
Constraint Programming
Lecture 2. Local consistency.

Ruslan Sadykov

INRIA-Bordeaux

13 January 2022

1 / 39

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

2 / 39

Definitions

I A constraint is binary if it contains at most two variables.
I A CSP is binary if all its constraints are binary.

3 / 39

Definitions

I A constraint is binary if it contains at most two variables.
I A CSP is binary if all its constraints are binary.

3 / 39

Network of binary constraints

A constraint network is a set of constraints on variables with
discrete and finite domain.

A binary constraint network can be represented by a special
graph :
I Vertices represent variables.
I Edges represent constraints.

If two vertices are adjacent, there are constraints containing the
corresponding variables.

4 / 39

Network of binary constraints

A constraint network is a set of constraints on variables with
discrete and finite domain.

A binary constraint network can be represented by a special
graph :
I Vertices represent variables.
I Edges represent constraints.

If two vertices are adjacent, there are constraints containing the
corresponding variables.

4 / 39

Making any CSP binary

For each non-binary CSP, there exists an equivalent binary
CSP.

Example

y

x

z
x 6= y 6= z

Dx = Dy = Dz = {1, 2, 3}

⇒

y

x

z

w

Cx

Cy Cz

Dw = {abc}a 6=b 6=c

Cx = {(a, abc)}a∈Dx ,abc∈Dw

Cy = {(b, abc)}b∈Dy ,abc∈Dw

Cz = {(c, abc)}c∈Dz ,abc∈Dw

5 / 39

Making any CSP binary

For each non-binary CSP, there exists an equivalent binary
CSP.

Example

y

x

z
x 6= y 6= z

Dx = Dy = Dz = {1, 2, 3}

⇒

y

x

z

w

Cx

Cy Cz

Dw = {abc}a 6=b 6=c

Cx = {(a, abc)}a∈Dx ,abc∈Dw

Cy = {(b, abc)}b∈Dy ,abc∈Dw

Cz = {(c, abc)}c∈Dz ,abc∈Dw

5 / 39

Making any CSP binary

For each non-binary CSP, there exists an equivalent binary
CSP.

Example

y

x

z
x 6= y 6= z

Dx = Dy = Dz = {1, 2, 3}

⇒

y

x

z

w

Cx

Cy Cz

Dw = {abc}a 6=b 6=c

Cx = {(a, abc)}a∈Dx ,abc∈Dw

Cy = {(b, abc)}b∈Dy ,abc∈Dw

Cz = {(c, abc)}c∈Dz ,abc∈Dw

5 / 39

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

6 / 39

A trivial example

Source : Philippe Baptiste

7 / 39

A trivial example : the extended constraint network

8 / 39

Trivial solution algorithm for our example

9 / 39

Trivial solution algorithm for our example

9 / 39

Trivial solution algorithm for our example

9 / 39

Trivial solution algorithm for our example

9 / 39

Trivial solution algorithm for our example

· · ·
9 / 39

Trivial solution of discrete CSPs

I Suppose that all domains are finite
I Then the number |A| of different assignments of values in

variable domains is finite too :

|A| = |Dx1 | × · · · × |Dxn |.

I Then, we can consider these assignments one by one and
verify whether at least one of them satisfies the constraints.

I Computational complexity (number of operations to do) is
at least |A| × |C|.

I It is too large !
I 8 queens : 88 × 96 ≈ 1010

I Sudoku : 819 × 27 ≈ 1017

10 / 39

Trivial solution of discrete CSPs

I Suppose that all domains are finite
I Then the number |A| of different assignments of values in

variable domains is finite too :

|A| = |Dx1 | × · · · × |Dxn |.

I Then, we can consider these assignments one by one and
verify whether at least one of them satisfies the constraints.

I Computational complexity (number of operations to do) is
at least |A| × |C|.

