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Lignes directrices

Binary constraints and CSPs
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Definitions

» A constraint is binary if it contains at most two variables.
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Definitions

» A constraint is binary if it contains at most two variables.
» A CSP is binary if all its constraints are binary.
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Network of binary constraints

A constraint network is a set of constraints on variables with
discrete and finite domain.
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Network of binary constraints

A constraint network is a set of constraints on variables with
discrete and finite domain.

A binary constraint network can be represented by a special
graph :

» Vertices represent variables.

» Edges represent constraints.

If two vertices are adjacent, there are constraints containing the
corresponding variables.
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Making any CSP binary

For each non-binary CSP, there exists an equivalent binary
CSP.
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Making any CSP binary

For each non-binary CSP, there exists an equivalent binary
CSP.

Example

XF#FYy#2Z

Dy=D,=D,={1,2,3}
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Making any CSP binary

For each non-binary CSP, there exists an equivalent binary
CSP.

Example
=
XAy #2
D, = Dy =D, = {1,2,3} Dy = {abc}a;gb#

Cx = {(a, abC)}aeDX,abceDw
Cy = {(b, abc)}ben, avcen,
C: = {(c, abc)}cep;,abceD,
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Lignes directrices

Local consistency : an overview
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A trivial example

Germany

////
Roof 4
7

Spain F France ‘ Belgium |
Wheel cover' Car body ﬁ i Bumpers i
D O
oXo, 4! -w

Source : Phlllppe Baptiste
(=] = = A
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A trivial example : the extended constraint network

Bumpers

Wheel covers Car body

o
o
O

Roof

O—O compatible pair
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Trivial solution algorithm for our example

@—@ compatible pair
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Trivial solution algorithm for our example
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Trivial solution of discrete CSPs

» Suppose that all domains are finite
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Trivial solution of discrete CSPs

» Suppose that all domains are finite

» Then the number |A| of different assignments of values in
variable domains is finite too :

[Al = [Dx; [ x -+ X [ Dy

» Then, we can consider these assignments one by one and
verify whether at least one of them satisfies the constraints.

» Computational complexity (number of operations to do) is
at least |A| x |C]|.

> |tis too large!
> 8 queens : 8% x 96~ 10'°
» Sudoku : 81% x 27 ~ 10"
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Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.
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Inconsistency

To solve faster, we try to remove values (from domains of
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Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
> DX = {17273}’ Dy = {273’4}5 X Z y

» If x =1, there are no values in D, which satisfy the
constraint.
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Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
» D, ={1,2,3}, D, ={2,3,4}, x > y.
» If x =1, there are no values in D, which satisfy the
constraint.
» Therefore, we can delete 1 from Dy.
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Inconsistency

To solve faster, we try to remove values (from domains of
variables) which do not lead to any solution.

Example
> DX = {17273}’ Dy = {273’4}5 X Z y

» If x =1, there are no values in D, which satisfy the
constraint.

» Therefore, we can delete 1 from Dy.

We say that these values are « inconsistent » with one or
several constraints.
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Inconsistency : illustration |

This colour is not compatible
with any colour of car body

Bumpers

Wheel covers Car body

Roof
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Inconsistency : illustration |

This colour is not compatible

with any colour of car body

Wheel covers Car body

If we choose it, we could not extend
this partial solution to car body
It is locally inconsistent

Bumpers

Roof
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Inconsistency : illustration |

This colour is not compatible
with any colour of car body

Wheel covers Car body

" If we choose it, we could not extend
this partial solution to car body

]

(\ It is locally inconsistent

( . .
‘ we could not extend it to a solution!
Jt is not « completable », thus globally inconsisten

Bumpers

Roof
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Inconsistency : illustration |l

This value is also
locally inconsistent

Bumpers

Wheel covers Car body

|
@
> |
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Inconsistency : illustration I

This value is also
locally inconsistent

Bumpers

Wheel covers Car body

@
o

| 1

Therefore, we can remove it without
modifying the set of solutions

Roof
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Inconsistency : illustration Il

These values become
locally inconsistent

‘ Bumpers
Q
Wheel covers Car body g

@
g |

O Roof
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Inconsistency : illustration I

These values become
locally inconsistent

: Bumpe
O P
Wheel covers Car body /.@
/ ><\

O
o \
\ %
We can then delete them: \Z )

their removal does not change ) R
the set of solutions u o



Local consistency

» We do not check consistency of values with all constraints
at the same time (this would mean solving the whole CSP)
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Local consistency

» We do not check consistency of values with all constraints
at the same time (this would mean solving the whole CSP)

» We check consistency with a subset of constraints (usually,
one), therefore the consistance is local.

