Constraint Programming

Lecture 2. Local consistency.

Ruslan Sadykov

INRIA-Bordeaux

13 January 2022

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

Definitions

- A constraint is binary if it contains at most two variables.
- A CSP is binary if all its constraints are binary.

Definitions

- A constraint is binary if it contains at most two variables.
- A CSP is binary if all its constraints are binary.

Network of binary constraints

A constraint network is a set of constraints on variables with discrete and finite domain.

A binary constraint network can be represented by a special graph
> Vertices represent variables.

- Edges represent constraints.

If two vertices are adjacent, there are constraints containing the corresponding variables.

Network of binary constraints

A constraint network is a set of constraints on variables with discrete and finite domain.

A binary constraint network can be represented by a special graph :

- Vertices represent variables.
- Edges represent constraints.

If two vertices are adjacent, there are constraints containing the corresponding variables.

Making any CSP binary

For each non-binary CSP, there exists an equivalent binary CSP.

Example

$D_{x}=D_{y}=D_{z}=\{1,2,3\}$
$D_{w}=\{a b c\}_{a \neq b \neq c}$
$C_{x}=\{(a, a b c)\}_{a \in D_{x}, a b c \in D_{w}}$
$C_{y}=\{(b, a b c)\}_{b \in D_{y}, a b c \in D_{w}}$
$C_{z}=\{(c, a b c)\}_{c \in D_{z}, a b c \in D_{w}}$

Making any CSP binary

For each non-binary CSP, there exists an equivalent binary CSP.

Example

$$
D_{x}=D_{y}=D_{z}=\{1,2,3\}
$$

$D_{w}=\{a b c\}_{a \neq b \neq c}$
$C_{x}=\{(a, a b c)\}_{a \in D_{x}, a b c \in D_{w}}$
$C_{y}=\{(b, a b c)\}_{b \in D_{y}, a b c \in D_{w}}$
$C_{z}=\{(c, a b c)\}_{c \in D_{z}, a b c \in D_{w}}$

Making any CSP binary

For each non-binary CSP, there exists an equivalent binary CSP.

Example

$$
D_{x}=D_{y}=D_{z}=\{1,2,3\}
$$

$$
\begin{aligned}
& D_{w}=\{a b c\}_{a \neq b \neq c} \\
& C_{x}=\{(a, a b c)\}_{a \in D_{x}, a b c \in D_{w}} \\
& C_{y}=\{(b, a b c)\}_{b \in D_{y}, a b c \in D_{w}} \\
& C_{z}=\{(c, a b c)\}_{c \in D_{z}, a b c \in D_{w}}
\end{aligned}
$$

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

A trivial example

Source : Philippe Baptiste

A trivial example : the extended constraint network

Trivial solution algorithm for our example

Trivial solution algorithm for our example

Wheel covers

Trivial solution algorithm for our example

Trivial solution algorithm for our example

Trivial solution algorithm for our example

Trivial solution of discrete CSPs

- Suppose that all domains are finite

```
> Then the number |A| of different assignments of values in
variable domains is finite too :
\[
|A|=\left|D_{x_{1}}\right| \times \cdots \times\left|D_{x_{n}}\right|
\]
- Then, we can consider these assignments one by one and verify whether at least one of them satisfies the constraints.
- Computational complexity (number of operations to do) is at least \(|A| \times|C|\).
- It is too large!
- 8 queens: \(8^{8} \times 96 \approx 10^{10}\)
- Sudoku: \(81^{9} \times 27 \approx 10^{17}\)
```


Trivial solution of discrete CSPs

- Suppose that all domains are finite
- Then the number $|A|$ of different assignments of values in variable domains is finite too:

$$
|A|=\left|D_{x_{1}}\right| \times \cdots \times\left|D_{x_{n}}\right| .
$$

- Then, we can consider these assignments one by one and verify whether at least one of them satisfies the constraints.
- Computational complexity (number of operations to do) is at least $|A| \times|C|$.
- It is too large!

Trivial solution of discrete CSPs

- Suppose that all domains are finite
- Then the number $|A|$ of different assignments of values in variable domains is finite too:

$$
|A|=\left|D_{x_{1}}\right| \times \cdots \times\left|D_{x_{n}}\right| .
$$

- Then, we can consider these assignments one by one and verify whether at least one of them satisfies the constraints.
$>$ Computational complexity (number of operations to do) is
at least $|A| \times|C|$.