I It is too large !
I 8 queens : 88 × 96 ≈ 1010

I Sudoku : 819 × 27 ≈ 1017

10 / 39

Trivial solution of discrete CSPs

I Suppose that all domains are finite
I Then the number |A| of different assignments of values in

variable domains is finite too :

|A| = |Dx1 | × · · · × |Dxn |.

I Then, we can consider these assignments one by one and
verify whether at least one of them satisfies the constraints.

I Computational complexity (number of operations to do) is
at least |A| × |C|.

I It is too large !
I 8 queens : 88 × 96 ≈ 1010

I Sudoku : 819 × 27 ≈ 1017

10 / 39

Trivial solution of discrete CSPs

I Suppose that all domains are finite
I Then the number |A| of different assignments of values in

variable domains is finite too :

|A| = |Dx1 | × · · · × |Dxn |.

I Then, we can consider these assignments one by one and
verify whether at least one of them satisfies the constraints.

I Computational complexity (number of operations to do) is
at least |A| × |C|.

I It is too large !
I 8 queens : 88 × 96 ≈ 1010

I Sudoku : 819 × 27 ≈ 1017

10 / 39

Trivial solution of discrete CSPs

I Suppose that all domains are finite
I Then the number |A| of different assignments of values in

variable domains is finite too :

|A| = |Dx1 | × · · · × |Dxn |.

I Then, we can consider these assignments one by one and
verify whether at least one of them satisfies the constraints.

I Computational complexity (number of operations to do) is
at least |A| × |C|.

I It is too large !
I 8 queens : 88 × 96 ≈ 1010

I Sudoku : 819 × 27 ≈ 1017

10 / 39

Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
I Dx = {1,2,3}, Dy = {2,3,4}, x ≥ y .
I If x = 1, there are no values in Dy which satisfy the

constraint.
I Therefore, we can delete 1 from Dx .

We say that these values are « inconsistent » with one or
several constraints.

11 / 39

Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
I Dx = {1,2,3}, Dy = {2,3,4}, x ≥ y .
I If x = 1, there are no values in Dy which satisfy the

constraint.
I Therefore, we can delete 1 from Dx .

We say that these values are « inconsistent » with one or
several constraints.

11 / 39

Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
I Dx = {1,2,3}, Dy = {2,3,4}, x ≥ y .
I If x = 1, there are no values in Dy which satisfy the

constraint.
I Therefore, we can delete 1 from Dx .

We say that these values are « inconsistent » with one or
several constraints.

11 / 39

Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
I Dx = {1,2,3}, Dy = {2,3,4}, x ≥ y .
I If x = 1, there are no values in Dy which satisfy the

constraint.
I Therefore, we can delete 1 from Dx .

We say that these values are « inconsistent » with one or
several constraints.

11 / 39

Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
I Dx = {1,2,3}, Dy = {2,3,4}, x ≥ y .
I If x = 1, there are no values in Dy which satisfy the

constraint.
I Therefore, we can delete 1 from Dx .

We say that these values are « inconsistent » with one or
several constraints.

11 / 39

Inconsistency : illustration I

12 / 39

Inconsistency : illustration I

12 / 39

Inconsistency : illustration I

12 / 39

Inconsistency : illustration II

13 / 39

Inconsistency : illustration II

13 / 39

Inconsistency : illustration III

14 / 39

Inconsistency : illustration III

14 / 39

Local consistency

I We do not check consistency of values with all constraints
at the same time (this would mean solving the whole CSP)

I We check consistency with a subset of constraints (usually,
one), therefore the consistance is local.

I A CSP is locally consistent if all values in all variable
domains are locally consistent

I When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).

15 / 39

Local consistency

I We do not check consistency of values with all constraints
at the same time (this would mean solving the whole CSP)

I We check consistency with a subset of constraints (usually,
one), therefore the consistance is local.

I A CSP is locally consistent if all values in all variable
domains are locally consistent

I When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).

