Lignes directrices

Constraint Programming Lecture 3. Global Constraints. Solving CSPs.

Ruslan Sadykov

INRIA Bordeaux—Sud-Ouest

20 January 2022

Global constraints

« Simple » constraints All-diff GCC Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

1/45

Importance of global constraints

A global constraint is a union of simple constraints.

Use of global constraints

- facilitates the modeling (smaller number of constraints, libraries of constraints);
- accelerates the solving (specialised, and thus efficient, algorithms for propagation).

Important

Global constraints contribute a lot to the succes of Constraint Programming in practice.

Catalogue of global constraints : http://sofdem.github.io/gccat/

Lignes directrices

Global constraints

« Simple » constraints All-diff GCC Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Global constraint ScalProd

scal_prod(
$$X_1, \ldots, X_n, c_1, \ldots, c_n, v$$
)
• Equivalent to

$$\sum_{i=1}^n c_i X_i = v.$$

▶ Rules for achieving arc-B-consistency $(D_{X_i} = [x_i, \overline{x_i}], c_i > 0)$

$$\frac{x_{i}}{K_{i}} \leftarrow \max\left\{ \frac{x_{i}}{X_{i}}, \frac{V - \sum_{1 \leq j \leq n: \ j \neq i} \max\left\{C_{j}\underline{x_{j}}, C_{j}\overline{x_{j}}\right\}}{C_{i}}\right\}$$

$$\overline{x_{i}} \leftarrow \min\left\{\overline{x_{i}}, \frac{V - \sum_{1 \leq j \leq n: \ j \neq i} \min\left\{C_{j}\underline{x_{j}}, C_{j}\overline{x_{j}}\right\}}{C_{i}}\right\}$$

5/45

Lignes directrices

Global constraints

« Simple » constraints

All-diff

GCC Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Global constraint Element

$$element(X, v_1, \ldots, v_n, Y)$$

Equivalent to

 $X = v_Y$.

We should have $D_Y \subseteq \{1, \ldots, n\}$.

- This constraint allows one to use variables as indices.
- Can be represented as the following explicit constraint :

$$(X,Y)\in\{(v_i,i)\}_{1\leq i\leq n}.$$

 So, the arc-consistency can be achieved using classic algorithms (AC-3, AC-4, etc).

6/45

Global constraint all-different

- all-different(X_1, \ldots, X_n)
- Replaces $\frac{n^2}{2}$ binary constraints

 $X_i \neq X_j$, $1 \leq i < j \leq n$.

- The most used constraint in practice : assignment, permutation,...
- We can achieve arc-consistency in time O(√nnd) using graph theory (Régin, 94) tools (to compare with complexity O(n²d²) if we take constraints one by one).

Matching problem in a graph

- Bipartite graph is a graph vertices of which can be partitioned in two subsets U and V such that each edge incident to one vertex in U and to one in V.
 - Matching in a graph is a set of disjoint edges (which do have common incident vertices)
- Maximum matching in a graph is a maximum size matching.
- Alternating path (given a matching) is a path in which the edges belong alternatively to the matching and not to the matching.

All-different constraint : propagation

Algorithm :

- 1. We construct a bipartite
 - « value » graph.

Exemple :

 $D_{x1} = \{1,2\}, D_{x2} = \{2,3\}, \\D_{x3} = \{1,3\}, D_{x4} = \{3,4\}, \\D_{x5} = \{2,4,5,6\}, \\D_{x6} = \{5,6,7\} \\all-different(x_1,\ldots,x_6) \\x_1 & 0 \\ x_2 & 2 \\x_3 & 0 \\x_4 & 0 \\x_5 & 5 \\x_6 & 5 \\x_6 & 6 \\x_6 & 6 \\x_6 & 6 \\x_6 & 6 \\x_7 & 0 \\x_8 & 0 \\x_8$

9/45

All-different constraint : propagation

Algorithm :

- 1. We construct a bipartite « value » graph.
- 2. We search for a maximum matching (if its size is < *n*, then there is no solution).

Exemple :

 $D_{x1} = \{1, 2\}, D_{x2} = \{2, 3\}, \\ D_{x3} = \{1, 3\}, D_{x4} = \{3, 4\}, \\ D_{x5} = \{2, 4, 5, 6\}, \\ D_{x6} = \{5, 6, 7\} \\ \text{all-different}(x_1, \dots, x_6) \\ x_t \qquad \bigcirc 1$

All-different constraint : propagation

Algorithm :

- 1. We construct a bipartite « value » graph.
- 2. We search for a maximum matching (if its size is < *n*, then there is no solution).
- Given this matching, we establish edges which do not belong to
 - an alternating circuit,
 - an alternating path such that one of its extremities is a free vertex,
 - the matching found.

Exemple :

*X*6

$$\begin{array}{l} D_{x1}=\{1,2\},\,D_{x2}=\{2,3\},\\ D_{x3}=\{1,3\},\,D_{x4}=\{3,4\},\\ D_{x5}=\{2,4,5,6\},\\ D_{x6}=\{5,6,7\}\\ \texttt{all-different}(x_1,\ldots,x_6)\end{array}$$

10/45

7

All-different constraint : propagation

Algorithm :

- 1. We construct a bipartite « value » graph.
- 2. We search for a maximum matching (if its size is < *n*, then there is no solution).
- Given this matching, we establish edges which do not belong to
 - an alternating circuit,
 - an alternating path such that one of its extremities is a free vertex,
 - the matching found.
- 4. We remove values which correspond to these edges.

