
Constraint Programming
Lecture 3. Global Constraints. Solving CSPs.

Ruslan Sadykov

INRIA Bordeaux—Sud-Ouest

20 January 2022

1 / 45

Lignes directrices

Global constraints
« Simple » constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

2 / 45

Importance of global constraints

A global constraint is a union of simple constraints.

Use of global constraints
I facilitates the modeling

(smaller number of constraints, libraries of constraints) ;
I accelerates the solving

(specialised, and thus efficient, algorithms for propagation).

Important
Global constraints contribute a lot to the succes of Constraint
Programming in practice.
Catalogue of global constraints :
http ://sofdem.github.io/gccat/

3 / 45

Lignes directrices

Global constraints
« Simple » constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

4 / 45



Global constraint ScalProd
scal_prod(X1, . . . ,Xn, c1, . . . , cn, v )
I Equivalent to

n∑
i=1

ciXi = v .

I Rules for achieving arc-B-consistency
(
DXi = [xi , xi ], ci > 0

)

xi ← max

xi ,

v −
∑

1≤j≤n: j 6=i

max
{

cjxj , cjxj

}
ci



xi ← min

xi ,

v −
∑

1≤j≤n: j 6=i

min
{

cjxj , cjxj

}
ci


5 / 45

Global constraint Element

element(X , v1, . . . , vn,Y )
I Equivalent to

X = vY .

We should have DY ⊆ {1, . . . ,n}.
I This constraint allows one to use variables as indices.
I Can be represented as the following explicit constraint :

(X ,Y ) ∈ {(vi , i)}1≤i≤n .

I So, the arc-consistency can be achieved using classic
algorithms (AC-3, AC-4, etc).

6 / 45

Lignes directrices

Global constraints
« Simple » constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

7 / 45

Global constraint all-different

all-different(X1, . . . ,Xn)
I Replaces n2

2 binary constraints

Xi 6= Xj , 1 ≤ i < j ≤ n.

I The most used constraint in practice : assignment,
permutation,...

I We can achieve arc-consistency in time O(
√

nnd) using
graph theory (Régin, 94) tools (to compare with complexity
O(n2d2) if we take constraints one by one).

8 / 45



Matching problem in a graph

Bipartite graph is a graph vertices of which can be partitioned in
two subsets U and V such that each edge incident
to one vertex in U and to one in V .

Matching in a graph is a set of disjoint edges (which do have
common incident vertices)

Maximum matching in a graph is a maximum size matching.
Alternating path (given a matching) is a path in which the edges

belong alternatively to the matching and not to the
matching.

9 / 45

All-different constraint : propagation

Algorithm :
1. We construct a bipartite

« value » graph.

2. We search for a maximum
matching (if its size is < n,
then there is no solution).

3. Given this matching, we
establish edges which do not
belong to
I an alternating circuit,
I an alternating path such that

one of its extremities is a
free vertex,

I the matching found.

4. We remove values which
correspond to these edges.

Exemple :
Dx1 = {1,2}, Dx2 = {2,3},
Dx3 = {1,3}, Dx4 = {3,4},
Dx5 = {2,4,5,6},
Dx6 = {5,6,7}
all-different(x1, . . . , x6)

x6

x5

x4

x3

x2

x1

7
6

5
4

3
2
1

10 / 45

All-different constraint : propagation

Algorithm :
1. We construct a bipartite

« value » graph.
2. We search for a maximum

matching (if its size is < n,
then there is no solution).

3. Given this matching, we
establish edges which do not
belong to
I an alternating circuit,
I an alternating path such that

one of its extremities is a
free vertex,

I the matching found.

4. We remove values which
correspond to these edges.

Exemple :
Dx1 = {1,2}, Dx2 = {2,3},
Dx3 = {1,3}, Dx4 = {3,4},
Dx5 = {2,4,5,6},
Dx6 = {5,6,7}
all-different(x1, . . . , x6)

x6

x5

x4

x3

x2

x1

7
6

5
4

3
2
1

10 / 45

All-different constraint : propagation

Algorithm :
1. We construct a bipartite

« value » graph.
2. We search for a maximum

matching (if its size is < n,
then there is no solution).

3. Given this matching, we
establish edges which do not
belong to
I an alternating circuit,
I an alternating path such that

one of its extremities is a
free vertex,

I the matching found.