15 / 39

Local consistency

I We do not check consistency of values with all constraints
at the same time (this would mean solving the whole CSP)

I We check consistency with a subset of constraints (usually,
one), therefore the consistance is local.

I A CSP is locally consistent if all values in all variable
domains are locally consistent

I When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).

15 / 39

Local consistency

I We do not check consistency of values with all constraints
at the same time (this would mean solving the whole CSP)

I We check consistency with a subset of constraints (usually,
one), therefore the consistance is local.

I A CSP is locally consistent if all values in all variable
domains are locally consistent

I When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).

15 / 39

Local consistency : illustration

I We did not change the set of solutions : the constraint
network is equivalent.

I We reduced the search space !

16 / 39

Local consistency : illustration

I We did not change the set of solutions : the constraint
network is equivalent.

I We reduced the search space !

16 / 39

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

17 / 39

Définitions I

Here we concentrate on the binary case.
I There exist different levels of local consistency
I If we check consistency of a value with only binary

constraint at a time, it is the arc-consistency.
I Value a of variable x est arc-consistent if and only if it has

at least one compatible value (support) in each neighbour
domain.

I Formally :

〈x ,a〉 is arc-consistent ⇔ ∀C(x , y) ∃b ∈ Dy : C(a,b).

〈x ,a〉 is not arc-consistent ⇔ ∃C(x , y) : ∀b ∈ Dy ¬C(a,b).

18 / 39

Définitions I

Here we concentrate on the binary case.
I There exist different levels of local consistency
I If we check consistency of a value with only binary

constraint at a time, it is the arc-consistency.
I Value a of variable x est arc-consistent if and only if it has

at least one compatible value (support) in each neighbour
domain.

I Formally :

〈x ,a〉 is arc-consistent ⇔ ∀C(x , y) ∃b ∈ Dy : C(a,b).

〈x ,a〉 is not arc-consistent ⇔ ∃C(x , y) : ∀b ∈ Dy ¬C(a,b).

18 / 39

Définitions I

Here we concentrate on the binary case.
I There exist different levels of local consistency
I If we check consistency of a value with only binary

constraint at a time, it is the arc-consistency.
I Value a of variable x est arc-consistent if and only if it has

at least one compatible value (support) in each neighbour
domain.

I Formally :

〈x ,a〉 is arc-consistent ⇔ ∀C(x , y) ∃b ∈ Dy : C(a,b).

〈x ,a〉 is not arc-consistent ⇔ ∃C(x , y) : ∀b ∈ Dy ¬C(a,b).

18 / 39

Définitions I

Here we concentrate on the binary case.
I There exist different levels of local consistency
I If we check consistency of a value with only binary

constraint at a time, it is the arc-consistency.
I Value a of variable x est arc-consistent if and only if it has

at least one compatible value (support) in each neighbour
domain.

I Formally :

〈x ,a〉 is arc-consistent ⇔ ∀C(x , y) ∃b ∈ Dy : C(a,b).

〈x ,a〉 is not arc-consistent ⇔ ∃C(x , y) : ∀b ∈ Dy ¬C(a,b).

18 / 39

Arc-consistency : illustration

(Wheel covers,) is arc-consistent as there exists a compatible value for Car
body.
(Car body,) is arc-consistent as

I there exists a compatible value () for wheel covers,
I there exists a compatible value () for bumpers,
I there exists a compatible value () for the roof

(Car body,) is not arc-consistent as it does not have a compatible value for
wheel covers.
Removal of (Car body,) makes (Roof,) and (Bumpers,)
arc-inconsistent

19 / 39

Definitions II

I A contraint is arc-consistent if and only if all values in
domains of its variables are arc-consistent.

I A CSP is arc-consistent if and only if all its constraints are
arc-consistent.

Why arc-consistency?
There exist polynomial (and efficient !) algorithms to achieve the
arc-consistency for a binary CSP.

20 / 39

Definitions II

I A contraint is arc-consistent if and only if all values in
domains of its variables are arc-consistent.