 $D_{x1} = \{1,2\}, D_{x2} = \{2,3\}, \\ D_{x3} = \{1,3\}, D_{x4} = \{2,4\}, \\ D_{x5} = \{2,4,5,6\}, \\ D_{x6} = \{5,6,7\} \\ \texttt{all-different}(x_1,\ldots,x_6) \\ x_1 \qquad 0 \\ x_2 \qquad 0 \\ x_2 \qquad 0 \\ x_3 \qquad 0 \\ x_4 \qquad 0 \\ x_2 \qquad 0 \\ x_3 \qquad 0 \\ x_4 \qquad 0 \\ x_5 \qquad 0 \\ x_6 \qquad$

Exemple :

X₃

XΛ

X5

X₆

- Global constraint assignment
 - assignment $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$
 - \blacktriangleright It is the symmetric all-different constraint :

 $X_i = j \Leftrightarrow Y_j = i, \quad 1 \le i, j \le n.$

We should have $D_X \subseteq \{1, \ldots, n\}, D_Y \subseteq \{1, \ldots, n\}$.

- Used for mutual assignment.
- We can achieve arc-consistency using the same algorithm as for the all-different constraint.

10/45

7

Lignes directrices

Global constraints

« Simple » constraints All-diff

GCC Constraints for so

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Global constraint GCC

- $GCC(X_1,...,X_n,v_1,...,v_k,l_1,...,l_k,u_1,...,u_k)$
- ► This global cardinality constraint is a generalisation of all-different : the number of times each value v_j is taken should be inside interval [l_j, u_j] (for all-different, l_i = 0, u_i = 1, ∀j).
- Often used in practice : complicated assignment, distribution,...
- We can achieve the arc-consistency for constraint GCC in time O(n²d) by using the maximum flow algorithm (Régin, 99).

Maximum flow in a graph

Notations

Let D = (V, A) be an directed graph in which to each arc $(i, j) \in A$ we associate a capacity u_{ij} .

Flow definition

A flow in graph D is a function f defined on arcs of D:

► $0 \le f_{ij} \le u_{ij}, \forall (i,j) \in A$,

$$\blacktriangleright \sum_{i: (i,j)\in A} f_{ij} = \sum_{i: (j,i)\in A} f_{ji}, \forall j \in V \setminus \{s, d\}.$$

Problem

Find the maximum flow which can be sent from s to t.

Construction of maximum flow

Algorithm :

- 1. We start with a feasible flow *f* (for example, zero flow).
- 2. We construct the residual directed graph R = (V, A'):
 - ► $f_{ij} > 0 \Leftrightarrow (j,i) \in A';$
 - $f_{ij} < u_{ij} \Leftrightarrow (i,j) \in A'$.
- 3. If there exists a path from *s* to *t* in the residual graph, we increase the flow along this path as much as possible.
- 4. If such path does not exists, the flow is maximum.

14/45

Propagation of constraint ${\tt GCC}\ I$

Propagation of constraint GCC II

Propagation of constraint GCC III

We construct the residual graph induces by the maximum flow :

Propagation of constraint GCC IV

We establish non-saturated arcs which between variables and values which do not belong to any circuit in the residual graph (decomposition in strongly connected components) :

18/45

Propagation of constraint GCC V

We remove values which correspond to these edges :

Lignes directrices

Global constraints « Simple » constraints All-diff GCC Constraints for scheduling

- « Traditional » algorithms to solve CSPs
- Parameterising the algorithms

Global constraint disjunctive

- disjunctive $(X_1, \ldots, X_n, p_1, \ldots, p_n)$
- Replaces $\frac{n^2}{2}$ logical binary constraints :

$$X_i + p_i \leq X_j \bigvee X_i \geq X_j + p_j, \quad \forall i, j: i \neq j.$$

Often used for scheduling problems (often with $D_{x_i} = [r_i, d_i - p_i]$)

22/45

Global constraint disjunctive : propagation II

- « Edge-Finding » detects if job k should be executed before (after) **all jobs** in set Ω . We can verify all possible pairs (Ω, k) in time $O(n \log n)$. (Carlier & Pinson, 94).
- Not-First/Not-Last » detects if job k should be execute before (after) at least one job in set Ω . We can verify all possible pairs (Ω, k) in time $O(n \log n)$. (Vilím, 04).
- « Detectable precedences »,…

Global constraint disjunctive : propagation I

- Achieving arc-B-consistency for this constraint is NP-hard.
- Weaker (« Edge-Finding ») propagation is used :

$$\max_{i \in \Omega} d_i - \min_{i \in \Omega \cup \{k\}} r_i < \sum_{\Omega \cup \{k\}} p_i \quad \Rightarrow \quad \Omega \text{ précède } k$$

$$\Rightarrow \quad r_k \leftarrow \max_{\Omega' \subseteq \Omega} \left\{ \min_{i \in \Omega'} r_i + \sum_{i \in \Omega'} p_i \right\}$$

Global constraint Cumulative

cumulative($X_1, \ldots, X_n, p_1, \ldots, p_n, rd_1, \ldots, rd_n, r$)

- Jobs should not overlap;
 - + each job *i* consumes rd_i units of the resource;
 - + at each time moment we cannot use more than r units of the resource.
- ▶ It is a generalisation of disjunctive, for which $rd_i = 1, \forall i$, et *r* = 1.

