Constraint Programming
 Lecture 3. Global Constraints. Solving CSPs.

Ruslan Sadykov

INRIA Bordeaux-Sud-Ouest

20 January 2022

Lignes directrices

Global constraints
«Simple» constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Importance of global constraints

A global constraint is a union of simple constraints.

> Use of global constraints

- facilitates the modeling
(smaller number of constraints, libraries of constraints);
- accelerates the solving
(specialised, and thus efficient, algorithms for propagation).
Important
Global constraints contribute a lot to the succes of Constraint
Programming in practice.
Catalogue of global constraints :
http ://sofdem.github.io/gccat/

Importance of global constraints

A global constraint is a union of simple constraints.
Use of global constraints

- facilitates the modeling (smaller number of constraints, libraries of constraints) ;
- accelerates the solving

Important
Global constraints contribute a lot to the succes of Constraint
Programming in practice.
Catalogue of global constraints :
http ://sofdem.github.io/gccat/

Importance of global constraints

A global constraint is a union of simple constraints.
Use of global constraints

- facilitates the modeling
(smaller number of constraints, libraries of constraints);
- accelerates the solving
(specialised, and thus efficient, algorithms for propagation).
Important
Global constraints contribute a lot to the succes of Constraint
Programming in practice.
Catalogue of global constraints :
http ://sofdem.github.io/gccat/

Importance of global constraints

A global constraint is a union of simple constraints.
Use of global constraints

- facilitates the modeling (smaller number of constraints, libraries of constraints);
- accelerates the solving (specialised, and thus efficient, algorithms for propagation).

Important
Global constraints contribute a lot to the succes of Constraint Programming in practice.
Catalogue of global constraints :
http ://sofdem.github.io/gccat/

Importance of global constraints

A global constraint is a union of simple constraints.
Use of global constraints

- facilitates the modeling (smaller number of constraints, libraries of constraints);
- accelerates the solving (specialised, and thus efficient, algorithms for propagation).

Important
Global constraints contribute a lot to the succes of Constraint Programming in practice.
Catalogue of global constraints : http ://sofdem.github.io/gccat/

Lignes directrices

Global constraints
«Simple» constraints

All-diff

GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Global constraint ScalProd

$$
\operatorname{scal_ prod}\left(X_{1}, \ldots, X_{n}, c_{1}, \ldots, c_{n}, v\right)
$$

- Equivalent to

$$
\sum_{i=1}^{n} c_{i} X_{i}=v .
$$

- Rules for achieving arc-B-consistency ($\left.D_{x_{i}}=\left[x_{i}, \overline{x_{i}}\right], c_{i}>0\right)$

Global constraint ScalProd

$$
\operatorname{scal_ prod}\left(X_{1}, \ldots, X_{n}, c_{1}, \ldots, c_{n}, v\right)
$$

- Equivalent to

$$
\sum_{i=1}^{n} c_{i} x_{i}=v .
$$

- Rules for achieving arc-B-consistency ($D_{X_{i}}=\left[\underline{x_{i}}, \overline{X_{i}}\right], c_{i}>0$)

$$
\begin{aligned}
& \underline{x_{i}} \leftarrow \max \left\{\begin{array}{l}
\underline{x}_{i}, \\
c_{1 \leq j \leq n: j \neq i} \max \left\{c_{j} x_{j}, c_{j} \bar{x}_{j}\right\} \\
c_{i}
\end{array}\right\} \\
& \bar{x}_{i} \leftarrow \min \left\{\begin{array}{ll}
\overline{x_{i}}, & \frac{v-\sum_{1 \leq j \leq n: j \neq i} \min \left\{c_{j} x_{j}, c_{j} \bar{x}_{j}\right\}}{} c_{i}
\end{array}\right\}
\end{aligned}
$$

Global constraint Element

element $\left(X, v_{1}, \ldots, v_{n}, Y\right)$

- Equivalent to

$$
X=v_{Y}
$$

We should have $D_{Y} \subseteq\{1, \ldots, n\}$.