Trivial solution of discrete CSPs

- Suppose that all domains are finite
- Then the number $|A|$ of different assignments of values in variable domains is finite too:

$$
|A|=\left|D_{x_{1}}\right| \times \cdots \times\left|D_{x_{n}}\right| .
$$

- Then, we can consider these assignments one by one and verify whether at least one of them satisfies the constraints.
- Computational complexity (number of operations to do) is at least $|A| \times|C|$.

Trivial solution of discrete CSPs

- Suppose that all domains are finite
- Then the number $|A|$ of different assignments of values in variable domains is finite too:

$$
|A|=\left|D_{x_{1}}\right| \times \cdots \times\left|D_{x_{n}}\right| .
$$

- Then, we can consider these assignments one by one and verify whether at least one of them satisfies the constraints.
- Computational complexity (number of operations to do) is at least $|A| \times|C|$.
- It is too large!
- 8 queens : $8^{8} \times 96 \approx 10^{10}$
- Sudoku : $81^{9} \times 27 \approx 10^{17}$

Inconsistency

To solve faster, we try to remove values (from domains of variables) which do not lead to any solution.

Inconsistency

To solve faster, we try to remove values (from domains of variables) which do not lead to any solution.

Example

- $D_{x}=\{1,2,3\}, D_{y}=\{2,3,4\}, x \geq y$.
- If $x=1$, there are no values in D_{y} which satisfy the constraint.
- Therefore we can delete 1 from D_{x}.

We say that these values are «inconsistent» with one or several constraints.

Inconsistency

To solve faster, we try to remove values (from domains of variables) which do not lead to any solution.

Example

- $D_{x}=\{1,2,3\}, D_{y}=\{2,3,4\}, x \geq y$.
- If $x=1$, there are no values in D_{y} which satisfy the constraint.
- Therefore, we can delete 1 from D_{x}.

We say that these values are « inconsistent » with one or several constraints.

Inconsistency

To solve faster, we try to remove values (from domains of variables) which do not lead to any solution.

Example

- $D_{x}=\{1,2,3\}, D_{y}=\{2,3,4\}, x \geq y$.
- If $x=1$, there are no values in D_{y} which satisfy the constraint.
- Therefore, we can delete 1 from D_{x}.

We say that these values are « inconsistent » with one or several constraints.

Inconsistency

To solve faster, we try to remove values (from domains of variables) which do not lead to any solution.

Example

- $D_{x}=\{1,2,3\}, D_{y}=\{2,3,4\}, x \geq y$.
- If $x=1$, there are no values in D_{y} which satisfy the constraint.
- Therefore, we can delete 1 from D_{x}.

We say that these values are « inconsistent » with one or several constraints.

Inconsistency : illustration I

Inconsistency : illustration I

Inconsistency : illustration I

Inconsistency : illustration II

Inconsistency : illustration II

Inconsistency : illustration III

These values become locally inconsistent

Wheel covers

Roof

Inconsistency : illustration III

These values become locally inconsistent

Wheel covers

Car body
 their removal does not change the set of solutions

Local consistency

- We do not check consistency of values with all constraints at the same time (this would mean solving the whole CSP)

```
- We check consistency with a subset of constraints (usually,
one), therefore the consistance is local.
- A CSP is locally consistent if all values in all variable
domains are locally consistent
- When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).
```


Local consistency

- We do not check consistency of values with all constraints at the same time (this would mean solving the whole CSP)
- We check consistency with a subset of constraints (usually, one), therefore the consistance is local.
A CSP is locally consistent if all values in all variable
domains are locally consistent
When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).

Local consistency

- We do not check consistency of values with all constraints at the same time (this would mean solving the whole CSP)
- We check consistency with a subset of constraints (usually, one), therefore the consistance is local.
- A CSP is locally consistent if all values in all variable domains are locally consistent
When a CSP achieves local consistency, the set of
solutions does not change. Therefore, the CSP remains
equivalent, but simpler (or smaller).

Local consistency

- We do not check consistency of values with all constraints at the same time (this would mean solving the whole CSP)
- We check consistency with a subset of constraints (usually, one), therefore the consistance is local.
- A CSP is locally consistent if all values in all variable domains are locally consistent
- When a CSP achieves local consistency, the set of solutions does not change. Therefore, the CSP remains equivalent, but simpler (or smaller).

