $y = 3$, $x = 2 \Rightarrow y = 4$;

arithmetic :

$$x > y$$
, $z = 2x + 3y - 5$;

explicit (tuples of possible values) :

$$(x,y) \in \{(0,0),(1,0),(2,2)\}, \quad (x,y,z) \in \{(1,2,3),(2,3,4)\};$$

complex (global) :

all – different
$$(x_1, \ldots, x_n)$$
.

Arity of constraints

Constraint can have an arbitrary arity:

- ightharpoonup A constraint is unary if it contains one variable (x = 4)
- A constraint is binary if it contains two variables (x + y = 9)
- ► A constraint is *n*-ary if it contains *n* variables

The notion « n-ary » is used for a constraint such that the number of variables it contains is not known a priori (for example, all - different)

Solution is an assignment of values (v_1, \ldots, v_n) to variables (x_1, \ldots, x_n) such that

- ▶ the values are in domains of variables : $v_i \in D_{x_i}$, $\forall j$;
- all constrains C_i are satisfied.

Solution is an assignment of values (v_1, \ldots, v_n) to variables (x_1, \ldots, x_n) such that

- ▶ the values are in domains of variables : $v_j \in D_{x_i}$, $\forall j$;
- ightharpoonup all constrains C_i are satisfied.

A CSP is satisfiable if it has a solution.

Solution is an assignment of values (v_1, \ldots, v_n) to variables (x_1, \ldots, x_n) such that

- ▶ the values are in domains of variables : $v_i \in D_{x_i}$, $\forall j$;
- \triangleright all constrains C_i are satisfied.

A CSP is satisfiable if it has a solution.

Solve a CSP ⇔ determine if it is satisfiable or not.

Solution is an assignment of values (v_1, \ldots, v_n) to variables (x_1, \ldots, x_n) such that

- ▶ the values are in domains of variables : $v_j \in D_{x_i}$, $\forall j$;
- ightharpoonup all constrains C_i are satisfied.

An example

- Variables : x, y and z.
- ► Domains : $D_x = D_y = D_z = \{1, 2, 3\}$.
- ▶ One constraint : x + y = z.
- ► Solutions : (1, 1, 2), (1, 2, 3), (2, 1, 3).

Solution is an assignment of values (v_1, \ldots, v_n) to variables (x_1, \ldots, x_n) such that

- ▶ the values are in domains of variables : $v_j \in D_{x_i}$, $\forall j$;
- ightharpoonup all constrains C_i are satisfied.

An example

- Variables : x, y and z.
- ▶ Domains : $D_x = D_y = D_z = \{1, 2, 3\}$.
- ▶ One constraint : x + y = z.
- ► Solutions : (1, 1, 2), (1, 2, 3), (2, 1, 3).

Problem types in CP

- Find a solution, if one exists (classic).
- Find all solutions.
- ► Find a solution which minimizes of maximizes a criterion (solved using dichotomy).

Problem types in CP

- Find a solution, if one exists (classic).
- Find all solutions.
- ► Find a solution which minimizes of maximizes a criterion (solved using dichotomy).

Problem types in CP

- Find a solution, if one exists (classic).
- Find all solutions.
- Find a solution which minimizes of maximizes a criterion (solved using dichotomy).

General algorithm (minimisation)

Find a lower bound (**LB**) and upper bound (**UB**) for the value of the objective function;

```
while UB - LB is large do test \leftarrow LB + \frac{\text{UB}-\text{LB}}{2}; if exists a solution \leq test then UB \leftarrow test; save this solution;
```

else

```
LB \leftarrow test;
```


General algorithm (minimisation)

Find a lower bound (**LB**) and upper bound (**UB**) for the value of the objective function;

while UB – LB is large do

test $\leftarrow LB + \frac{UB - LB}{2}$;

if exists a solution \leq test then

 $\mathbf{UB} \leftarrow \text{test};$

save this solution;

else

LB ← test;

Example

General algorithm (minimisation)

Find a lower bound (**LB**) and upper bound (**UB**) for the value of the objective function;

while ${\bf UB}-{\bf LB}$ is large do

test
$$\leftarrow$$
 LB $+$ $\frac{UB-LB}{2}$;

if exists a solution ≤ test then

$$\mathbf{UB} \leftarrow \mathtt{test};$$

save this solution;

else

Example

General algorithm (minimisation)

Find a lower bound (**LB**) and upper bound (**UB**) for the value of the objective function;

while ${\bf UB}-{\bf LB}$ is large do

test
$$\leftarrow LB + \frac{UB-LB}{2}$$
;

if exists a solution ≤ test then

save this solution;

else

Example

Contents

Introduction

Applications of Constraint Programming

Constraint Satisfaction Problems

Modelling examples

Solving Constraint Satisfaction Problems

Example I — Map coloring

Source: Philippe Baptiste

Example I — Map coloring

Example I — Map coloring

Source: Philippe Baptiste

- Variables:
- ▶ Domains :
- Constraints:

- Variables : x_i position of the queen in column i.
- Domains :
- ► Constraints :

