Constraint Programming

Lecture 4. Solving CSPs using Lazy Clause Generation.

Ruslan Sadykov
INRIA Bordeaux—Sud-Ouest

27 January 2022

1/20

Contents

SAT problem and solution algorithms

2/20

What is the SAT problem ?

Given a propositional formula (Boolean variables with AND,
OR, NQOT), is there an assignment to the variables such that the
formula evaluates to true ?

» NP-complete problem with applications in Al, formal
methods

> Input usually given as Conjunctive Normal Form (CNF)
formulas

» It is possible to do the linear reduction from general
propositional formulas

3/20

Conjunctive Normal Form

SAT solvers usually take input in CNF : an AND of ORs of
literals :

» Atom — a propositional variable : a, b, ¢
> Literal — an atom or its negation : a, @, b, b
» Clause — A disjunction of some literals : aVv bV ¢

» CNF formula — A conjunction of some clauses :
(avbve)a(cva)

A formula is satisfied by a variable assignment if every clause
has at least one literal which is true under that assignment.

A formula is unsatisfied by a variable assignment if some
clause’s literals are all false under that assignment.

4/20

DPLL algorithm for the SAT problem (1)

Unit propagation

If a clause is a unit clause, i.e. it contains only a single
unassigned literal, this clause can only be satisfied by
assigning the necessary value to make this literal true.

Pure literal elimination

If a propositional variable occurs with only one polarity in the
formula, it is called pure. Pure literals can always be assigned
in a way that makes all clauses containing them true. Thus,
these clauses do not constrain the search anymore and can be
deleted.

5/20

DPLL algorithm for the SAT problem (2)

Algorithm 1: DPLL(®P)

if ® is a consistent set of literals then
L return true;

if & contains an empty clause then
| return false;

foreach unit clause {/} in ® do
| & « unit-propagate(l, ®);

foreach literal | that occurs pure in ¢ do
| & « pure-literal-assign(l,);

| < choose-literal(®);
return DPLL (¢ A {/}) or DPLL (A {I});

6/20

DPLL algorithm : illustration

(@' +b+c)
(a+c+d)
(a+c+d)
(a+c' +d)
(a+c +d)
(b’ + ¢’ +d)
(a’+b+c’)
(@' + b’ +c)

All clauses making a CNF formula

7/20

DPLL algorithm : illustration

(,_
Nl

(@’ +b+c)
(a+c+d)
(a+c+d)
(a+c +d)
(a+c’' +d)
(b’ + ¢’ +d)
(@ +b+c’)
(@’ +b’+c)

Pick a variable

7/20

DPLL algorithm : illustration

(@+b+o) 0

(a+c+d) <= Decision
(a+c+d)
(a+c +d)
(a+c’ +d)
b’+c’ +d

Make a decision, variable a = False (a = 0)

7120

DPLL algorithm : illustration

Implication Graph

N

Conflict!

@rord) 0

After making several decisions, we find an implication graph
that leads to a conflict

7/20

DPLL algorithm : illustration

(@+b+c) 0

(a+c+d
(@+c+d) o
(a+c' +d) 0

a+c’ +d

Now backtrack to immediate level and by force assign opposite
value to that variable

7/20

DPLL algorithm : illustration

[a+c + d’ll d=0
But a forced decision still leads to another conflict

Conflict!

7/20

DPLL algorithm : illustration

(@b 0

(a+c+d)

(@a+c+d) o

(a+c'+d) 0 1 < Forced Decision
(a+c' +d)
b’+c’ +d

Backtrack to previous level and make a forced decision

7/20

DPLL algorithm : illustration

N

Conflict!
(atc + d’)
Make a new decision, but it leads to a conflict

7/20

DPLL algorithm : illustration

Conflict!
TN

[ate' + d’}

Make a forced decision, but again it leads to a conflict

7/20

DPLL algorithm : illustration

'/a < Backtrack
(@ +b+c) S
(atc+d
(@a+c+d) b
(a+c’' +d) 0 ’
(at+c' +d)
(b’ + ¢ +d) (e c)
(Al o/\1 0
(@+b +c¢)

Backtrack to previous level

7/20

DPLL algorithm : illustration

Continue in this way and the final implication graph

7/20

Conflict-Driven Clause Learning (CDCL)

Works as follows

1.

o

Select a variable and assign True or False. This is called
decision state. Remember the assignment.