> A CSP is locally consistent if all values in all variable
domains are locally consistent

» When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).
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Local consistency : illustration

Bumpers

Wheel covers Car body

» We did not change the set of solutions : the constraint
network is equivalent.

Roof
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Local consistency : illustration

Bumpers

Wheel covers Car body

» We did not change the set of solutions : the constraint
network is equivalent.

» We reduced the search space!

Roof
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Lignes directrices

Arc-consistency
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Définitions |

Here we concentrate on the binary case.
» There exist different levels of local consistency
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Définitions |

Here we concentrate on the binary case.
» There exist different levels of local consistency

» If we check consistency of a value with only binary
constraint at a time, it is the arc-consistency.

» Value a of variable x est arc-consistent if and only if it has
at least one compatible value (support) in each neighbour
domain.

» Formally :

(x,a) is arc-consistent < VC(x,y)3be D, : C(a,b).

(x, a) is not arc-consistent < 3C(x,y) : Vb e D, -C(a,b).
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Arc-consistency : illustration

Bumpers

@—@ compatible pair

(Wheel covers, @) is arc-consistent as there exists a compatible value for Car
body.
(Car body, ®) is arc-consistent as

> there exists a compatible value (® ) for wheel covers,

> there exists a compatible value (® ) for bumpers,

> there exists a compatible value (O ) for the roof
(Car body, @) is not arc-consistent as it does not have a compatible value for
wheel covers.
Removal of (Car body, ® ) makes (Roof, ® ) and (Bumpers, @)

arc-inconsistent
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Definitions Il

» A contraint is arc-consistent if and only if all values in
domains of its variables are arc-consistent.
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» A contraint is arc-consistent if and only if all values in
domains of its variables are arc-consistent.
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Definitions Il

» A contraint is arc-consistent if and only if all values in
domains of its variables are arc-consistent.

» A CSP is arc-consistent if and only if all its constraints are
arc-consistent.

Why arc-consistency ?

There exist polynomial (and efficient!) algorithms to achieve the
arc-consistency for a binary CSP.

20/39



Algorithm AC-1

repeat
finished < TRUE;
foreach contraint C(x, y) do
if there exist values in Dy which do not have a
support in D, then
remove them;
L finished < FALSE;

until finished = TRUE;
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Algorithm AC-1

repeat
finished <— TRUE;

foreach contraint C(x, y) do
if there exist values in Dy which do not have a

support in D, then
remove them;
finished + FALSE;

until finished = TRUE;

Computational complexity in the worst case :
O(nd x ed?) = O(ned®),

where n — number of variables, e — number of constraints,
d — size of the largest domain.
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Friends analogy
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Town«CSP
Building«Variable
Neighbour buildings<>Variables « connected » by a constraint
Resident«Value
Friends«Pair of values satisfying the constraint
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Friends analogy

ol L ol & aldhly L&
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X z
Town<«CSP
Building«Variable
Neighbour buildings<>Variables « connected » by a constraint

Resident«Value
Friends«Pair of values satisfying the constraint

A resident is arc-consistent while it has at least on friend in
each neighbour building.
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Friends analogy — AC-1

A resident is arc-consistent while it has at least on friend in
each neighbour building.

AC-1:

1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave the town - Anonymous » to every resident
of the town.