4. We remove values which
correspond to these edges.

Exemple :
Dx1 = {1,2}, Dx2 = {2,3},
Dx3 = {1,3}, Dx4 = {3,4},
Dx5 = {2,4,5,6},
Dx6 = {5,6,7}
all-different(x1, . . . , x6)

x6

x5

x4

x3

x2

x1

7
6

5
4

3
2
1

10 / 45



All-different constraint : propagation

Algorithm :
1. We construct a bipartite

« value » graph.
2. We search for a maximum

matching (if its size is < n,
then there is no solution).

3. Given this matching, we
establish edges which do not
belong to
I an alternating circuit,
I an alternating path such that

one of its extremities is a
free vertex,

I the matching found.

4. We remove values which
correspond to these edges.

Exemple :
Dx1 = {1,2}, Dx2 = {2,3},
Dx3 = {1,3}, Dx4 = {��3,4},
Dx5 = {�2,�4,5,6},
Dx6 = {5,6,7}
all-different(x1, . . . , x6)

x6

x5

x4

x3

x2

x1

7
6

5
4

3
2
1

10 / 45

Global constraint assignment

assignment(X1, . . . ,Xn,Y1, . . . ,Yn)
I It is the symmetric all-different constraint :

Xi = j ⇔ Yj = i , 1 ≤ i , j ≤ n.

We should have DX ⊆ {1, . . . ,n},DY ⊆ {1, . . . ,n}.
I Used for mutual assignment.
I We can achieve arc-consistency using the same algorithm

as for the all-different constraint.

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

11 / 45

Lignes directrices

Global constraints
« Simple » constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

12 / 45

Global constraint GCC

GCC(X1, . . . ,Xn, v1, . . . , vk , l1, . . . , lk ,u1, . . . ,uk )
I This global cardinality constraint is a generalisation of

all-different : the number of times each value vj is
taken should be inside interval [lj ,uj ]
(for all-different, lj = 0, uj = 1, ∀j).

I Often used in practice : complicated assignment,
distribution,...

I We can achieve the arc-consistency for constraint GCC in
time O(n2d) by using the maximum flow algorithm (Régin,
99).

13 / 45



Maximum flow in a graph

Notations
Let D = (V ,A) be an directed graph in which to each arc
(i , j) ∈ A we associate a capacity uij .

Flow definition
A flow in graph D is a function f defined on arcs of D :
I 0 ≤ fij ≤ uij , ∀(i , j) ∈ A,

I
∑

i: (i,j)∈A

fij =
∑

i: (j,i)∈A

fji , ∀j ∈ V \ {s,d}.

Problem
Find the maximum flow which can be sent from s to t .

14 / 45

Construction of maximum flow

Algorithm :
1. We start with a feasible flow f

(for example, zero flow).
2. We construct the residual

directed graph R = (V ,A′) :
I fij > 0⇔ (j , i) ∈ A′ ;
I fij < uij ⇔ (i , j) ∈ A′.

3. If there exists a path from s to
t in the residual graph, we
increase the flow along this
path as much as possible.

4. If such path does not exists,
the flow is maximum.

Example :

2

3

s = 1 t = 4

2,2

3,4

2,3

5,5

0,1

2

3

s = 1 t = 4

2

3

s = 1 t = 4

2,2

4,4

1,3

5,5

1,1

15 / 45

Propagation of constraint GCC I

We construct the « value » graph :

s

Julia

Mike

Bob

John

Mary

Paul

Peter

O(0,2)

B(0,2)

N(1,1)

D(1,2)

M(1,2)

t

16 / 45

Propagation of constraint GCC II

We find the maximum flow :

s

Julia

Mike

Bob

John

Mary

Paul

Peter

O(0,2)

B(0,2)

N(1,1)

D(1,2)

M(1,2)

t

1

1

1

2

2

17 / 45



Propagation of constraint GCC III

We construct the residual graph induces by the maximum flow :

s

Julia

Mike

Bob

John

Mary

Paul

Peter

O(0,2)

B(0,2)

N(1,1)

D(1,2)

M(1,2)

t

18 / 45

Propagation of constraint GCC IV
We establish non-saturated arcs which between variables and
values which do not belong to any circuit in the residual graph
(decomposition in strongly connected components) :

s

Julia

Mike

Bob

John

Mary

Paul

Peter

O(0,2)