- This constraint allows one to use variables as indices.
- Can be represented as the following explicit constraint $(X, Y) \in\left\{\left(v_{i}, i\right)\right\}_{1 \leq i \leq n}$.
- So, the arc-consistency can be achieved using classic algorithms (AC-3, AC-4, etc).

Global constraint Element

element $\left(X, v_{1}, \ldots, v_{n}, Y\right)$

- Equivalent to

$$
X=v_{Y}
$$

We should have $D_{Y} \subseteq\{1, \ldots, n\}$.

- This constraint allows one to use variables as indices.
- Can be represented as the following explicit constraint :

$$
(X, Y) \in\left\{\left(v_{i}, i\right)\right\}_{1 \leq i \leq n} .
$$

So, the arc-consistency can be achieved using classic
algorithms (AC-3, AC-4, etc).

Global constraint Element

element $\left(X, v_{1}, \ldots, v_{n}, Y\right)$

- Equivalent to

$$
X=v_{Y}
$$

We should have $D_{Y} \subseteq\{1, \ldots, n\}$.

- This constraint allows one to use variables as indices.
- Can be represented as the following explicit constraint :

$$
(X, Y) \in\left\{\left(v_{i}, i\right)\right\}_{1 \leq i \leq n}
$$

- So, the arc-consistency can be achieved using classic algorithms (AC-3, AC-4, etc).

Lignes directrices

Global constraints
«Simple » constraints
All-diff

Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Global constraint all-different

$$
\text { all-different }\left(X_{1}, \ldots, X_{n}\right)
$$

- Replaces $\frac{n^{2}}{2}$ binary constraints

$$
x_{i} \neq X_{j}, \quad 1 \leq i<j \leq n .
$$

- The most used constraint in practice : assignment, permutation,...
- We can achieve arc-consistency in time $O(\sqrt{n} n d)$ using graph theory (Régin, 94) tools (to compare with complexity $O\left(n^{2} d^{2}\right)$ if we take constraints one by one).

Global constraint all-different

all-different $\left(X_{1}, \ldots, X_{n}\right)$

- Replaces $\frac{n^{2}}{2}$ binary constraints

$$
x_{i} \neq X_{j}, \quad 1 \leq i<j \leq n .
$$

- The most used constraint in practice : assignment, permutation,...
We can achieve arc-consistency in time $O(\sqrt{n} n d)$ using
graph theory (Régin, 94) tools (to compare with complex
$O\left(n^{2} d^{2}\right)$ if we take constraints one by one).

Global constraint all-different

all-different $\left(X_{1}, \ldots, X_{n}\right)$

- Replaces $\frac{n^{2}}{2}$ binary constraints

$$
x_{i} \neq X_{j}, \quad 1 \leq i<j \leq n .
$$

- The most used constraint in practice : assignment, permutation,...
- We can achieve arc-consistency in time $O(\sqrt{n} n d)$ using graph theory (Régin, 94) tools (to compare with complexity $O\left(n^{2} d^{2}\right)$ if we take constraints one by one).

Matching problem in a graph

Bipartite graph is a graph vertices of which can be partitioned in two subsets U and V such that each edge incident to one vertex in U and to one in V.
Matching in a graph is a set of disjoint edges (which do have common incident vertices)
Maximum matching in a graph is a maximum size matching.
Alternating path (given a matching) is a path in which the edges belong alternatively to the matching and not to the matching.

All-different constraint : propagation

Algorithm :

1. We construct a bipartite « value» graph.
2. We search for a maximum matching (if its size is $<n$, then there is no solution).
3. Given this matching, we establish edges which do not belong to
> an alternating circuit,

- an alternating path such that one of its extremities is a free vertex,
- the matching found.

4. We remove values which

Exemple :

$$
\begin{aligned}
& D_{x 1}=\{1,2\}, D_{x 2}=\{2,3\}, \\
& D_{x 3}=\{1,3\}, D_{x 4}=\{3,4\}, \\
& D_{x 5}=\{2,4,5,6\}, \\
& D_{x 6}=\{5,6,7\} \\
& \text { all-different }\left(x_{1}, \ldots, x_{6}\right)
\end{aligned}
$$

All-different constraint : propagation

Algorithm :

1. We construct a bipartite "value» graph.
2. We search for a maximum matching (if its size is $<n$, then there is no solution).