I A CSP is arc-consistent if and only if all its constraints are
arc-consistent.

Why arc-consistency?
There exist polynomial (and efficient !) algorithms to achieve the
arc-consistency for a binary CSP.

20 / 39

Definitions II

I A contraint is arc-consistent if and only if all values in
domains of its variables are arc-consistent.

I A CSP is arc-consistent if and only if all its constraints are
arc-consistent.

Why arc-consistency?
There exist polynomial (and efficient !) algorithms to achieve the
arc-consistency for a binary CSP.

20 / 39

Algorithm AC-1

repeat
finished ← TRUE;
foreach contraint C(x , y) do

if there exist values in Dx which do not have a
support in Dy then

remove them;
finished ← FALSE;

until finished = TRUE ;

Computational complexity in the worst case :

O(nd × ed2) = O(ned3),

where n — number of variables, e — number of constraints,
d — size of the largest domain.

21 / 39

Algorithm AC-1

repeat
finished ← TRUE;
foreach contraint C(x , y) do

if there exist values in Dx which do not have a
support in Dy then

remove them;
finished ← FALSE;

until finished = TRUE ;

Computational complexity in the worst case :

O(nd × ed2) = O(ned3),

where n — number of variables, e — number of constraints,
d — size of the largest domain.

21 / 39

Friends analogy

Town↔CSP
Building↔Variable

Neighbour buildings↔Variables « connected » by a constraint
Resident↔Value

Friends↔Pair of values satisfying the constraint

A resident is arc-consistent while it has at least on friend in
each neighbour building.

22 / 39

Friends analogy

Town↔CSP
Building↔Variable

Neighbour buildings↔Variables « connected » by a constraint
Resident↔Value

Friends↔Pair of values satisfying the constraint

A resident is arc-consistent while it has at least on friend in
each neighbour building.

22 / 39

Friends analogy — AC-1

A resident is arc-consistent while it has at least on friend in
each neighbour building.

AC-1 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « I leave the town - Anonymous » to every resident
of the town.

2. When a resident receives a letter, he verifies whether he is
still arc-consistent.

23 / 39

Algorithm AC-3
toTest ← {C(x , y)}C(x ,y)∈C ;
foreach C(x , y) ∈ toTest do

toTest ← toTest \{C(x , y)};
remove all values from Dx which do not have a support
in Dy ;

if at least on value has been removed then
toTest ← toTest ∪{C(z, x) : ∃C(z, x) ∈ C, z 6= x};

Computational complexity in the worst case :

O(ed × d2) = O(ed3).

Spacial complexity in the worst case :

O(dn + e).

24 / 39

Algorithm AC-3
toTest ← {C(x , y)}C(x ,y)∈C ;
foreach C(x , y) ∈ toTest do

toTest ← toTest \{C(x , y)};
remove all values from Dx which do not have a support
in Dy ;

if at least on value has been removed then
toTest ← toTest ∪{C(z, x) : ∃C(z, x) ∈ C, z 6= x};

Computational complexity in the worst case :

O(ed × d2) = O(ed3).

Spacial complexity in the worst case :

O(dn + e).

24 / 39

Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables.

y x

k

n m

p

o q

s

r

25 / 39

Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables.

y x

k

n m

p

o q

s

ry x

25 / 39

Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables.

y x

k

n m

p

o q

s

ry x

k

n m

25 / 39

Algorithm AC-3 : illustration
If a value is removed, we verify arc-consistency only for values
of neighbour variables.

y x

k

n m

p

o q

s

ry x

k

n m

We propagate by testing
the AC of Do and Dp only
if there are removals in Dm

25 / 39

Friends analogy — AC-3

AC-1 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « I leave the town - Anonymous » to every resident
of the town.

2. When a resident receives a letter, he verifies whether he is
still arc-consistent.

AC-3 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « I leave building x - Anonymous » to residents of
neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x .