B(0,2)

N(1,1)

D(1,2)

M(1,2)

t

19 / 45

Propagation of constraint GCC V

We remove values which correspond to these edges :

Julia

Mike

Bob

John

Mary

Paul

Peter

O(0,2)

B(0,2)

N(1,1)

D(1,2)

M(1,2)

20 / 45

Lignes directrices

Global constraints
« Simple » constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

21 / 45



Global constraint disjunctive

disjunctive(X1, . . . ,Xn,p1, . . . ,pn)
I Replaces n2

2 logical binary constraints :

Xi + pi ≤ Xj
∨

Xi ≥ Xj + pj , ∀i , j : i 6= j .

I Often used for scheduling problems
(often with Dxi = [ri ,di − pi ])

22 / 45

Global constraint disjunctive : propagation I

I Achieving arc-B-consistency for this constraint is NP-hard.
I Weaker (« Edge-Finding ») propagation is used :

max
i∈Ω

di − min
i∈Ω∪{k}

ri <
∑

Ω∪{k}

pi ⇒ Ω précède k

⇒ rk ← max
Ω′⊆Ω

{
min
i∈Ω′

ri +
∑
i∈Ω′

pi

}

k = 1
Ω = {2,3}
rk ← 8

23 / 45

Global constraint disjunctive : propagation II

I « Edge-Finding » detects if job k should be executed before
(after) all jobs in set Ω.
We can verify all possible pairs (Ω, k) in time O(n log n).
(Carlier & Pinson, 94).

I « Not-First/Not-Last » detects if job k should be execute
before (after) at least one job in set Ω.
We can verify all possible pairs (Ω, k) in time O(n log n).
(Vilím, 04).

I « Detectable precedences »,...

24 / 45

Global constraint Cumulative

r

1rd1

p1

2

3

4
5

cumulative(X1, . . . ,Xn,p1, . . . ,pn, rd1, . . . , rdn, r )
I Jobs should not overlap ;

+ each job i consumes rdi units of the resource ;
+ at each time moment we cannot use more than r units of
the resource.

I It is a generalisation of disjunctive, for which rdi = 1, ∀i ,
et r = 1.

25 / 45



Global constraint cumulative : example

source puits

a (2) b (6) c (2)

d (2) e (5)

f (6)

If Xc ≤ 9, Xe ≤ 4, Xf ≤ 14, then, after propagation of
precedence constraints

D(Xa) = [0,1], D(Xb) = [2,3], D(Xc) = [8,9],

D(Xd ) = [0,2], D(Xe) = [2,4], D(Xf ) = [0,14].

26 / 45

Cumulative : Time-table propagation (1)

a
b

c
d

e

f

0 2 4 6 8 10 12 14 16 18 20

a
b

c

e

Obligatory parts

date
de début

au plus tôt

date
de fin
au plus tard

partie
obligatoire

pi

27 / 45

Cumulative : Time-table propagation (2)

0 2 4 6 8 10 12 14 16 18 20

a b
c

e

f

Complexity
Time-table propagation can be done in timeO(n log n) (Lahrichi,
82)

28 / 45

Cumulative : Time-table propagation (2)

0 2 4 6 8 10 12 14 16 18 20

a b
c

e

f

Complexity
Time-table propagation can be done in timeO(n log n) (Lahrichi,
82)

28 / 45



Constraint Cumulative : other « propagations »

I « Edge-Finding » detects if job k should start before (finish
after) all the jobs in set Ω.
We can verify all possible pairs (Ω, k) in time O(n2)
(Kameugne et al, 11) or in time O(rn log n) (Vilim, 09)

I « Not-First/Not-Last » detects if job k should be execute
after (before) at least one job in set Ω.
We can verify all possible pairs (Ω, k) in time O(n3).
(Baptiste et al., 01).

29 / 45

Lignes directrices

Global constraints
« Simple » constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

30 / 45

Notations and definitions

n — number of variables
e — number of constraints
d — upper bounds for the domains size

An instantiation I = {〈xi , vi〉}i∈K is an assignment of values
{vi}i∈K to variables {xi}i∈K .

An instantiation is complete if K = {1, . . . ,n}.