Exemple :
$D_{x 1}=\{1,2\}, D_{x 2}=\{2,3\}$,
$D_{x 3}=\{1,3\}, D_{x 4}=\{3,4\}$,
$D_{x 5}=\{2,4,5,6\}$,
$D_{x 6}=\{5,6,7\}$
all-different $\left(x_{1}, \ldots, x_{6}\right)$

All-different constraint : propagation

Algorithm :

1. We construct a bipartite "value» graph.
2. We search for a maximum matching (if its size is $<n$, then there is no solution).
3. Given this matching, we establish edges which do not belong to

- an alternating circuit,
- an alternating path such that one of its extremities is a free vertex,
- the matching found.

Exemple :
$D_{x 1}=\{1,2\}, D_{x 2}=\{2,3\}$,
$D_{x 3}=\{1,3\}, D_{x 4}=\{3,4\}$,
$D_{x 5}=\{2,4,5,6\}$,
$D_{x 6}=\{5,6,7\}$
all-different $\left(x_{1}, \ldots, x_{6}\right)$

All-different constraint : propagation

Algorithm :

1. We construct a bipartite «value» graph.
2. We search for a maximum matching (if its size is $<n$, then there is no solution).
3. Given this matching, we establish edges which do not belong to

- an alternating circuit,
- an alternating path such that one of its extremities is a free vertex,
- the matching found.

4. We remove values which correspond to these edges.

Exemple :
$D_{x 1}=\{1,2\}, D_{x 2}=\{2,3\}$,
$D_{x 3}=\{1,3\}, \quad D_{x 4}=\{\not 2,4\}$,
$D_{x 5}=\{2,4,5,6\}$,
$D_{x 6}=\{5,6,7\}$
all-different $\left(x_{1}, \ldots, x_{6}\right)$

Global constraint assignment

assignment $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$

- It is the symmetric all-different constraint :

$$
X_{i}=j \Leftrightarrow Y_{j}=i, \quad 1 \leq i, j \leq n .
$$

We should have $D_{X} \subseteq\{1, \ldots, n\}, D_{Y} \subseteq\{1, \ldots, n\}$.

- Used for mutual assignment.
- We can achieve arc-consistency using the same algorithm as for the all-different constraint.

Global constraint assignment

assignment $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$

- It is the symmetric all-different constraint :

$$
X_{i}=j \Leftrightarrow Y_{j}=i, \quad 1 \leq i, j \leq n .
$$

We should have $D_{X} \subseteq\{1, \ldots, n\}, D_{Y} \subseteq\{1, \ldots, n\}$.

- Used for mutual assignment.

We can achieve arc-consistency using the same algorithm as for the all-different constraint.

Global constraint assignment

assignment $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$

- It is the symmetric all-different constraint :

$$
X_{i}=j \Leftrightarrow Y_{j}=i, \quad 1 \leq i, j \leq n .
$$

We should have $D_{X} \subseteq\{1, \ldots, n\}, D_{Y} \subseteq\{1, \ldots, n\}$.

- Used for mutual assignment.
- We can achieve arc-consistency using the same algorithm as for the all-different constraint.

Global constraint assignment

$$
\text { assignment }\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)
$$

- It is the symmetric all-different constraint :

$$
X_{i}=j \Leftrightarrow Y_{j}=i, \quad 1 \leq i, j \leq n .
$$

We should have $D_{X} \subseteq\{1, \ldots, n\}, D_{Y} \subseteq\{1, \ldots, n\}$.

- Used for mutual assignment.
- We can achieve arc-consistency using the same algorithm as for the all-different constraint.

Lignes directrices

Global constraints
«Simple » constraints
All-diff
GCC
Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Global constraint GCC

$$
\operatorname{GCC}\left(X_{1}, \ldots, X_{n}, v_{1}, \ldots, v_{k}, I_{1}, \ldots, I_{k}, u_{1}, \ldots, u_{k}\right)
$$

- This global cardinality constraint is a generalisation of all-different : the number of times each value v_{j} is taken should be inside interval $\left[j, u_{j}\right]$ (for all-different, $l_{j}=0, u_{j}=1, \forall j$).
- Often used in practice : complicated assignment, distribution,...
- We can achieve the arc-consistency for constraint GCC in time $O\left(n^{2} d\right)$ by using the maximum flow algorithm (Régin, 99).

