Lignes directrices

Constraint Programming

Lecture 2. Local consistency.

Ruslan Sadykov

INRIA-Bordeaux

13 January 2022

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

1/39

Definitions

- A constraint is binary if it contains at most two variables.
- A CSP is binary if all its constraints are binary.

Network of binary constraints

A constraint network is a set of constraints on variables with discrete and finite domain.

A binary constraint network can be represented by a special graph :

- Vertices represent variables.
- Edges represent constraints.

If two vertices are adjacent, there are constraints containing the corresponding variables.

Making any CSP binary

For each non-binary CSP, there exists an equivalent binary CSP.

 $C_x = \{(a, abc)\}_{a \in D_x, abc \in D_w}$ $C_y = \{(b, abc)\}_{b \in D_y, abc \in D_w}$ $C_z = \{(c, abc)\}_{c \in D_z, abc \in D_w}$

Lignes directrices

Binary constraints and CSPs

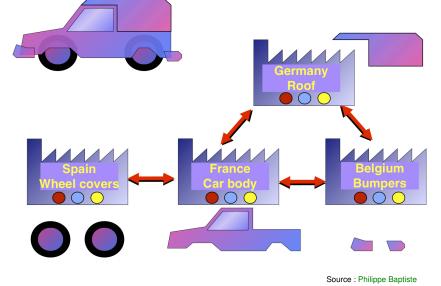
Local consistency : an overview

Arc-consistency

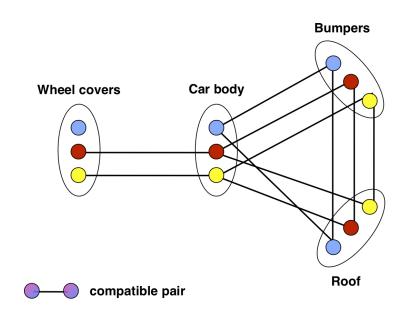
Other local consistencies

5/39

6/39

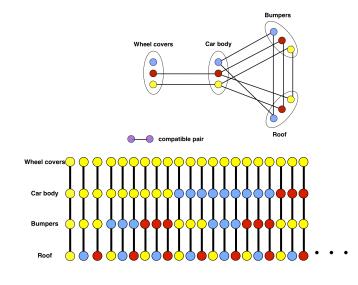


A trivial example : the extended constraint network



A trivial example

Trivial solution algorithm for our example



Trivial solution of discrete CSPs

- Suppose that all domains are finite
- Then the number |A| of different assignments of values in variable domains is finite too :

$$|A| = |D_{x_1}| \times \cdots \times |D_{x_n}|$$

- Then, we can consider these assignments one by one and verify whether at least one of them satisfies the constraints.
- Computational complexity (number of operations to do) is at least |A| × |C|.
- ► It is too large !
 - ▶ 8 queens : $8^8 \times 96 \approx 10^{10}$
 - Sudoku : $81^9 \times 27 \approx 10^{17}$

9/39

Inconsistency

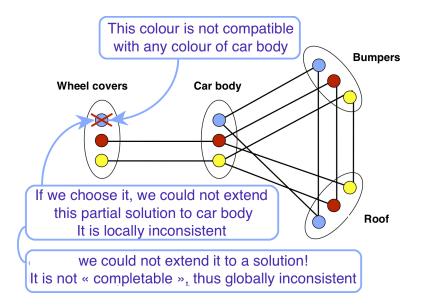
To solve faster, we try to remove values (from domains of variables) which do not lead to any solution.

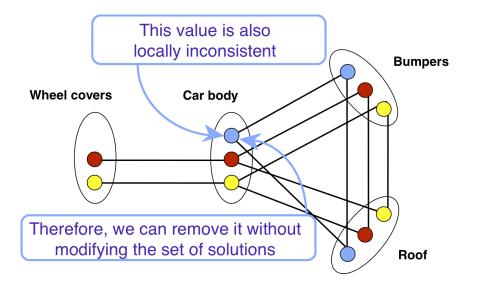
Example

- $D_x = \{1, 2, 3\}, D_y = \{2, 3, 4\}, x \ge y.$
- ► If x = 1, there are no values in D_y which satisfy the constraint.
- Therefore, we can delete 1 from D_x .