26 / 39

Algorithm AC-4 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables which are compatible with the removed
value.

m

p

o q

s

ry x

k

n m

27 / 39

Algorithm AC-4 : illustration
If a value is removed, we verify arc-consistency only for values
of neighbour variables which are compatible with the removed
value.

m

p

o q

s

ry x

k

n m

We test the AC only for values
which are compatible with va-
lues removed from Di

27 / 39

Friends analogy — AC-4

AC-3 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « I leave building x - Anonymous » to all residents
of neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x .

AC-4 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « I leave building x - Signed 〈x ,a〉 » to its friends
in neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x .

28 / 39

Algorithm AC-4
Overview
I We use structure S : Si,a is the set of pairs (variable, value)

which support (i ,a)

I We count the number of supports counter[(i , j),a]

I As soon as one counter[(i , j),a] becomes zero, value a is
removed from Di and the pair (i ,a) is added to list Q of
revisions to do

Complexity analysis
I Spatial complexity is O(ed2) (memory needed to keep

structure S)
I Initialization of structure S takes time O(ed2)

I In the course of the algorithm, each value
counter[(i , j),a] can be decreased at most d times —
time complexity is also O(ed2)

29 / 39

Algorithm AC-4
Overview
I We use structure S : Si,a is the set of pairs (variable, value)

which support (i ,a)

I We count the number of supports counter[(i , j),a]

I As soon as one counter[(i , j),a] becomes zero, value a is
removed from Di and the pair (i ,a) is added to list Q of
revisions to do

Complexity analysis
I Spatial complexity is O(ed2) (memory needed to keep

structure S)
I Initialization of structure S takes time O(ed2)

I In the course of the algorithm, each value
counter[(i , j),a] can be decreased at most d times —
time complexity is also O(ed2)

29 / 39

Friends analogy — AC-6

AC-4 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « I leave building x - Signed 〈x ,a〉 » to its friends
in neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x .

AC-6 :
1. Each arc-inconsistent resident leaves the town and sends

a letter « I leave building x - Signed 〈x ,a〉 » to its friends
for which he is the friend living in the smallest
apartement number in c

2. When a resident receives a letter, he searches another
friend in x who lives in an apartment with larger
number than 〈x ,a〉

30 / 39

Algorithm AC-6 : illustration

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

ij k m

a

b

c

d

Si (i, b) part, seul (k, a) sera prévenu

I If resident 〈i ,b〉 leaves, only 〈k ,a〉 will be notified.
I The presence of others will not be challenged by the

departure of 〈i ,b〉
I We will search for another friend of 〈k ,a〉 living on a higher

floor than 〈i ,b〉.

31 / 39

Algorithm AC-6 : illustration

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

ij k m

a

b

c

d

Si (i, b) part, seul (k, a) sera prévenu

I If resident 〈i ,b〉 leaves, only 〈k ,a〉 will be notified.
I The presence of others will not be challenged by the

departure of 〈i ,b〉
I We will search for another friend of 〈k ,a〉 living on a higher

floor than 〈i ,b〉.

31 / 39

Algorithm AC-6 : illustration

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

ij k m

a

b

c

d

Si (i, b) part, seul (k, a) sera prévenu

I If resident 〈i ,b〉 leaves, only 〈k ,a〉 will be notified.
I The presence of others will not be challenged by the

departure of 〈i ,b〉
I We will search for another friend of 〈k ,a〉 living on a higher

floor than 〈i ,b〉.

31 / 39

Arc-consistency algorithms in practice

AC-3 AC-4 AC-6
Time complexity O(ed3) O(ed2) O(ed2)

« Practical » complexity Ω(ed2) O(ed2) O(ed2)

Spacial complexity O(dn + e) O(ed2) O(ed)

Implementation difficulty easy medium hard

Algorithms AC-3 and AC-4 are mostly used in practice.