Global constraint GCC

$$
\operatorname{GCC}\left(X_{1}, \ldots, X_{n}, v_{1}, \ldots, v_{k}, I_{1}, \ldots, I_{k}, u_{1}, \ldots, u_{k}\right)
$$

- This global cardinality constraint is a generalisation of all-different : the number of times each value v_{j} is taken should be inside interval $\left[j, u_{j}\right]$ (for all-different, $l_{j}=0, u_{j}=1, \forall j$).
- Often used in practice : complicated assignment, distribution,...
- We can achieve the arc-consistency for constraint GCC in time $O\left(n^{2} d\right)$ by using the maximum flow algorithm (Régin,

Global constraint GCC

$\operatorname{GCC}\left(X_{1}, \ldots, X_{n}, v_{1}, \ldots, v_{k}, l_{1}, \ldots, I_{k}, u_{1}, \ldots, u_{k}\right)$

- This global cardinality constraint is a generalisation of all-different : the number of times each value v_{j} is taken should be inside interval $\left[j, u_{j}\right]$
(for all-different, $l_{j}=0, u_{j}=1, \forall j$).
- Often used in practice : complicated assignment, distribution,...
- We can achieve the arc-consistency for constraint GCC in time $O\left(n^{2} d\right)$ by using the maximum flow algorithm (Régin, 99).

Maximum flow in a graph

Notations

Let $D=(V, A)$ be an directed graph in which to each arc
$(i, j) \in A$ we associate a capacity $u_{i j}$.
Flow definition
A flow in graph D is a function f defined on arcs of D :

- $0 \leq f_{i j} \leq u_{i j}, \forall(i, j) \in A$,
- $\sum_{i:(i, j) \in A} f_{i j}=\sum_{i:(j, i) \in A} f_{j i}, \forall j \in V \backslash\{s, d\}$.

Problem

Find the maximum flow which can be sent from s to t.

Construction of maximum flow

Example :

Algorithm :

1. We start with a feasible flow f (for example, zero flow).
2. We construct the residual
directed graph $R=\left(V, A^{\prime}\right)$

3. If there exists a path from s to t in the residual graph, we
increase the flow along this path as much as possible.
4. If such path does not exists, the flow is maximum.

Construction of maximum flow

Example :

Algorithm :

1. We start with a feasible flow f (for example, zero flow).
2. We construct the residual directed graph $R=\left(V, A^{\prime}\right)$:

- $f_{i j}>0 \Leftrightarrow(j, i) \in A^{\prime}$;
- $f_{i j}<u_{i j} \Leftrightarrow(i, j) \in A^{\prime}$.

3. If there exists a path from s to t in the residual graph, we
increase the flow along this

path as much as possible.
4. If such path does not exists, the flow is maximum.

Construction of maximum flow

Example :

Algorithm :

1. We start with a feasible flow f (for example, zero flow).
2. We construct the residual directed graph $R=\left(V, A^{\prime}\right)$:

$$
\begin{aligned}
& f_{i j}>0 \Leftrightarrow(j, i) \in A^{\prime} ; \\
& f_{i j}<u_{i j} \Leftrightarrow(i, j) \in A^{\prime} .
\end{aligned}
$$

3. If there exists a path from s to t in the residual graph, we increase the flow along this path as much as possible.
the flow is maximum.

Construction of maximum flow

Example :

Algorithm :

1. We start with a feasible flow f (for example, zero flow).
2. We construct the residual directed graph $R=\left(V, A^{\prime}\right)$:

$$
\begin{aligned}
& f_{i j}>0 \Leftrightarrow(j, i) \in A^{\prime} ; \\
& f_{i j}<u_{i j} \Leftrightarrow(i, j) \in A^{\prime} .
\end{aligned}
$$

3. If there exists a path from s to t in the residual graph, we increase the flow along this path as much as possible.
4. If such path does not exists, the flow is maximum.