Local consistency : illustration

- We did not change the set of solutions : the constraint network is equivalent.
\rightarrow We reduced the search space!

Local consistency : illustration

- We did not change the set of solutions : the constraint network is equivalent.
- We reduced the search space!

Lignes directrices

Binary constraints and CSPs
 Local consistency : an overview

Arc-consistency

Other local consistencies

Définitions I

Here we concentrate on the binary case.

- There exist different levels of local consistency
- If we check consistency of a value with only binary
constraint at a time, it is the arc-consistency.
- Value a of variable x est arc-consistent if and only if it has at least one compatible value (support) in each neighbour domain.
- Formally:

$$
\begin{gathered}
\langle x, a\rangle \text { is arc-consistent } \Leftrightarrow \forall C(x, y) \exists b \in D_{y}: C(a, b) . \\
\langle x, a\rangle \text { is not arc-consistent } \Leftrightarrow \exists C(x, y): \forall b \in D_{y} \neg C(a, b) .
\end{gathered}
$$

Définitions I

Here we concentrate on the binary case.

- There exist different levels of local consistency
- If we check consistency of a value with only binary constraint at a time, it is the arc-consistency.
- Value a of variable x est arc-consistent if and only if it has at least one compatible value (support) in each neighbour domain.
- Formally :

$$
\begin{gathered}
\langle x, a\rangle \text { is arc-consistent } \Leftrightarrow \forall C(x, y) \exists b \in D_{y}: C(a, b) . \\
\langle x, a\rangle \text { is not arc-consistent } \Leftrightarrow \exists C(x, y): \forall b \in D_{y} \neg C(a, b) .
\end{gathered}
$$

Définitions I

Here we concentrate on the binary case.

- There exist different levels of local consistency
- If we check consistency of a value with only binary constraint at a time, it is the arc-consistency.
- Value a of variable x est arc-consistent if and only if it has at least one compatible value (support) in each neighbour domain.
- Formally :

$$
\begin{gathered}
\langle x, a\rangle \text { is arc-consistent } \Leftrightarrow \forall C(x, y) \exists b \in D_{y}: C(a, b) . \\
\langle x, a\rangle \text { is not arc-consistent } \Leftrightarrow \exists C(x, y): \forall b \in D_{y} \neg C(a, b) .
\end{gathered}
$$

Définitions I

Here we concentrate on the binary case.

- There exist different levels of local consistency
- If we check consistency of a value with only binary constraint at a time, it is the arc-consistency.
- Value a of variable x est arc-consistent if and only if it has at least one compatible value (support) in each neighbour domain.
- Formally :

$$
\begin{gathered}
\langle x, a\rangle \text { is arc-consistent } \Leftrightarrow \forall C(x, y) \exists b \in D_{y}: C(a, b) . \\
\langle x, a\rangle \text { is not arc-consistent } \Leftrightarrow \exists C(x, y): \forall b \in D_{y} \neg C(a, b) .
\end{gathered}
$$

Arc-consistency : illustration

(Wheel covers, ©) is arc-consistent as there exists a compatible value for Car body.
(Car body, ©) is arc-consistent as

- there exists a compatible value (O) for wheel covers,
- there exists a compatible value ($)$) for bumpers,
- there exists a compatible value (O) for the roof
(Car body, O) is not arc-consistent as it does not have a compatible value for wheel covers.
Removal of (Car body, O) makes (Roof, O) and (Bumpers, O) arc-inconsistent

Definitions II

- A contraint is arc-consistent if and only if all values in domains of its variables are arc-consistent.
\quad A CSP is arc-consistent if and only if all its constraints are
arc-consistent.
Why arc-consistency?
There exist polynomial (and efficient !) algorithms to achieve the arc-consistency for a binary CSP.

Definitions II

- A contraint is arc-consistent if and only if all values in domains of its variables are arc-consistent.
- A CSP is arc-consistent if and only if all its constraints are arc-consistent.

Why arc-consistency?
There exist polynomial (and efficient!) algorithms to achieve the arc-consistency for a binary CSP.

Definitions II

- A contraint is arc-consistent if and only if all values in domains of its variables are arc-consistent.
- A CSP is arc-consistent if and only if all its constraints are arc-consistent.

Why arc-consistency?
There exist polynomial (and efficient!) algorithms to achieve the arc-consistency for a binary CSP.