2. When a resident receives a letter, he verifies whether he is
still arc-consistent.
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Algorithm AC-3

toTest < {C(X,¥)}c(xy)ecs
foreach C(x, y) € toTest do

toTest < toTest \{C(x,y)};

remove all values from Dy which do not have a support
in Dy;

if at least on value has been removed then
| toTest « toTest U{C(z,x) : 3C(z,x) € C,z # x};
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Algorithm AC-3

toTest < {C(x,¥)}c(x.y)ecs

foreach C(x, y) € toTest do

toTest < toTest \{C(x,y)};

remove all values from Dy which do not have a support
in Dy;

if at least on value has been removed then
| toTest « toTest U{C(z,x) : 3C(z,x) € C,z # x};

Computational complexity in the worst case :

O(ed x d?) = O(ed®).

Spacial complexity in the worst case :

O(dn + e).
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Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables.

® ®
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If a value is removed, we verify arc-consistency only for values
of neighbour variables.

® ®
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Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables.

We propagate by testing
the AC of D, and Dj only
if there are removals in Dy,
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Friends analogy — AC-3

AC-1:
1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave the town - Anonymous » to every resident
of the town.

2. When a resident receives a letter, he verifies whether he is
still arc-consistent.

AC-3 :
1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Anonymous » to residents of
neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x.
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Algorithm AC-4 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables which are compatible with the removed

®
®/$ G
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Algorithm AC-4 : illustration

If a value is removed, we verify arc-consistency only for values
of neighbour variables which are compatible with the removed
value.

We test the AC only for values
@ which are compatible with va-
lues removed from D;

® G
(M———@

(@ ®
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Friends analogy — AC-4

AC-3 :

1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Anonymous » to all residents
of neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x.

AC-4 :
1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Signed (x, a) » to its friends
in neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x.
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Algorithm AC-4

Overview

» We use structure S : S; 5 is the set of pairs (variable, value)
which support (i, a)

» We count the number of supports counter[(/,)), 4|

» As soon as one counter|(/,f), a becomes zero, value ais
removed from D; and the pair (/, a) is added to list Q of
revisions to do
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Algorithm AC-4

Overview

» We use structure S : S; 5 is the set of pairs (variable, value)
which support (i, a)

» We count the number of supports counter[(/,)), 4|

» As soon as one counter|(/,f), a becomes zero, value ais
removed from D; and the pair (/, a) is added to list Q of
revisions to do

Complexity analysis
» Spatial complexity is O(ed?) (memory needed to keep
structure S)
» Initialization of structure S takes time O(ed?)

> In the course of the algorithm, each value
counter|[(/,f), @ can be decreased at most d times —
time complexity is also O(ed?)
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Friends analogy — AC-6

AC-4 :

1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Signed (x, a) » to its friends
in neighbour buildings.

2. When a resident receives a letter, he verifies whether he
still has friends in building x.

AC-6 :

1. Each arc-inconsistent resident leaves the town and sends
a letter « | leave building x - Signed (x, a) » to its friends
for which he is the friend living in the smallest
apartement number in ¢

2. When a resident receives a letter, he searches another
friend in x who lives in an apartment with larger
number than (x, a)
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Algorithm AC-6 : illustration
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> If resident (i, b) leaves, only (k, a) will be notified.
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Algorithm AC-6 : illustration
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» If resident (i, b) leaves, only (k, a) will be notified.

» The presence of others will not be challenged by the
departure of (i, b)
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Algorithm AC-6 : illustration

dm dm
C I>§m m
IR

1] b[L]

| all] ,
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> If resident (i, b) leaves, only (k, a) will be notified.

» The presence of others will not be challenged by the
departure of (i, b)

» We will search for another friend of (k, a) living on a higher
floor than (i, b).
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Arc-consistency algorithms in practice

AC-3 AC-4 AC-6
Time complexity ~ O(ed®)  O(ed?) O(ed?)

« Practical » complexity ~ Q(ed?)  O(ed?) O(ed?)
Spacial complexity O(dn+e) O(ed?) O(ed)

Implementation difficulty easy medium  hard
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Arc-consistency algorithms in practice

AC-3 AC-4 AC-6
Time complexity ~ O(ed®)  O(ed?) O(ed?)