31 / 45

Trivial solution
Algorithme 1 : Generate and test
foreach complete instantiation I do

if I satisfies all constraints then
return I

return « no solutions »

...
Complexity : O(edn)

32 / 45



Chronological backtrack

Algorithme 2 : Backtrack(I,k ,v )
I ← I ∪ {〈xk , v〉} ;
if I satisfies all constraints then

if I is complete (k = n) then I is a solution ; exit ;
else

foreach a ∈ Dxk+1 do Backtrack (I,k + 1,a) ;

Complexity : O(edn), but better in practice

33 / 45

Forward Checking

Algorithme 3 : ForwardCheck(I,D,k ,v )
I ← I ∪ {〈xk , v〉} ;
remove from D all values incompatible with xk = v ;
if there is no empty domain then

if I is complete then I is a solution ; exit ;
else

foreach a ∈ Dxk+1 do
ForwardCheck (I,D,k + 1,a)

34 / 45

Forward Checking : N queens

35 / 45

Maintaining Local Consistency
Algorithme 4 : MLC(I,D,k ,v )
I ← I ∪ {〈xk , v〉} ;
remove {〈xk ,a〉}a∈Dxk ,a 6=v from D and propagate ;
if all domains are not empty then

si I is complete alors I is a solution ; exit ;
else

foreach a ∈ Dxk+1 do
MLC (I,D,k + 1,a) ;
remove {〈xk+1,a〉} from D and propagate ;

36 / 45



Comparing the algorithms

37 / 45

Problems with infinite domains

If there are interval domains, instead of instantiating variables,
we divide such domain (usually in two)

Let Dx = [x , x ], then

we choose v ∈ Dx

Dx = [x , v ] Dx = (v , x ]

38 / 45

Lignes directrices

Global constraints
« Simple » constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

39 / 45

Algorithm options

I In the algorithms we have just seen, there are choices to be
done :
I in which order we instantiate variables ;
I in which order we assign values ;
I which local consistency we achieve.

I These decisions (called « heuristics ») are extremely
important for efficiency of the algorithms.
I If we dive into a branch without solutions, we can spend a lot

of time before we understand this.
I The first decisions are particularly important (when we are in

upper part of the search tree).

40 / 45



Heuristics for the variables order

There are two types :
I Static — order is fixed before executing the algorithm.
I Dynamic — order may change during the algorithm (may be

even different in different branches).
Possible objectives :
I Minimizing the research space
I Minimizing the average depth in the tree
I Minimizing the number of branches
I ...

Static heuristic are based on properties of the constraint network
of the problem, especially its width and its bandwidth.

41 / 45

Dynamic order of variables I

Objectives
I Minimise the expected number of branches
I Minimise the expected depth of branches

Principle
First-fail : we choose variables which are « difficult to satisfy »,
we do not postpose difficult decisions

If a CSP is weakly constrained, opposite heuristic may be more
efficient.

42 / 45

Dynamic order of variables II

dom(x |p) : size of the domain of x after assignments p

Possible choice of a variable
I one which has the smallest domain : min dom(x |p)

I one which participates in the maximum number of
constraints : max degree(x)

I Combination of two criteria : min dom(x |p)
degree(x)

I Size of domain after propagation :

min
∑

a∈dom(x)

∑
y

dom(y |p ∪ {x = a})

I Depending of the impact :
I We store the impact of the domain reduction for each

variable in the course of the algorithm
I We choose a variables with the largest impact until now

43 / 45

Dynamic order of values

Order of values is less important than the order of variables (less
impact on the solution time)

Principle
We choose a value which has the largest probability to
« succeed »

Choice of a value
I one which has the largest number of supports ;
I one which leaves the maximum number of values in the

domains of other variables after propagation.

44 / 45



Choice of local consistency

I Local consistency should be profitable (we should spent
less time to detect that a branch does not lead to any
solution than to explore this branch).

I We use local consistency which has the best ratio

cost
propagation power

I So, for the problem in question one needs to have an idea of

I the propagation power of different local consistencies
(average number of removed values after propagation),

I the cost of different local consistencies (practical
computational complexity).

I To have an estimation of this, we often do experimental
comparison.

45 / 45


	Global constraints
	« Simple » constraints
	
	All-diff
	GCC
	Constraints for scheduling

	« Traditional » algorithms to solve CSPs
	

	Parameterising the algorithms
	