Algorithm AC-1

repeat

finished \leftarrow TRUE;
foreach contraint $C(x, y)$ do
if there exist values in D_{x} which do not have a support in D_{y} then remove them;
finished \leftarrow FALSE;
until finished $=T R U E$;
Computational complexity in the worst case : $O\left(n d \times e d^{2}\right)=O\left(n e d^{3}\right)$,
where n - number of variables, e - number of constraints,
d - size of the largest domain.

Algorithm AC-1

repeat

finished \leftarrow TRUE;

foreach contraint $C(x, y)$ do
if there exist values in D_{x} which do not have a support in D_{y} then remove them; finished \leftarrow FALSE;
until finished $=T R U E$;
Computational complexity in the worst case :

$$
O\left(n d \times e d^{2}\right)=O\left(n e d^{3}\right)
$$

where n - number of variables, e - number of constraints, d - size of the largest domain.

Friends analogy

Building \leftrightarrow Variable
Neighbour buildings \leftrightarrow Variables « connected» by a constraint Resident \leftrightarrow Value
Friends \leftrightarrow Pair of values satisfying the constraint
A resident is arc-consistent while it has at least on friend in each neighbour building.

Friends analogy

Building \leftrightarrow Variable
Neighbour buildings \leftrightarrow Variables « connected» by a constraint Resident \leftrightarrow Value
Friends \leftrightarrow Pair of values satisfying the constraint
A resident is arc-consistent while it has at least on friend in each neighbour building.

Friends analogy - AC-1

A resident is arc-consistent while it has at least on friend in each neighbour building.

AC-1 :

1. Each arc-inconsistent resident leaves the town and sends a letter « I leave the town - Anonymous» to every resident of the town.
2. When a resident receives a letter, he verifies whether he is still arc-consistent.

Algorithm AC-3

$$
\begin{aligned}
& \text { to Test } \leftarrow\{C(x, y)\} C(x, y) \in C ; \\
& \text { foreach } C(x, y) \in \text { toTest do } \\
& \quad \text { toTest } \leftarrow \text { to Test } \backslash\{C(x, y)\} ; \\
& \text { remove all values from } D_{x} \text { which do not have a support } \\
& \text { in } D_{y} ; \\
& \text { if at least on value has been removed then } \\
& \quad \text { toTest } \leftarrow \text { toTest } \cup\{C(z, x): \exists C(z, x) \in C, z \neq x\} ;
\end{aligned}
$$

Computational complexity in the worst case

$$
O\left(e d \times d^{2}\right)=O\left(e d^{3}\right)
$$

Spacial complexity in the worst case
\square

Algorithm AC-3

to Test $\leftarrow\{C(x, y)\} C(x, y) \in C$;
foreach $C(x, y) \in$ to Test do

$$
\text { to Test } \leftarrow \text { to Test } \backslash\{C(x, y)\} \text {; }
$$

remove all values from D_{x} which do not have a support in D_{y};
if at least on value has been removed then to Test \leftarrow to Test $\cup\{C(z, x): \exists C(z, x) \in C, z \neq x\} ;$

Computational complexity in the worst case :

$$
O\left(e d \times d^{2}\right)=O\left(e d^{3}\right)
$$

Spacial complexity in the worst case :

$$
O(d n+e) .
$$

Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables.

Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables.

Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables.

Algorithm AC-3 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables.

Friends analogy - AC-3

AC-1 :

1. Each arc-inconsistent resident leaves the town and sends a letter « I leave the town - Anonymous » to every resident of the town.
2. When a resident receives a letter, he verifies whether he is still arc-consistent.

AC-3 :

1. Each arc-inconsistent resident leaves the town and sends a letter «I leave building x-Anonymous » to residents of neighbour buildings.
2. When a resident receives a letter, he verifies whether he still has friends in building x.

Algorithm AC-4 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables which are compatible with the removed value.

Algorithm AC-4 : illustration

If a value is removed, we verify arc-consistency only for values of neighbour variables which are compatible with the removed value.

Friends analogy — AC-4

AC-3 :

1. Each arc-inconsistent resident leaves the town and sends a letter «I leave building x - Anonymous»to all residents of neighbour buildings.
2. When a resident receives a letter, he verifies whether he still has friends in building x.

AC-4 :

1. Each arc-inconsistent resident leaves the town and sends a letter «I leave building x-Signed $\langle x, a\rangle »$ to its friends in neighbour buildings.
2. When a resident receives a letter, he verifies whether he still has friends in building x.