« Practical » complexity ~ Q(ed?)  O(ed?) O(ed?)
Spacial complexity O(dn+e) O(ed?) O(ed)

Implementation difficulty easy medium  hard

Algorithms AC-3 and AC-4 are mostly used in practice.
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Arc-consistent # globally consistent

If a CSP is arc-consistent, this does not mean that CSP is
globally consistent (has a solution).
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Arc-consistent # globally consistent

If a CSP is arc-consistent, this does not mean that CSP is
globally consistent (has a solution).

The same example

Bumpers

Wheel covers Car body

Roof

This CSP is arc-consistent, but does not have a solution.
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Lignes directrices

Other local consistencies
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Path consistency

A pair of variables are path consistent with the third variable if
each arc-consistent pair of values can be extended to another
variable in such a way that all binary constraints are satisfied.

;V:\ R12 X2

R23

Ri3
X3
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Path consistency

A pair of variables are path consistent with the third variable if
each arc-consistent pair of values can be extended to another
variable in such a way that all binary constraints are satisfied.

Example
X X
Ol\ R12 2 Variables x; and x, are not path
consistent with x3.
R Ro3 We can make them path consistent
13

X by removing blue values.
3
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K-consistency

There exist « stronger » local consistencies for finite CSPs..

36/39



K-consistency

There exist « stronger » local consistencies for finite CSPs..

» A CSPis K-consistent if each set of values of K — 1
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for this K-th variable such that all constrains between
these K variables are satisfied).
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K-consistency

There exist « stronger » local consistencies for finite CSPs..

» A CSPis K-consistent if each set of values of K — 1
variables which satisfy all the constraints between them
can be « extended » to K-th variable (there exists a value
for this K-th variable such that all constrains between
these K variables are satisfied).

» The algorithms to make a CSP K-consistent are
exponential in K.

» Generally, the « expenses » for this type of local
consistency are larger than the advantages of their use.
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K-consistency |l

Equivalencies

» 1-consistency = node consistency
> 2-consistency = arc-consistency
» 3-consistency = path consistency (for binary CSPs)
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K-consistency Il

Equivalencies
» 1-consistency = node consistency
> 2-consistency = arc-consistency
» 3-consistency = path consistency (for binary CSPs)

Strong consistency

A CSP is strongly K-consistent if it is L-consistent for each
L<K.
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Arc-B-consistency

And if the domains are not discrete ? Intervals ?
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Arc-B-consistency is the arc-consistency limited to bounds of
intervals.

» Weaker that the arc-consistency.

» Easy to implement, therefore broadly used.
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Arc-B-consistency

And if the domains are not discrete ? Intervals ?

Arc-B-consistency is the arc-consistency limited to bounds of
intervals.

» Weaker that the arc-consistency.
» Easy to implement, therefore broadly used.

Definition
A constraint C(xq, ..., Xk) is arc-B-consistent if and only if
Vx; Va; € {min(Dy,), max(Dy,)}
Jday € Dx,,..., @i—1 € Dx_,, @11 € Dx,,..., @ € Dy,

such that C(ay, ..., ax) is true.
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Arc-B-consistency : example

Variables : x, y, z. Domains are intervals.
Constraint: z=x+y
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Arc-B-consistency : example

Variables : x, y, z. Domains are intervals.
Constraint: z=x+y

min(D;) and max(D;) are arc-consistent if

{ min(D;) > min(Dyx) + min(D,)
max(D;) < max(Dx) + max(Dy)

otherwise

D, + [min(DX) + min(Dy), max(Dx) + max(Dy)
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Arc-B-consistency : example

Variables : x, y, z. Domains are intervals.
Constraint: z=x+y

min(D;) and max(D;) are arc-consistent if

{ min(D;) > min(Dyx) + min(D,)
max(D;) < max(Dx) + max(Dy)

otherwise

D, + [min(DX) + min(Dy), max(Dx) + max(Dy)

min(Dx), max(Dx) ?
min(Dy), max(Dy) ?
Constraint z = max{xy, X2, ..., Xn} ?
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