Global constraint cumulative : example

If $X_c \le 9$, $X_e \le 4$, $X_f \le 14$, then, after propagation of precedence constraints

$$D(X_a) = [0, 1], \quad D(X_b) = [2, 3], \quad D(X_c) = [8, 9],$$

 $D(X_d) = [0, 2], \quad D(X_e) = [2, 4], \quad D(X_f) = [0, 14].$

26/45

Cumulative : *Time-table* propagation (2)

Cumulative : Time-table propagation (1)

Obligatory parts

27/45

Cumulative : *Time-table* propagation (2)

Complexity *Time-table* propagation can be done in time $O(n \log n)$ (Lahrichi, 82)

Constraint Cumulative : other « propagations »

- *« Edge-Finding »* detects if job *k* should start before (finish after) all the jobs in set Ω.
 We can verify all possible pairs (Ω, *k*) in time O(n²) (Kameugne et al, 11) or in time O(rn log n) (Vilim, 09)
- « Not-First/Not-Last » detects if job k should be execute after (before) at least one job in set Ω.
 We can verify all possible pairs (Ω, k) in time O(n³). (Baptiste et al., 01).

Lignes directrices

Global constraints

« Simple » constraints All-diff GCC Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

29/45

Notations and definitions

- *n* number of variables
- e number of constraints
- d upper bounds for the domains size

An instantiation $I = \{\langle x_i, v_i \rangle\}_{i \in K}$ is an assignment of values $\{v_i\}_{i \in K}$ to variables $\{x_i\}_{i \in K}$.

An instantiation is complete if $K = \{1, ..., n\}$.

Trivial solution

Algorithme 1 : Generate and test

foreach complete instantiation I do

if I satisfies all constraints then

∟ return /

return « no solutions »

Complexity : $O(ed^n)$

Chronological backtrack

Forward Checking : N queens

Forward Checking

34/45

Maintaining Local Consistency

Comparing the algorithms

Problems with infinite domains

If there are interval domains, instead of instantiating variables, we divide such domain (usually in two)

Let $D_x = [\underline{x}, \overline{x}]$, then

37/45

Lignes directrices

Global constraints

« Simple » constraints All-diff GCC Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Algorithm options

- In the algorithms we have just seen, there are choices to be done :
 - in which order we instantiate variables;
 - in which order we assign values;
 - which local consistency we achieve.
- These decisions (called « heuristics ») are extremely important for efficiency of the algorithms.
 - If we dive into a branch without solutions, we can spend a lot of time before we understand this.
 - The first decisions are particularly important (when we are in upper part of the search tree).

Heuristics for the variables order

There are two types :

- Static order is fixed before executing the algorithm.
- Dynamic order may change during the algorithm (may be even different in different branches).

Possible objectives :

- Minimizing the research space
- Minimizing the average depth in the tree
- Minimizing the number of branches
- ► ...

Static heuristic are based on properties of the constraint network of the problem, especially its **width** and its **bandwidth**.

41/45

Dynamic order of variables II

dom(x|p) : size of the domain of x after assignments p

Possible choice of a variable

- one which has the smallest domain : min dom(x|p)
- one which participates in the maximum number of constraints : max degree(x)
- Combination of two criteria : min $\frac{\operatorname{dom}(x|p)}{\operatorname{degree}(x)}$
- ► Size of domain after propagation :

$$\min\sum_{a\in \text{dom}(x)}\sum_{y}\text{dom}(y|p\cup\{x=a\})$$

- Depending of the impact :
 - We store the impact of the domain reduction for each variable in the course of the algorithm
 - We choose a variables with the largest impact until now

Dynamic order of variables I

Objectives

- Minimise the expected number of branches
- Minimise the expected depth of branches

Principle

First-fail : we choose variables which are « difficult to satisfy », we do not postpose difficult decisions

If a CSP is weakly constrained, opposite heuristic may be more efficient.

42/45

Dynamic order of values

Order of values is less important than the order of variables (less impact on the solution time)

Principle

We choose a value which has the largest probability to « succeed »

Choice of a value

- one which has the largest number of supports;
- one which leaves the maximum number of values in the domains of other variables after propagation.

Choice of local consistency

- Local consistency should be profitable (we should spent less time to detect that a branch does not lead to any solution than to explore this branch).
- We use local consistency which has the best ratio

cost

propagation power

- So, for the problem in question one needs to have an idea of
 - the propagation power of different local consistencies (average number of removed values after propagation),
 - the cost of different local consistencies (practical computational complexity).
- To have an estimation of this, we often do experimental comparison.