- Variables : x_i position of the queen in column i.
- ▶ Domains : $D_{x_i} = \{1, ..., N\}, \forall i$.
- ► Constraints :

- Variables : x_i position of the queen in column i.
- ▶ Domains : $D_{x_i} = \{1, ..., N\}, \forall i$.
- ▶ Constraints :

 - $x_i \neq x_j + (j-i), 1 \leq i < j \leq N,$
 - $x_i \neq x_j + (i j), 1 \leq i < j \leq N.$

- Variables : x_i position of the queen in column i.
- ▶ Domains : $D_{x_i} = \{1, ..., N\}, \forall i$.
- Constraints:

 - ► $x_i \neq x_j + (j i)$, $1 \leq i < j \leq N$,
 - ► $x_i \neq x_j + (i j)$, $1 \leq i < j \leq N$.

- Variables : x_i position of the queen in column i.
- ▶ Domains : $D_{x_i} = \{1, ..., N\}, \forall i$.
- ► Constraints :
 - ightharpoonup all-different (x_1, \ldots, x_N) ,
 - ► $x_i \neq x_j + (j i)$, $1 \leq i < j \leq N$,
 - ► $x_i \neq x_j + (i j)$, $1 \leq i < j \leq N$.

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

- ► Variables :
- ► Domains :

	3		4		5		7	
6	2			8		4		
7					1			თ
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

- ▶ Variables : x_{ij} digit in cell (i, j).
- Domains :

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

- ▶ Variables : x_{ij} digit in cell (i, j).
- ▶ Domains : $D_{x_{ij}} = \{1, ..., 9\}, \forall (i, j).$

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

- ▶ Variables : x_{ij} digit in cell (i, j).
- ▶ Domains : $D_{x_{ij}} = \{1, ..., 9\}, \forall (i, j).$

- The digits in each line are different: all-different($x_{i1}, x_{i2}, ..., x_{i9}$), $1 \le i \le 9$,
- ► The digits in each column are different: all-different($x_{1j}, x_{2j}, ..., x_{9j}$), $1 \le j \le 9$,
- The digits in each block 3×3 are different: all-different($X_{3k+1,3l+1}, X_{3k+1,3l+2}, \ldots, X_{3k+3,3l+3}$), $0 \le k, l \le 2$.

	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

- ▶ Variables : x_{ij} digit in cell (i, j).
- ▶ Domains : $D_{x_{ij}} = \{1, ..., 9\}, \forall (i, j).$

- The digits in each line are different: $all-different(x_{i1}, x_{i2}, ..., x_{i9}), 1 \le i \le 9,$
- ▶ The digits in each column are different : all-different($x_{1j}, x_{2j}, ..., x_{9j}$), $1 \le j \le 9$,
- The digits in each block 3×3 are different: all-different($X_{3k+1,3l+1}, X_{3k+1,3l+2}, \dots, X_{3k+3,3l+3}$) $0 \le k, l \le 2$.

Г	3		4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

- ▶ Variables : x_{ii} digit in cell (i, j).
- **▶** Domains : $D_{x_{ij}} = \{1, ..., 9\}, \forall (i, j).$

- The digits in each line are different: $all-different(x_{i1}, x_{i2}, ..., x_{i9}), 1 \le i \le 9,$
- ▶ The digits in each column are different : all-different($x_{1j}, x_{2j}, ..., x_{9j}$), $1 \le j \le 9$,
- The digits in each block 3×3 are different: all-different($X_{3k+1,3l+1}, X_{3k+1,3l+2}, \ldots, X_{3k+3,3l+3}$), 0 < k, l < 2.

Example IV - Giving a change

We are interested in modelling a vending machine. A user inserts coins for a total value of T eurocents, then he selects a drink for the price of P eurocents. We need to calculate the change to give, knowing that the machine has E_2 coins of $2 \in$, E_1 coins of $1 \in$, C_{50} coins of 50 eurocents, C_{20} coins of 20 eurocents, and C_{10} coins of 10 eurocents.

- ► Variables : x_{E2} , x_{E1} , x_{C50} , x_{C20} , x_{C10} .
- ▶ Domains : $D_{X_{E2}} = \{0, 1, ..., E_2\}, D_{X_{E1}} = \{0, 1, ..., E_1\},...$
- Constraint :

$$200x_{E2} + 100x_{E1} + 50x_{C50} + 20x_{C20} + 10x_{C10} = T - P$$

▶ If we want to minimize a number of coins to give, we need to specify the objective function :

$$\min X_{E2} + X_{E1} + X_{C50} + X_{C20} + X_{C10}$$

Example IV - Giving a change

We are interested in modelling a vending machine. A user inserts coins for a total value of T eurocents, then he selects a drink for the price of P eurocents. We need to calculate the change to give, knowing that the machine has E_2 coins of $2 \in$, E_1 coins of $1 \in$, C_{50} coins of 50 eurocents, C_{20} coins of 20 eurocents, and C_{10} coins of 10 eurocents.