We say that these values are « inconsistent » with one or several constraints.

Inconsistency : illustration I



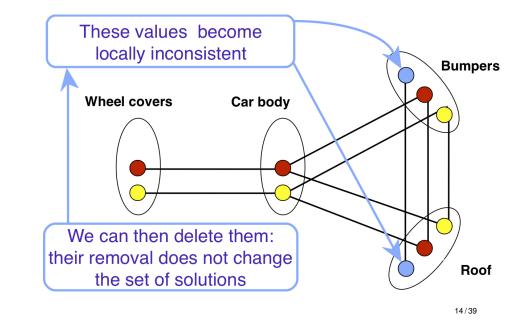


13/39

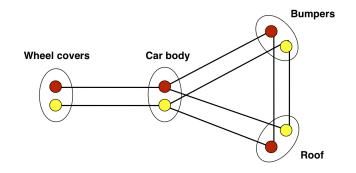
Local consistency

- We do not check consistency of values with all constraints at the same time (this would mean solving the whole CSP)
- We check consistency with a subset of constraints (usually, one), therefore the consistance is local.
- A CSP is locally consistent if all values in all variable domains are locally consistent
- When a CSP achieves local consistency, the set of solutions does not change. Therefore, the CSP remains equivalent, but simpler (or smaller).

Inconsistency : illustration III



Local consistency : illustration



- We did not change the set of solutions : the constraint network is equivalent.
- ► We reduced the search space !

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

Définitions I

Here we concentrate on the binary case.

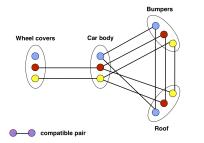
- There exist different levels of local consistency
- If we check consistency of a value with only binary constraint at a time, it is the arc-consistency.
- Value a of variable x est arc-consistent if and only if it has at least one compatible value (support) in each neighbour domain.
- **Formally** :

 $\langle x, a \rangle$ is arc-consistent $\Leftrightarrow \forall C(x, y) \exists b \in D_y : C(a, b).$

 $\langle x, a \rangle$ is not arc-consistent $\Leftrightarrow \exists C(x, y) : \forall b \in D_y \neg C(a, b).$

17/39

Arc-consistency : illustration



(Wheel covers, \bullet) is arc-consistent as there exists a compatible value for Carbody.

(Car body, ●) is arc-consistent as

- there exists a compatible value (
) for wheel covers,
- ▶ there exists a compatible value (●) for bumpers,
- there exists a compatible value (O) for the roof

(Car body, ${\ensuremath{\, \odot}}$) is not arc-consistent as it does not have a compatible value for wheel covers.

Removal of (Car body, \bigcirc) makes (Roof, \bigcirc) and (Bumpers, \bigcirc) arc-inconsistent

Definitions II

- A contraint is arc-consistent if and only if all values in domains of its variables are arc-consistent.
- A CSP is arc-consistent if and only if all its constraints are arc-consistent.

Why arc-consistency?

There exist polynomial (and efficient !) algorithms to achieve the arc-consistency for a binary CSP.

Algorithm AC-1

repeat

finished \leftarrow TRUE; foreach contraint C(x, y) do if there exist values in D_x which do not have a support in D_y then remove them; finished \leftarrow FALSE;

until *finished* = *TRUE*;

Computational complexity in the worst case :

$$O(nd \times ed^2) = O(ned^3),$$

where n — number of variables, e — number of constraints, d — size of the largest domain.

21/39

Friends analogy — AC-1

A resident is arc-consistent while it has at least on friend in each neighbour building.