Algorithm AC-4

Overview

- We use structure $\mathcal{S}: \mathcal{S}_{i, a}$ is the set of pairs (variable, value) which support (i, a)
- We count the number of supports counter[(i,j), a]
- As soon as one counter $[(i, j)$, a] becomes zero, value a is removed from D_{i} and the pair (i, a) is added to list Q of revisions to do

Complexity analysis

- Spatial complexity is $O\left(e d^{2}\right)$ (memory needed to keep structure \mathcal{S})
- Initialization of structure S takes time $O\left(e d^{2}\right)$
- In the course of the algorithm, each value counter $[(i, j), a]$ can be decreased at most d times time complexity is also $O\left(e d^{2}\right)$

Algorithm AC-4

Overview

- We use structure $\mathcal{S}: \mathcal{S}_{i, a}$ is the set of pairs (variable, value) which support ($i, a)$
- We count the number of supports counter $[(i, j), a]$
- As soon as one counter $[(i, j), a]$ becomes zero, value a is removed from D_{i} and the pair (i, a) is added to list Q of revisions to do

Complexity analysis

- Spatial complexity is $O\left(e d^{2}\right)$ (memory needed to keep structure \mathcal{S})
- Initialization of structure \mathcal{S} takes time $O\left(e d^{2}\right)$
- In the course of the algorithm, each value counter $[(i, j), a]$ can be decreased at most d times time complexity is also $O\left(e d^{2}\right)$

Friends analogy - AC-6

AC-4 :

1. Each arc-inconsistent resident leaves the town and sends a letter «l leave building x-Signed $\langle x, a\rangle »$ to its friends in neighbour buildings.
2. When a resident receives a letter, he verifies whether he still has friends in building x.

AC-6 :

1. Each arc-inconsistent resident leaves the town and sends a letter «I leave building x-Signed $\langle x, a\rangle »$ to its friends for which he is the friend living in the smallest apartement number in c
2. When a resident receives a letter, he searches another friend in x who lives in an apartment with larger number than $\langle x, a\rangle$

Algorithm AC-6 : illustration

- If resident $\langle i, b\rangle$ leaves, only $\langle k, a\rangle$ will be notified.

floor than $\langle i, b\rangle$.

Algorithm AC-6 : illustration

- If resident $\langle i, b\rangle$ leaves, only $\langle k, a\rangle$ will be notified.
- The presence of others will not be challenged by the departure of $\langle i, b\rangle$
floor than $\langle i, b\rangle$

Algorithm AC-6 : illustration

- If resident $\langle i, b\rangle$ leaves, only $\langle k, a\rangle$ will be notified.
- The presence of others will not be challenged by the departure of $\langle i, b\rangle$
- We will search for another friend of $\langle k, a\rangle$ living on a higher floor than $\langle i, b\rangle$.

Arc-consistency algorithms in practice

	AC-3	AC-4	AC-6
Time complexity	$O\left(e d^{3}\right)$	$O\left(e d^{2}\right)$	$O\left(e d^{2}\right)$
«Practical» complexity	$\Omega\left(e d^{2}\right)$	$O\left(e d^{2}\right)$	$O\left(e d^{2}\right)$
Spacial complexity	$O(d n+e)$	$O\left(e d^{2}\right)$	$O(e d)$
Implementation difficulty	easy	medium	hard

Algorithms AC-3 and AC-4 are mostly used in practice.

Arc-consistency algorithms in practice

	$\mathbf{A C}-\mathbf{3}$	$\mathbf{A C}-4$	$\mathbf{A C}-6$
Time complexity	$O\left(e d^{3}\right)$	$O\left(e d^{2}\right)$	$O\left(e d^{2}\right)$
«Practical » complexity	$\Omega\left(e d^{2}\right)$	$O\left(e d^{2}\right)$	$O\left(e d^{2}\right)$
Spacial complexity	$O(d n+e)$	$O\left(e d^{2}\right)$	$O(e d)$
Implementation difficulty	easy	medium	hard

Algorithms AC-3 and AC-4 are mostly used in practice.

Arc-consistent \neq globally consistent

If a CSP is arc-consistent, this does not mean that CSP is globally consistent (has a solution).

The same example

This CSP is arc-consistent, but does not have a solution.