32 / 39

Arc-consistency algorithms in practice

AC-3 AC-4 AC-6
Time complexity O(ed3) O(ed2) O(ed2)

« Practical » complexity Ω(ed2) O(ed2) O(ed2)

Spacial complexity O(dn + e) O(ed2) O(ed)

Implementation difficulty easy medium hard

Algorithms AC-3 and AC-4 are mostly used in practice.

32 / 39

Arc-consistent 6= globally consistent
If a CSP is arc-consistent, this does not mean that CSP is
globally consistent (has a solution).

The same example

This CSP is arc-consistent, but does not have a solution.

33 / 39

Arc-consistent 6= globally consistent
If a CSP is arc-consistent, this does not mean that CSP is
globally consistent (has a solution).

The same example

This CSP is arc-consistent, but does not have a solution.

33 / 39

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

34 / 39

Path consistency

A pair of variables are path consistent with the third variable if
each arc-consistent pair of values can be extended to another
variable in such a way that all binary constraints are satisfied.

Example

Variables x1 and x2 are not path
consistent with x3.

We can make them path consistent
by removing blue values.

35 / 39

Path consistency

A pair of variables are path consistent with the third variable if
each arc-consistent pair of values can be extended to another
variable in such a way that all binary constraints are satisfied.

Example

Variables x1 and x2 are not path
consistent with x3.

We can make them path consistent
by removing blue values.

35 / 39

K -consistency

There exist « stronger » local consistencies for finite CSPs..
I A CSP is K -consistent if each set of values of K − 1

variables which satisfy all the constraints between them
can be « extended » to K -th variable (there exists a value
for this K -th variable such that all constrains between
these K variables are satisfied).

I The algorithms to make a CSP K -consistent are
exponential in K .

I Generally, the « expenses » for this type of local
consistency are larger than the advantages of their use.

36 / 39

K -consistency

There exist « stronger » local consistencies for finite CSPs..
I A CSP is K -consistent if each set of values of K − 1

variables which satisfy all the constraints between them
can be « extended » to K -th variable (there exists a value
for this K -th variable such that all constrains between
these K variables are satisfied).

I The algorithms to make a CSP K -consistent are
exponential in K .

I Generally, the « expenses » for this type of local
consistency are larger than the advantages of their use.

36 / 39

K -consistency

There exist « stronger » local consistencies for finite CSPs..
I A CSP is K -consistent if each set of values of K − 1

variables which satisfy all the constraints between them
can be « extended » to K -th variable (there exists a value
for this K -th variable such that all constrains between
these K variables are satisfied).

I The algorithms to make a CSP K -consistent are
exponential in K .

I Generally, the « expenses » for this type of local
consistency are larger than the advantages of their use.

36 / 39

K -consistency

There exist « stronger » local consistencies for finite CSPs..
I A CSP is K -consistent if each set of values of K − 1

variables which satisfy all the constraints between them
can be « extended » to K -th variable (there exists a value
for this K -th variable such that all constrains between
these K variables are satisfied).

I The algorithms to make a CSP K -consistent are
exponential in K .

I Generally, the « expenses » for this type of local
consistency are larger than the advantages of their use.

36 / 39

K -consistency II

Equivalencies
I 1-consistency = node consistency
I 2-consistency = arc-consistency
I 3-consistency = path consistency (for binary CSPs)

Strong consistency
A CSP is strongly K -consistent if it is L-consistent for each
L ≤ K .

37 / 39

K -consistency II

Equivalencies
I 1-consistency = node consistency
I 2-consistency = arc-consistency
I 3-consistency = path consistency (for binary CSPs)

Strong consistency
A CSP is strongly K -consistent if it is L-consistent for each
L ≤ K .

37 / 39

Arc-B-consistency

And if the domains are not discrete? Intervals?

Arc-B-consistency is the arc-consistency limited to bounds of
intervals.
I Weaker that the arc-consistency.
I Easy to implement, therefore broadly used.