Propagation of constraint GCC I

We construct the «value» graph :

Propagation of constraint GCC II

We find the maximum flow :

Propagation of constraint GCC III

We construct the residual graph induces by the maximum flow :

Propagation of constraint GCC IV

We establish non-saturated arcs which between variables and values which do not belong to any circuit in the residual graph (decomposition in strongly connected components) :

Propagation of constraint GCC V

We remove values which correspond to these edges:

Lignes directrices

Global constraints
«Simple » constraints
All-diff

Constraints for scheduling

« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Global constraint disjunctive

disjunctive $\left(X_{1}, \ldots, X_{n}, p_{1}, \ldots, p_{n}\right)$

- Replaces $\frac{n^{2}}{2}$ logical binary constraints :

$$
X_{i}+p_{i} \leq X_{j} \bigvee X_{i} \geq X_{j}+p_{j}, \quad \forall i, j: i \neq j
$$

- Often used for scheduling problems (often with $D_{x_{i}}=\left[r_{i}, d_{i}-p_{i}\right]$)

Global constraint disjunctive : propagation I

- Achieving arc-B-consistency for this constraint is NP-hard.
- Weaker («Edge-Finding») propagation is used :

$$
\max _{i \in \Omega} d_{i}-\min _{i \in \Omega \cup\{k\}} r_{i}<\sum_{\Omega \cup\{k\}} p_{i} \Rightarrow \Omega \text { précède } k
$$

Global constraint disjunctive : propagation I

- Achieving arc-B-consistency for this constraint is NP-hard.
- Weaker («Edge-Finding») propagation is used :

$$
\begin{gathered}
\max _{i \in \Omega} d_{i}-\min _{i \in \Omega \cup\{k\}} r_{i}<\sum_{\Omega \cup\{k\}} p_{i} \Rightarrow \Omega \text { précède } k \\
\Rightarrow \quad r_{k} \leftarrow \max _{\Omega^{\prime} \subseteq \Omega}\left\{\min _{i \in \Omega^{\prime}} r_{i}+\sum_{i \in \Omega^{\prime}} p_{i}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& k=1 \\
& \Omega=\{2,3\} \\
& r_{k} \leftarrow 8
\end{aligned}
$$

Global constraint disjunctive : propagation II

- «Edge-Finding» detects if job k should be executed before (after) all jobs in set Ω.
We can verify all possible pairs (Ω, k) in time $O(n \log n)$. (Carlier \& Pinson, 94).
$\begin{aligned} & \text { «Not-First/Not-Last» detects if job } k \text { should be execute } \\ & \text { before (after) at least one job in set } \Omega \text {. } \\ & \text { We can verify all possible pairs }(\Omega, k) \text { in time } O(n \log n) \text {. } \\ &(\text { Vilím, } 04) \text {. } \\ &> \text { «Detectable precedences »,... }\end{aligned}$

Global constraint disjunctive : propagation II

- «Edge-Finding» detects if job k should be executed before (after) all jobs in set Ω.
We can verify all possible pairs (Ω, k) in time $O(n \log n)$. (Carlier \& Pinson, 94).
- «Not-First/Not-Last» detects if job k should be execute before (after) at least one job in set Ω.
We can verify all possible pairs (Ω, k) in time $O(n \log n)$. (Vilím, 04).
- « Detectable precedences »,...

Global constraint disjunctive : propagation II

- «Edge-Finding» detects if job k should be executed before (after) all jobs in set Ω.
We can verify all possible pairs (Ω, k) in time $O(n \log n)$. (Carlier \& Pinson, 94).
- "Not-First/Not-Last» detects if job k should be execute before (after) at least one job in set Ω.
We can verify all possible pairs (Ω, k) in time $O(n \log n)$. (Vilím, 04).
- « Detectable precedences »,...

Global constraint Cumulative

cumulative $\left(X_{1}, \ldots, X_{n}, p_{1}, \ldots, p_{n}, r d_{1}, \ldots, r d_{n}, r\right)$

- Jobs should not overlap;
+ each job i consumes $r d_{i}$ units of the resource;
+ at each time moment we cannot use more than r units of the resource.
et $r=1$.