Arc-consistent \neq globally consistent

If a CSP is arc-consistent, this does not mean that CSP is globally consistent (has a solution).

The same example

This CSP is arc-consistent, but does not have a solution.

Lignes directrices

Binary constraints and CSPs

Local consistency : an overview

Arc-consistency

Other local consistencies

Path consistency

A pair of variables are path consistent with the third variable if each arc-consistent pair of values can be extended to another variable in such a way that all binary constraints are satisfied.

Variables x_{1} and x_{2} are not path consistent with x_{3}.

We can make them path consistent by removing blue values.

Path consistency

A pair of variables are path consistent with the third variable if each arc-consistent pair of values can be extended to another variable in such a way that all binary constraints are satisfied.

Example

Variables x_{1} and x_{2} are not path consistent with x_{3}.
We can make them path consistent by removing blue values.

K-consistency

There exist « stronger» local consistencies for finite CSPs..
> \rightarrow A CSP is K-consistent if each set of values of $K-1$ variables which satisfy all the constraints between them can be « extended» to K-th variable (there exists a value for this K-th variable such that all constrains between these K variables are satisfied).
> - The algorithms to make a C.SP K-consistent are exponential in K.
> - Generally, the « expenses » for this type of local consistency are larger than the advantages of their use.

K-consistency

There exist «stronger» local consistencies for finite CSPs..

- A CSP is K-consistent if each set of values of $K-1$ variables which satisfy all the constraints between them can be « extended» to K-th variable (there exists a value for this K-th variable such that all constrains between these K variables are satisfied).
- Generally, the « expenses » for this type of local consistency are larger than the advantages of their use.

K-consistency

There exist «stronger» local consistencies for finite CSPs..

- A CSP is K-consistent if each set of values of $K-1$ variables which satisfy all the constraints between them can be « extended» to K-th variable (there exists a value for this K-th variable such that all constrains between these K variables are satisfied).
- The algorithms to make a CSP K-consistent are exponential in K.
- Generally, the «expenses » for this type of local consistency are larger than the advantages of their use.

K-consistency

There exist «stronger» local consistencies for finite CSPs..

- A CSP is K-consistent if each set of values of $K-1$ variables which satisfy all the constraints between them can be « extended» to K-th variable (there exists a value for this K-th variable such that all constrains between these K variables are satisfied).
- The algorithms to make a CSP K-consistent are exponential in K.
- Generally, the «expenses» for this type of local consistency are larger than the advantages of their use.

K-consistency II

Equivalencies

- 1-consistency = node consistency
- 2-consistency = arc-consistency
- 3-consistency $=$ path consistency (for binary CSPs)

Strong consistency
A CSP is strongly K-consistent if it is L-consistent for each

K-consistency II

Equivalencies

- 1-consistency = node consistency
- 2-consistency = arc-consistency
- 3-consistency $=$ path consistency (for binary CSPs)

Strong consistency
A CSP is strongly K-consistent if it is L-consistent for each $L \leq K$.

Arc-B-consistency

And if the domains are not discrete? Intervals?
Arc-B-consistency is the arc-consistency limited to bounds of intervals.

- Weaker that the arc-consistency.
- Easy to implement, therefore broadly used.

Definition
A constraint $C\left(x_{1}, \ldots, x_{k}\right)$ is arc-B-consistent if and only if

$$
\begin{aligned}
& \forall x_{i} \quad \forall a_{i} \in\left\{\min \left(D_{x_{i}}\right), \max \left(D_{x_{i}}\right)\right\} \\
& \ldots, a_{i-1} \in D_{x_{i-1}}, a_{i+1} \in D_{x_{i+1}}, \ldots, a_{k} \in D_{x_{k}} \\
& \text { such that } C\left(a_{1}, \ldots, a_{k}\right) \text { is true. }
\end{aligned}
$$

Arc-B-consistency

And if the domains are not discrete? Intervals?
Arc-B-consistency is the arc-consistency limited to bounds of intervals.

- Weaker that the arc-consistency.
- Easy to implement, therefore broadly used.

Definition
A constraint $C\left(x_{1}, \ldots, x_{k}\right)$ is arc-B-consistent if and only if $\forall x_{i} \quad \forall a_{i} \in\left\{\min \left(D_{x_{i}}\right), \max \left(D_{x_{i}}\right)\right\}$
$\exists a_{i} \in D_{x_{1}}, \ldots, a_{i-1} \in D_{x_{i-1}}, a_{i+1} \in D_{x_{i+1}} \ldots$
such that $C\left(a_{1}, \ldots, a_{k}\right)$ is true.