- ► Variables : x_{E2} , x_{E1} , x_{C50} , x_{C20} , x_{C10} .
- ▶ Domains : $D_{x_{E2}} = \{0, 1, \dots, E_2\}, D_{x_{E1}} = \{0, 1, \dots, E_1\},\dots$
- Constraint :

$$200x_{E2} + 100x_{E1} + 50x_{C50} + 20x_{C20} + 10x_{C10} = T - F$$

▶ If we want to minimize a number of coins to give, we need to specify the objective function :

$$\min X_{E2} + X_{E1} + X_{C50} + X_{C20} + X_{C10}$$

Example IV - Giving a change

We are interested in modelling a vending machine. A user inserts coins for a total value of T eurocents, then he selects a drink for the price of P eurocents. We need to calculate the change to give, knowing that the machine has E_2 coins of $2 \in$, E_1 coins of $1 \in$, C_{50} coins of 50 eurocents, C_{20} coins of 20 eurocents, and C_{10} coins of 10 eurocents.

- ► Variables : x_{E2} , x_{E1} , x_{C50} , x_{C20} , x_{C10} .
- ▶ Domains : $D_{x_{E2}} = \{0, 1, \dots, E_2\}, D_{x_{E1}} = \{0, 1, \dots, E_1\},\dots$
- Constraint :

$$200x_{E2} + 100x_{E1} + 50x_{C50} + 20x_{C20} + 10x_{C10} = T - P$$

If we want to minimize a number of coins to give, we need to specify the objective function :

$$\min X_{E2} + X_{E1} + X_{C50} + X_{C20} + X_{C10}$$

Example IV - Giving a change

We are interested in modelling a vending machine. A user inserts coins for a total value of T eurocents, then he selects a drink for the price of P eurocents. We need to calculate the change to give, knowing that the machine has E_2 coins of $2 \in$, E_1 coins of $1 \in$, C_{50} coins of 50 eurocents, C_{20} coins of 20 eurocents, and C_{10} coins of 10 eurocents.

- ► Variables : x_{E2} , x_{E1} , x_{C50} , x_{C20} , x_{C10} .
- ▶ Domains : $D_{x_{E2}} = \{0, 1, \dots, E_2\}, D_{x_{E1}} = \{0, 1, \dots, E_1\},\dots$
- Constraint :

$$200x_{E2} + 100x_{E1} + 50x_{C50} + 20x_{C20} + 10x_{C10} = T - P$$

► If we want to minimize a number of coins to give, we need to specify the objective function :

$$\min X_{E2} + X_{E1} + X_{C50} + X_{C20} + X_{C10}$$

Contents

Introduction

Applications of Constraint Programming

Constraint Satisfaction Problems

Modelling examples

Solving Constraint Satisfaction Problems

Main idea

The method of Constraint Programming (which solves a CSP) is based on working with partial solutions and enumeration tree:

- We assign a value to a variable and see if all constraints are still satisfied.
- If not, we « backtrack » and try another value.
- To avoid complete enumeration, each time a variable takes a value, incompatible (with this decision) variables are removed (this process called propagation).

Enumeration tree

	3	?	4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

$$D = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

	3	?	4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

$$D = \{1, 2, 3, 4, 5, 6, 7, 8, 8\}$$

	3	?	4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

$$D = \{1, 2, 3, 4, 5, 6, 7, 8, 8\}$$

	3	1	4		5		7	
6	2			8		4		
7					1			9
2		6			3	8		
						2		3
	1	3	6			9	5	
		8		4	7			
								6
		9		5		3	8	2

$$D = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

An example of advanced propagation

	3	1	4		5		7	
6	2			8		4	1 3	
7					1		2 3 6	9
2		6			3	8	1 4	
						2	1 4 6	3
	1	3	6			9	5	
		8		4	7		1 9	
			9				1 4	6
		9		5		3	8	2

An example of advanced propagation

	3	1	4		5		7	
6	2			8		4	<i>1</i> / 3	
7					1		2 3 6	9
2		6			3	8	1 4	
						2	1 A 6	3
	1	3	6			9	5	
		8		4	7		<i>1</i> / 9	
			9				1 4	6
		9		5		3	8	2

An example of advanced propagation

	3	1	4		5		7	
6	2			8		4	3	
7					1		2	9
2		6			3	8	1 4	
						2	6	3
	1	3	6			တ	5	
		8		4	7		9	
			9				1 4	6
		9		5		3	8	2

Problem: assign values from 1 to 8 to vertices, each value should appear once, consecutive values should not be assigned to adjacent vertices

Source: Patrick Prosser

Be ready to do a backtrack.

Which vertices are more difficult to enumerate?

Which values are less restraining?

Source : Patrick Prosser

We can now remove several variables from the domains of other vertices.

Source: Patrick Prosser

We can now remove several variables from the domains of other vertices.

We can now remove several variables from the domains of other vertices.

We guess now a value for a vertex. Be ready to do a backtrack.

We propagate this decision.

A solution.

Source : Patrick Prosser

root