AC-1 :

- 1. Each arc-inconsistent resident leaves the town and sends a letter « I leave the town Anonymous » to every resident of the town.
- 2. When a resident receives a letter, he verifies whether he is still arc-consistent.

Friends analogy



Town⇔CSP Building⇔Variable Neighbour buildings⇔Variables « connected » by a constraint Resident⇔Value Friends⇔Pair of values satisfying the constraint

A resident is arc-consistent while it has at least on friend in each neighbour building.

22/39

Algorithm AC-3

Computational complexity in the worst case :

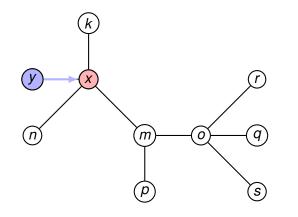
 $O(ed \times d^2) = O(ed^3).$

Spacial complexity in the worst case :

O(dn + e)

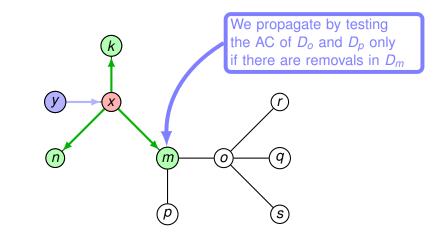
Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables.



Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables.



25/39

Friends analogy — AC-3

AC-1:

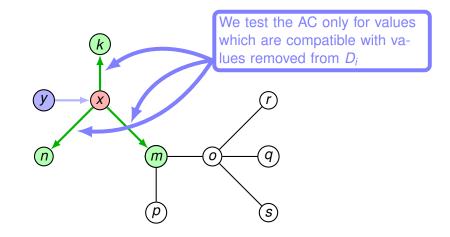
- 1. Each arc-inconsistent resident leaves the town and sends a letter « I leave the town Anonymous » to every resident of the town.
- 2. When a resident receives a letter, he verifies whether he is still arc-consistent.

AC-3:

- 1. Each arc-inconsistent resident leaves the town and sends a letter « I leave building *x* Anonymous » to residents of neighbour buildings.
- 2. When a resident receives a letter, he verifies whether he still has friends **in building** *x*.

Algorithm AC-4 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables which are compatible with the removed value.



Friends analogy — AC-4

AC-3:

- 1. Each arc-inconsistent resident leaves the town and sends a letter « I leave building *x* Anonymous » to all residents of neighbour buildings.
- 2. When a resident receives a letter, he verifies whether he still has friends **in building** *x*.

AC-4 :

- 1. Each arc-inconsistent resident leaves the town and sends a letter « I leave building *x* Signed $\langle x, a \rangle$ » to its friends in neighbour buildings.
- 2. When a resident receives a letter, he verifies whether he still has friends **in building** *x*.

28/39

Friends analogy — AC-6

AC-4 :

- 1. Each arc-inconsistent resident leaves the town and sends a letter « I leave building *x* Signed $\langle x, a \rangle$ » to its friends in neighbour buildings.
- 2. When a resident receives a letter, he verifies whether he still has friends **in building** *x*.

AC-6:

- 1. Each arc-inconsistent resident leaves the town and sends a letter « I leave building x - Signed $\langle x, a \rangle$ » to its friends for which he is the friend living in the smallest apartement number in *c*
- 2. When a resident receives a letter, he searches another friend in *x* who lives in an apartment with larger number than $\langle x, a \rangle$

Algorithm AC-4

Overview

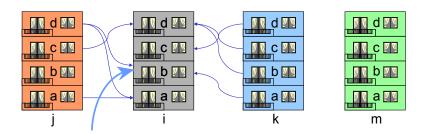
- ► We use structure S : S_{i,a} is the set of pairs (variable, value) which support (i, a)
- We count the number of supports counter[(i, j), a]
- As soon as one counter[(i, j), a] becomes zero, value a is removed from D_i and the pair (i, a) is added to list Q of revisions to do

Complexity analysis

- Spatial complexity is O(ed²) (memory needed to keep structure S)
- Initialization of structure S takes time $O(ed^2)$
- In the course of the algorithm, each value counter[(i,j), a] can be decreased at most d times time complexity is also O(ed²)

29/39

Algorithm AC-6 : illustration



- If resident $\langle i, b \rangle$ leaves, only $\langle k, a \rangle$ will be notified.
- The presence of others will not be challenged by the departure of (*i*, *b*)
- We will search for another friend of (k, a) living on a higher floor than (i, b).

