Constraint Programming
Lecture 2. Local consistency.

Ruslan Sadykov
INRIA-Bordeaux

13 January 2022

1/39

Definitions

» A constraint is binary if it contains at most two variables.
» A CSP is binary if all its constraints are binary.

3/39

Lignes directrices

Binary constraints and CSPs

Network of binary constraints

A constraint network is a set of constraints on variables with
discrete and finite domain.

A binary constraint network can be represented by a special
graph :

> Vertices represent variables.

» Edges represent constraints.

If two vertices are adjacent, there are constraints containing the
corresponding variables.

2/39

4/39



Making any CSP binary Lignes directrices

For each non-binary CSP, there exists an equivalent binary

CSP.
Example
Local consistency : an overview
=
X#y#2
DX = Dy = Dz = {1 s 2,3} Dw = {abc}a#,#
Cx = {(a, abC)}aer,abceDw
Cy = {(b, abc)}bep, abcen,,
C; = {(C, abc)}ceDz,abceDw
5/39 6/39
A trivial example A trivial example : the extended constraint network

Bumpers

Germany
Roof

Wheel covers Car body

France | Belgium
Car bod ' Bumpers

Roof

Source : Philippe Baptiste .—. compatible pair

7/39 8/39



Trivial solution algorithm for our example

Bumpers

@—@ compatible pair
Wheel covers
Car body
Bumpers
Roof ¢ o0

Inconsistency

9/39

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
> D, ={1,2,3}, D, = {2,3,4}, x > y.

» If x =1, there are no values in D, which satisfy the
constraint.

» Therefore, we can delete 1 from Dy.

We say that these values are « inconsistent » with one or
several constraints.

11/39

Trivial solution of discrete CSPs

» Suppose that all domains are finite
» Then the number |A| of different assignments of values in

variable domains is finite too :

[Al =Dy [ > - x| Dy |-

» Then, we can consider these assignments one by one and

verify whether at least one of them satisfies the constraints.

» Computational complexity (number of operations to do) is

at least |A| x |C|.

> It is too large!

> 8 queens : 8% x 96 ~ 10'°
> Sudoku : 81% x 27 ~ 107

10/39

Inconsistency : illustration |

This colour is not compatible
with any colour of car body

Bumpers

Wheel covers Car body

o~

|
O
£

If we choose it, we could not extend
this partial solution to car body
It is locally inconsistent

Roof

we could not extend it to a solution!

It is not « completable », thus globally inconsistent

12/39



Inconsistency : illustration Il

This value is also
locally inconsistent

Bumpers

Wheel covers Car body

®
Ol

| —1—

Therefore, we can remove it without
modifying the set of solutions

Roof

13/39

Local consistency

» We do not check consistency of values with all constraints
at the same time (this would mean solving the whole CSP)

» We check consistency with a subset of constraints (usually,
one), therefore the consistance is local.

> A CSP is locally consistent if all values in all variable
domains are locally consistent

» When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).

15/39

Inconsistency : illustration IlI

These values become
locally inconsistent ’

Bumpers
O p
Wheel covers Car body /./O
/ ><\—

@
o] \
\ 6
We can then delete them: xz )
their removal does not change (5
the set of solutions u

14/39

Local consistency : illustration

Bumpers

Wheel covers Car body

&

» We did not change the set of solutions : the constraint
network is equivalent.

» We reduced the search space!

Roof

16/39



Lignes directrices

Arc-consistency

17/39

Arc-consistency : illustration

Bumpers

Wheel covers Car body

@—@ compatible pair

(Wheel covers, @) is arc-consistent as there exists a compatible value for Car
body.
(Car body, @) is arc-consistent as

» there exists a compatible value (® ) for wheel covers,

> there exists a compatible value (® ) for bumpers,

> there exists a compatible value (O ) for the roof
(Car body, @) is not arc-consistent as it does not have a compatible value for
wheel covers.
Removal of (Car body, ® ) makes (Roof, ® ) and (Bumpers, @)

arc-inconsistent
19/39

Définitions |

Here we concentrate on the binary case.
» There exist different levels of local consistency

> |If we check consistency of a value with only binary
constraint at a time, it is the arc-consistency.

» Value a of variable x est arc-consistent if and only if it has
at least one compatible value (support) in each neighbour
domain.

» Formally :
(x,a) is arc-consistent < VC(x,y)3be D, : C(a,b).

(x, a) is not arc-consistent < 3C(x,y): Vb e D, -C(a, b).

18/39

Definitions |l

» A contraint is arc-consistent if and only if all values in
domains of its variables are arc-consistent.

» A CSP is arc-consistent if and only if all its constraints are
arc-consistent.

Why arc-consistency ?

There exist polynomial (and efficient!) algorithms to achieve the
arc-consistency for a binary CSP.

20/39



Algorithm AC-1

repeat
finished + TRUE;
foreach contraint C(x, y) do
if there exist values in Dy which do not have a
support in D, then
remove them;
L finished + FALSE;

until finished = TRUE;

Computational complexity in the worst case :
O(nd x ed?) = O(ned®),

where n — number of variables, e — number of constraints,
d — size of the largest domain.

21/39

Friends analogy — AC-1

A resident is arc-consistent while it has at least on friend in
each neighbour building.
AC-1:

1. Each arc-inconsistent resident leaves the town and sends

a letter « | leave the town - Anonymous » to every resident
of the town.

2. When a resident receives a letter, he verifies whether he is
still arc-consistent.

23/39

Friends analogy

b - ETEa o7
ol 1) - L
B s
i, b, b,
x y z
Town+CSP
Building« Variable
Neighbour buildings<Variables « connected » by a constraint

Resident«»Value
Friends<«Pair of values satisfying the constraint

A resident is arc-consistent while it has at least on friend in
each neighbour building.