Definition
A constraint C(x1, . . . , xk) is arc-B-consistent if and only if

∀xi ∀ai ∈ {min(Dxi),max(Dxi)}

∃a1 ∈ Dx1 , . . . , ai−1 ∈ Dxi−1 , ai+1 ∈ Dxi+1 , . . . , ak ∈ Dxk

such that C(a1, . . . ,ak) is true.

38 / 39

Arc-B-consistency

And if the domains are not discrete? Intervals?

Arc-B-consistency is the arc-consistency limited to bounds of
intervals.
I Weaker that the arc-consistency.
I Easy to implement, therefore broadly used.

Definition
A constraint C(x1, . . . , xk) is arc-B-consistent if and only if

∀xi ∀ai ∈ {min(Dxi),max(Dxi)}

∃a1 ∈ Dx1 , . . . , ai−1 ∈ Dxi−1 , ai+1 ∈ Dxi+1 , . . . , ak ∈ Dxk

such that C(a1, . . . ,ak) is true.

38 / 39

Arc-B-consistency

And if the domains are not discrete? Intervals?

Arc-B-consistency is the arc-consistency limited to bounds of
intervals.
I Weaker that the arc-consistency.
I Easy to implement, therefore broadly used.

Definition
A constraint C(x1, . . . , xk) is arc-B-consistent if and only if

∀xi ∀ai ∈ {min(Dxi),max(Dxi)}

∃a1 ∈ Dx1 , . . . , ai−1 ∈ Dxi−1 , ai+1 ∈ Dxi+1 , . . . , ak ∈ Dxk

such that C(a1, . . . ,ak) is true.

38 / 39

Arc-B-consistency : example

Variables : x , y , z. Domains are intervals.
Constraint : z = x + y

min(Dz) and max(Dz) are arc-consistent if{
min(Dz) ≥ min(Dx) + min(Dy)
max(Dz) ≤ max(Dx) + max(Dy)

otherwise

Dz ←
[

min(Dx) + min(Dy),max(Dx) + max(Dy)
]

min(Dx), max(Dx) ?
min(Dy), max(Dy) ?
Constraint z = max{x1, x2, . . . , xn}?

39 / 39

Arc-B-consistency : example

Variables : x , y , z. Domains are intervals.
Constraint : z = x + y

min(Dz) and max(Dz) are arc-consistent if{
min(Dz) ≥ min(Dx) + min(Dy)
max(Dz) ≤ max(Dx) + max(Dy)

otherwise

Dz ←
[

min(Dx) + min(Dy),max(Dx) + max(Dy)
]

min(Dx), max(Dx) ?
min(Dy), max(Dy) ?
Constraint z = max{x1, x2, . . . , xn}?

39 / 39

Arc-B-consistency : example

Variables : x , y , z. Domains are intervals.
Constraint : z = x + y

min(Dz) and max(Dz) are arc-consistent if{
min(Dz) ≥ min(Dx) + min(Dy)
max(Dz) ≤ max(Dx) + max(Dy)

otherwise

Dz ←
[

min(Dx) + min(Dy),max(Dx) + max(Dy)
]

min(Dx), max(Dx) ?
min(Dy), max(Dy) ?
Constraint z = max{x1, x2, . . . , xn}?

39 / 39

Arc-B-consistency : example

Variables : x , y , z. Domains are intervals.
Constraint : z = x + y

min(Dz) and max(Dz) are arc-consistent if{
min(Dz) ≥ min(Dx) + min(Dy)
max(Dz) ≤ max(Dx) + max(Dy)

otherwise

Dz ←
[

min(Dx) + min(Dy),max(Dx) + max(Dy)
]

min(Dx), max(Dx) ?
min(Dy), max(Dy) ?
Constraint z = max{x1, x2, . . . , xn}?

39 / 39

	Binary constraints and CSPs
	

	Local consistency : an overview
	

	Arc-consistency
	

	Other local consistencies
	