Arc-consistency algorithms in practice

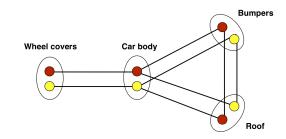
	AC-3	AC-4	AC-6
Time complexity	$O(ed^3)$	$O(ed^2)$	$O(ed^2)$
« Practical » complexity	$\Omega(ed^2)$	$O(ed^2)$	$O(ed^2)$
Spacial complexity	O(dn + e)	$O(ed^2)$	O(ed)
Implementation difficulty	easy	medium	hard

Algorithms AC-3 and AC-4 are mostly used in practice.

Arc-consistent \neq globally consistent

If a CSP is arc-consistent, this does not mean that CSP is globally consistent (has a solution).

The same example



This CSP is arc-consistent, but does not have a solution.

32/39

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

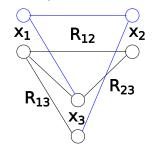
Arc-consistency

Other local consistencies

Path consistency

A pair of variables are path consistent with the third variable if each arc-consistent pair of values can be extended to another variable in such a way that all binary constraints are satisfied.

Example



Variables x_1 and x_2 are not path consistent with x_3 .

We can make them path consistent by removing blue values.

K-consistency

K-consistency II

There exist « stronger » local consistencies for finite CSPs..

- A CSP is K-consistent if each set of values of K 1 variables which satisfy all the constraints between them can be « extended » to K-th variable (there exists a value for this K-th variable such that all constrains between these K variables are satisfied).
- The algorithms to make a CSP K-consistent are exponential in K.
- Generally, the « expenses » for this type of local consistency are larger than the advantages of their use.

Equivalencies

- 1-consistency = node consistency
- 2-consistency = arc-consistency
- 3-consistency = path consistency (for binary CSPs)

Strong consistency

A CSP is strongly *K*-consistent if it is *L*-consistent for each $L \le K$.

36/39

Arc-B-consistency

And if the domains are not discrete? Intervals?

Arc-B-consistency is the arc-consistency limited to bounds of intervals.

- Weaker that the arc-consistency.
- Easy to implement, therefore broadly used.

Definition

A constraint $C(x_1, \ldots, x_k)$ is arc-B-consistent if and only if

$$orall x_i \quad orall a_i \in \{\min(D_{x_i}), \max(D_{x_i})\}$$

 $\exists a_1 \in D_{x_1}, \dots, \ a_{i-1} \in D_{x_{i-1}}, \ a_{i+1} \in D_{x_{i+1}}, \dots, \ a_k \in D_{x_k}$

such that
$$C(a_1, \ldots, a_k)$$
 is true.

Arc-B-consistency : example

Variables : x, y, z. Domains are intervals. Constraint : z = x + y

 $\min(D_z)$ and $\max(D_z)$ are arc-consistent if

$$\begin{cases} \min(D_z) \ge \min(D_x) + \min(D_y) \\ \max(D_z) \le \max(D_x) + \max(D_y) \end{cases}$$

otherwise

$$D_z \leftarrow \Big[\min(D_x) + \min(D_y), \max(D_x) + \max(D_y)\Big]$$

 $\begin{aligned} \min(D_x), \max(D_x)?\\ \min(D_y), \max(D_y)?\\ \text{Constraint } z = \max\{x_1, x_2, \dots, x_n\}? \end{aligned}$