Global constraint Cumulative

cumulative $\left(X_{1}, \ldots, X_{n}, p_{1}, \ldots, p_{n}, r d_{1}, \ldots, r d_{n}, r\right)$

- Jobs should not overlap;
+ each job i consumes $r d_{i}$ units of the resource;
+ at each time moment we cannot use more than r units of the resource.
- It is a generalisation of dis junctive, for which $r d_{i}=1, \forall i$, et $r=1$.

Global constraint cumulative : example

If $X_{c} \leq 9, X_{e} \leq 4, X_{f} \leq 14$, then, after propagation of
precedence constraints

$$
\begin{aligned}
D\left(X_{a}\right)= & {[0,1], \quad D\left(X_{b}\right)=[2,3], \quad D\left(X_{c}\right)=[8,9], } \\
& D\left(X_{d}\right)=[0,2], \quad D\left(X_{e}\right)=[2,4], \quad D\left(X_{f}\right)=[0,14] .
\end{aligned}
$$

Global constraint cumulative : example

If $X_{c} \leq 9, X_{e} \leq 4, X_{f} \leq 14$, then, after propagation of precedence constraints

$$
\begin{aligned}
D\left(X_{a}\right)= & {[0,1], \quad D\left(X_{b}\right)=[2,3], \quad D\left(X_{c}\right)=[8,9], } \\
& D\left(X_{d}\right)=[0,2], \quad D\left(X_{e}\right)=[2,4], \quad D\left(X_{f}\right)=[0,14] .
\end{aligned}
$$

Cumulative : Time-table propagation (1)

Obligatory parts

Cumulative : Time-table propagation (1)

Obligatory parts

Cumulative : Time-table propagation (1)

Obligatory parts

Cumulative : Time-table propagation (2)

Complexity
Time-table propagation can be done in time $O(n \log n)$ (Lahrichi, 82)

Cumulative : Time-table propagation (2)

Complexity

Time-table propagation can be done in time $O(n \log n)$ (Lahrichi, 82)

Constraint Cumulative : other « propagations »

- «Edge-Finding» detects if job k should start before (finish after) all the jobs in set Ω.
We can verify all possible pairs (Ω, k) in time $O\left(n^{2}\right)$
(Kameugne et al, 11) or in time $O(r n \log n)($ Vilim, 09)

Constraint Cumulative : other « propagations»

- «Edge-Finding» detects if job k should start before (finish after) all the jobs in set Ω.
We can verify all possible pairs (Ω, k) in time $O\left(n^{2}\right)$ (Kameugne et al, 11) or in time $O(r n \log n)($ Vilim, 09)
- «Not-First/Not-Last» detects if job k should be execute after (before) at least one job in set Ω.
We can verify all possible pairs (Ω, k) in time $O\left(n^{3}\right)$. (Baptiste et al., 01).

Lignes directrices

Global constraints

«Simple » constraints
All-diff
GCC
Constraints for scheduling
« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Notations and definitions

n - number of variables
e - number of constraints
d - upper bounds for the domains size

An instantiation $I=\left\{\left\langle x_{i}, v_{i}\right\rangle\right\}_{i \in K}$ is an assignment of values $\left\{v_{i}\right\}_{i \in K}$ to variables $\left\{x_{i}\right\}_{i \in K}$.

An instantiation is complete if $K=\{1, \ldots, n\}$.

Notations and definitions

n - number of variables
e - number of constraints
d - upper bounds for the domains size

An instantiation $I=\left\{\left\langle x_{i}, v_{i}\right\rangle\right\}_{i \in K}$ is an assignment of values $\left\{v_{i}\right\}_{i \in K}$ to variables $\left\{x_{i}\right\}_{i \in K}$.
An instantiation is complete if $K=\{1, \ldots, n\}$.