22/39

Algorithm AC-3

foTest + {C(Xay)}C(x,y)GC;
foreach C(x, y) € toTest do
toTest «+ toTest \{C(x,y)};
remove all values from Dy which do not have a support
in Dy;
if at least on value has been removed then
| toTest « toTest U{C(z,x) : 3C(z,x) € C,z # x};

Computational complexity in the worst case :

O(ed x d?) = O(ed®).

Spacial complexity in the worst case :

O(dn+ e).

24/39



Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables.

©.

(m—~C0—@
® ©,

25/39

Friends analogy — AC-3

AC-1 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « | leave the town - Anonymous » to every resident
of the town.

2. When a resident receives a letter, he verifies whether he is
still arc-consistent.

AC-3 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « | leave building x - Anonymous » to residents of
neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x.

26/39

Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables.

We propagate by testing
the AC of D, and D, only
if there are removals in Dy,

25/39

Algorithm AC-4 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables which are compatible with the removed

value.
We test the AC only for values
@ which are compatible with va-
T lues removed from D;

® G
@ (M—C+—@
P ®

27/39



Friends analogy — AC-4

AC-3:

1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Anonymous » to all residents
of neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x.

AC-4 :

1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Signed (x, a) » to its friends
in neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x.

28/39

Friends analogy — AC-6

AC-4 :

1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Signed (x, a) » to its friends
in neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x.

AC-6:

1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Signed (x, a) » to its friends
for which he is the friend living in the smallest
apartement number in ¢

2. When a resident receives a letter, he searches another
friend in x who lives in an apartment with larger
number than (x, a)

30/39

Algorithm AC-4

Overview
» We use structure S : S; 5 is the set of pairs (variable, value)
which support (i, a)
» We count the number of supports counter|(/,j), a]

» As soon as one counter|(i, ), a] becomes zero, value ais
removed from D; and the pair (/, a) is added to list Q of
revisions to do

Complexity analysis
» Spatial complexity is O(ed?) (memory needed to keep
structure S)
» Initialization of structure S takes time O(ed?)

» In the course of the algorithm, each value
counter((/, ), a can be decreased at most d times —
time complexity is also O(ed?)

29/39

Algorithm AC-6 : illustration

4 (4] d ZN| d ZN|
c (4] 4] %c @ c |
I g Ll S T T ] T
e A -gem| -l@em|  |[@em
i i k m

» If resident (i, b) leaves, only (k, a) will be notified.

» The presence of others will not be challenged by the
departure of (i, b)

» We will search for another friend of (k, a) living on a higher
floor than (i, b).

31/39



Arc-consistency algorithms in practice Arc-consistent # globally consistent

If a CSP is arc-consistent, this does not mean that CSP is
globally consistent (has a solution).

The same example
AC-3  AC-4  AC-6 P
Time complexity  O(ed®)  O(ed?) O(ed?)

« Practical » complexity — Q(ed?)  O(ed?) O(ed?)
Spacial complexity O(dn+e) O(ed?) O(ed)

Implementation difficulty easy medium  hard

Bumpers

Wheel covers Car body

Roof

Algorithms AC-3 and AC-4 are mostly used in practice.

This CSP is arc-consistent, but does not have a solution.

32/39 33/39

Lignes directrices Path consistency

A pair of variables are path consistent with the third variable if
each arc-consistent pair of values can be extended to another
variable in such a way that all binary constraints are satisfied.

Example

X X
Ol\ R12 2 Variables x; and x» are not path
consistent with x3.

Ra3 We can make them path consistent
by removing blue values.

S Ri3
Other local consistencies X3

34/39 35/39



K-consistency

There exist « stronger » local consistencies for finite CSPs..

> A CSP is K-consistent if each set of values of K — 1
variables which satisfy all the constraints between them
can be « extended » to K-th variable (there exists a value
for this K-th variable such that all constrains between
these K variables are satisfied).

» The algorithms to make a CSP K-consistent are
exponential in K.

» Generally, the « expenses » for this type of local
consistency are larger than the advantages of their use.

36/39

Arc-B-consistency

And if the domains are not discrete ? Intervals ?
Arc-B-consistency is the arc-consistency limited to bounds of
intervals.

» Weaker that the arc-consistency.

» Easy to implement, therefore broadly used.

Definition
A constraint C(x1, ..., Xk) is arc-B-consistent if and only if
Vx; Vaj € {min(Dy,), max(Dy,)}
Jday € Dy,,..., @j—1 € Dx,_,, @11 € Dy,y,..., @ € Dy,

such that C(ay, ..., ax) is true.

38/39

K-consistency Il

Equivalencies

» 1-consistency = node consistency
» 2-consistency = arc-consistency
» 3-consistency = path consistency (for binary CSPs)

Strong consistency

A CSP is strongly K-consistent if it is L-consistent for each
L<K.

37/39

Arc-B-consistency : example

Variables : x, y, z. Domains are intervals.
Constraint: z=x+y

min(D;) and max(D;) are arc-consistent if

{ min(Dz) > min(Dyx) + min(Dy)
max(Dz) < max(Dx) + max(Dy)

otherwise

D, + [min(DX) + min(Dy), max(Dy) + max(Dy)]

min(Dx), max(Dx) ?
min(Dy), max(Dy)?
Constraint z = max{xq, X2, ..., Xn} ?

39/39



	Binary constraints and CSPs
	

	Local consistency : an overview
	

	Arc-consistency
	

	Other local consistencies
	