Arc-B-consistency

And if the domains are not discrete? Intervals?
Arc-B-consistency is the arc-consistency limited to bounds of intervals.

- Weaker that the arc-consistency.
- Easy to implement, therefore broadly used.

Definition
A constraint $C\left(x_{1}, \ldots, x_{k}\right)$ is arc-B-consistent if and only if

$$
\begin{gathered}
\forall x_{i} \quad \forall a_{i} \in\left\{\min \left(D_{x_{i}}\right), \max \left(D_{x_{i}}\right)\right\} \\
\exists a_{1} \in D_{x_{1}}, \ldots, a_{i-1} \in D_{x_{i-1}}, a_{i+1} \in D_{x_{i+1}}, \ldots, a_{k} \in D_{x_{k}}
\end{gathered}
$$ such that $C\left(a_{1}, \ldots, a_{k}\right)$ is true.

Arc-B-consistency : example

Variables : x, y, z. Domains are intervals. Constraint : $z=x+y$
$\min \left(D_{z}\right)$ and $\max \left(D_{z}\right)$ are arc-consistent if

otherwise

$$
D_{z} \leftarrow\left[\min \left(D_{x}\right)+\min \left(D_{y}\right), \max \left(D_{x}\right)+\max \left(D_{y}\right)\right]
$$

$\min \left(D_{X}\right), \max \left(D_{X}\right) ?$
$\min \left(D_{y}\right), \max \left(D_{y}\right) ?$
Constraint $z=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$?

Arc-B-consistency : example

Variables : x, y, z. Domains are intervals.
Constraint : $z=x+y$
$\min \left(D_{z}\right)$ and $\max \left(D_{z}\right)$ are arc-consistent if

$$
\left\{\begin{array}{l}
\min \left(D_{z}\right) \geq \min \left(D_{x}\right)+\min \left(D_{y}\right) \\
\max \left(D_{z}\right) \leq \max \left(D_{x}\right)+\max \left(D_{y}\right)
\end{array}\right.
$$

otherwise

$$
D_{z} \leftarrow\left[\min \left(D_{x}\right)+\min \left(D_{y}\right), \max \left(D_{x}\right)+\max \left(D_{y}\right)\right]
$$

$\min \left(D_{X}\right), \max \left(D_{X}\right) ?$
$\min \left(D_{y}\right), \max \left(D_{y}\right) ?$
Constraint $z=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$?

Arc-B-consistency : example

Variables : x, y, z. Domains are intervals.
Constraint : $z=x+y$
$\min \left(D_{z}\right)$ and $\max \left(D_{z}\right)$ are arc-consistent if

$$
\left\{\begin{array}{l}
\min \left(D_{z}\right) \geq \min \left(D_{x}\right)+\min \left(D_{y}\right) \\
\max \left(D_{z}\right) \leq \max \left(D_{x}\right)+\max \left(D_{y}\right)
\end{array}\right.
$$

otherwise

$$
D_{z} \leftarrow\left[\min \left(D_{x}\right)+\min \left(D_{y}\right), \max \left(D_{x}\right)+\max \left(D_{y}\right)\right]
$$

$\min \left(D_{x}\right), \max \left(D_{x}\right) ?$
$\min \left(D_{y}\right), \max \left(D_{y}\right) ?$

Arc-B-consistency : example

Variables : x, y, z. Domains are intervals.
Constraint : $z=x+y$
$\min \left(D_{z}\right)$ and $\max \left(D_{z}\right)$ are arc-consistent if

$$
\left\{\begin{array}{l}
\min \left(D_{z}\right) \geq \min \left(D_{x}\right)+\min \left(D_{y}\right) \\
\max \left(D_{z}\right) \leq \max \left(D_{x}\right)+\max \left(D_{y}\right)
\end{array}\right.
$$

otherwise

$$
D_{z} \leftarrow\left[\min \left(D_{x}\right)+\min \left(D_{y}\right), \max \left(D_{x}\right)+\max \left(D_{y}\right)\right]
$$

$\min \left(D_{x}\right), \max \left(D_{x}\right) ?$
$\min \left(D_{y}\right), \max \left(D_{y}\right) ?$
Constraint $z=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$?