Trivial solution

Algorithme 1 : Generate and test foreach complete instantiation I do if I satisfies all constraints then L return / return «no solutions»

Complexity : $O\left(e d^{n}\right)$

Chronological backtrack

Algorithme 2 : Backtrack (I, k, v)

$$
I \leftarrow I \cup\left\{\left\langle x_{k}, v\right\rangle\right\} ;
$$

if I satisfies all constraints then
if I is complete $(k=n)$ then I is a solution; exit ; else foreach $a \in D_{x_{k+1}}$ do Backtrack $(l, k+1, a)$;

Complexity : $O\left(e d^{n}\right)$, but better in practice

Forward Checking

Algorithme 3 : ForwardCheck (I, D, k, v)

$I \leftarrow I \cup\left\{\left\langle x_{k}, v\right\rangle\right\}$; remove from D all values incompatible with $x_{k}=v$; if there is no empty domain then
if I is complete then I is a solution; exit ; else
foreach $a \in D_{x_{k+1}}$ do
ForwardCheck (I, $D, k+1, a)$

Roof \qquad

Forward Checking : N queens

Maintaining Local Consistency

Algorithme 4 : MLC (I, D, k, v)
$I \leftarrow I \cup\left\{\left\langle x_{k}, v\right\rangle\right\} ;$
remove $\left\{\left\langle x_{k}, a\right\rangle\right\}_{a \in D_{x_{k}}, a \neq v}$ from D and propagate;
if all domains are not empty then
si I is complete alors I is a solution; exit ;
else
foreach $a \in D_{x_{k+1}}$ do
MLC ($I, D, k+1, a)$; remove $\left\{\left\langle x_{k+1}, a\right\rangle\right\}$ from D and propagate;

Car body \qquad

Bumpers \qquad

Roof

Comparing the algorithms

Problems with infinite domains

If there are interval domains, instead of instantiating variables, we divide such domain (usually in two)

Let $D_{x}=[\underline{x}, \bar{x}]$, then

Lignes directrices

Global constraints

«Simple » constraints
All-diff
GCC
Constraints for scheduling
« Traditional » algorithms to solve CSPs

Parameterising the algorithms

Algorithm options

- In the algorithms we have just seen, there are choices to be done:
> in which order we instantiate variables;
- in which order we assign values;
- which local consistency we achieve.
- These decisions (called « heuristics ») are extremely important for efficiency of the algorithms.

Algorithm options

- In the algorithms we have just seen, there are choices to be done:
- in which order we instantiate variables;
> in which order we assign values;
- which local consistency we achieve.
- These decisions (called « heuristics ») are extremely important for efficiency of the algorithms.

Algorithm options

- In the algorithms we have just seen, there are choices to be done:
- in which order we instantiate variables;
- in which order we assign values;
- which local consistency we achieve.
- These decisions (called «heuristics ») are extremely important for efficiency of the algorithms.

Algorithm options

- In the algorithms we have just seen, there are choices to be done:
- in which order we instantiate variables;
- in which order we assign values;
- which local consistency we achieve.
- These decisions (called « heuristics ») are extremely important for efficiency of the algorithms.

Algorithm options

- In the algorithms we have just seen, there are choices to be done:
- in which order we instantiate variables;
- in which order we assign values;
- which local consistency we achieve.
- These decisions (called « heuristics ») are extremely important for efficiency of the algorithms.
- If we dive into a branch without solutions, we can spend a lot of time before we understand this.
- The first decisions are particularly important (when we are in upper part of the search tree).

Heuristics for the variables order

There are two types :

- Static - order is fixed before executing the algorithm.
- Dynamic - order may change during the algorithm (may be even different in different branches).
Possible objectives :
- Minimizing the research space
- Minimizing the average depth in the tree
- Minimizing the number of branches

> Static heuristic are based on properties of the constraint network of the problem, especially its width and its bandwidth.

Heuristics for the variables order

There are two types :

- Static - order is fixed before executing the algorithm.
- Dynamic - order may change during the algorithm (may be even different in different branches).

Possible objectives :

- Minimizing the research space
- Minimizing the average depth in the tree
- Minimizing the number of branches

Static heuristic are based on properties of the constraint network
of the problem, especially its width and its bandwidth.

Heuristics for the variables order

There are two types :

- Static - order is fixed before executing the algorithm.
- Dynamic - order may change during the algorithm (may be even different in different branches).
Possible objectives:
- Minimizing the research space
- Minimizing the average depth in the tree
- Minimizing the number of branches

Static heuristic are based on properties of the constraint network of the problem, especially its width and its bandwidth.

Dynamic order of variables I

Objectives

- Minimise the expected number of branches
- Minimise the expected depth of branches

Principle
First-fail : we choose variables which are «difficult to satisfy », we do not postpose difficult decisions

If a CSP is weakly constrained, opposite heuristic may be more efficient.

Dynamic order of variables I

Objectives

- Minimise the expected number of branches
- Minimise the expected depth of branches

Principle

First-fail : we choose variables which are « difficult to satisfy », we do not postpose difficult decisions

If a CSP is weakly constrained, opposite heuristic may be more efficient.

Dynamic order of variables I

Objectives

- Minimise the expected number of branches
- Minimise the expected depth of branches

Principle

First-fail : we choose variables which are « difficult to satisfy », we do not postpose difficult decisions

If a CSP is weakly constrained, opposite heuristic may be more efficient.

Dynamic order of variables II

$\operatorname{dom}(x \mid p)$: size of the domain of x after assignments p
Possible choice of a variable

- one which has the smallest domain : min $\operatorname{dom}(x \mid p)$
- one which participates in the maximum number of constraints : max degree (x)
- Combination of two criteria : min $\frac{\operatorname{dom}(x \mid p)}{\operatorname{degree}(x)}$
- Size of domain after propagation :

$$
\min \sum_{a \in \operatorname{dom}(x)} \sum_{y} \operatorname{dom}(y \mid p \cup\{x=a\})
$$

- Depending of the impact :
- We store the impact of the domain reduction for each variable in the course of the algorithm
- We choose a variables with the largest impact until now

Dynamic order of values

Order of values is less important than the order of variables (less impact on the solution time)

Dynamic order of values

Order of values is less important than the order of variables (less impact on the solution time)

Principle
We choose a value which has the largest probability to «succeed»

Choice of a value

- one which has the largest number of supports;
- one which leaves the maximum number of values in the domains of other variables after propagation.

Dynamic order of values

Order of values is less important than the order of variables (less impact on the solution time)

Principle
We choose a value which has the largest probability to
«succeed»
Choice of a value

- one which has the largest number of supports;
- one which leaves the maximum number of values in the domains of other variables after propagation.

Choice of local consistency

- Local consistency should be profitable (we should spent less time to detect that a branch does not lead to any solution than to explore this branch).
- We use local consistency which has the best ratio cost

propagation power

- So, for the problem in question one needs to have an idea of
- the propagation power of different local consistencies (average number of removed values after propagation),
> the cost of different local consistencies (practical computational complexity).
- To have an estimation of this we often do experimental comparison.

Choice of local consistency

- Local consistency should be profitable (we should spent less time to detect that a branch does not lead to any solution than to explore this branch).
- We use local consistency which has the best ratio cost propagation power
- So, for the problem in question one needs to have an idea of
- the propagation power of different local consistencies (average number of removed values after propagation),
> the cost of different local consistencies (practical computational complexity).
- To have an estimation of this, we often do experimental comparison.

Choice of local consistency

- Local consistency should be profitable (we should spent less time to detect that a branch does not lead to any solution than to explore this branch).
- We use local consistency which has the best ratio
$\frac{\text { cost }}{\text { propagation power }}$
- So, for the problem in question one needs to have an idea of
- the propagation power of different local consistencies (average number of removed values after propagation),
- the cost of different local consistencies (practical computational complexity).
- To have an estimation of this, we often do experimental
comparison.

Choice of local consistency

- Local consistency should be profitable (we should spent less time to detect that a branch does not lead to any solution than to explore this branch).
- We use local consistency which has the best ratio
$\frac{\text { cost }}{\text { propagation power }}$
- So, for the problem in question one needs to have an idea of
- the propagation power of different local consistencies (average number of removed values after propagation),
- the cost of different local consistencies (practical computational complexity).
- To have an estimation of this, we often do experimental comparison.