Apply Boolean Constraint Propagation (unit propagation).
Build the implication graph.
If there is any conflict

» Find the cut in the implication graph that led to the conflict

» Derive a new clause which is the negation of the
assignments that led to the conflict

» Non-chronologically backtrack (back jump) to the
appropriate decision level, where the first-assigned variable
involved in the conflict was assigned

Otherwise continue from step 1 until all variable values are
assigned

8/20

CDCL algorithm : illustration

X1+ x3 +x8 s
x1+x8+x12 »
x2 + x11

X7’ +x3' +x9

X7’ + X8 +x9’

X7 +x8 +x10°

X7 +x10 +x12’

Step 1

© x1=0

At first pick a branching variable, namely x;. A yellow circle
means an arbitrary decision

9/20

CDCL algorithm : illustration
Step 2

X1+ x3' +x8 Pid
X1+ x8 + x12 »
X2 +x11

X7+ X3 +x9

X7 + X8 + x9’

X7 + x8 + x10°

X7 +x10 +x12°

@ x4=1

x1=0

Now apply unit propagation, which yields that x4, must be 1 (i.e.
True). A gray circle means a forced variable assignment during
unit propagation. The resulting graph is called an implication

graph

9/20

CDCL algorithm :

x1+ x4

X1+ x3" +x8
X1+ x8+x12
X2+ x11
X7+ x3" +x9
X7+ x8 + x9’
X7+ x8 + x10’
X7 +x10 + x12'

@ x4=1

X1=0 O x3=1

illustration

Step 3

| x3=1

A

Arbitrarily pick another branching variable, x3

9/20

CDCL algorithm : illustration

Step 4

X1+ x4 ,

X1+ x3' +x8 s
X1+ x8 +x12 »
x2 + x11 @ | x3=1, x8=0
X7+ x3 +Xx9 \

X7+ x8 +x9 “

X7 + %8 + x10”

X7 +x10 +x12°

@ x4=1

1=0 x3=1

@ xs=0

Apply unit propagation and find the new implication graph

9/20

CDCL algorithm : illustration

s StepS ;

X1+ X3 +x8 ’
x1+x8 +x12 »

X7' +x3' +x9 N

X7’ + X8 + X9’ N

X7 + x8 + x10°
X7 +x10 + x12°

@ x4=1

N

x8=0
X12=1

Here the variable xg and x;» are forced to be 0 and 1,
respectively

9/20

CDCL algorithm : illustration

o Stop6 @

X1+ x3" + x8 L’

X1+ X8 +x12 ¥

X2 + x11 @ X3=1, x8=0, x12=1
X7" +x3' +Xx9 N

X7 + X8 + X9 A

)
'
7’

X7 +x10 + x12'

»

@ x4=1

Oma=a

Pick another branching variable, xo

9/20

CDCL algorithm : illustration

step7 @

4

X1+ X3 +x8 ’

X1+ x8 +x12 s

(19)
X7'+x3" +x9 .

X7’ + x8 + x9° A

)
X7 +x10 + x12’ e

Find implication graph

9/20

CDCL algorithm : illustration

X1+ x4 Step 8 / X1=0, x4=1

X1+ x3' +x8 S

x1+x8 +x12 »

X2 + x11 @ x3=1, X8=0, x12=1
X7 +x3 +x9 N

X7’ + x8 + x9' 4

+x8 + x10'

X7 +x10 + x12 ’

@ x4=1

/.)(11

Dasg

Pick another branching variable, x7

9/20

CDCL algorithm : illustration

X1+ x4 Step 9 @ X120, x4=1

X1+ %3 +x8 ’,’

x1+x8+x12 »

X2+ x11 @ X321, x8=0, x12=1
X7+ x3" +x9 \

X7’ + X8 +x9° “a

@
X7 +x10 + x12’ ‘
@ x4=1 @ x7=1

ES
Ay

x3=1Q) x7=1 *

/.m

Oixa=n

Find implication graph

9/20

x1 + x4 Step 10
X1+ x3" +x8'

X1+ x8 +x12

x2 +x11

X7 +x3" +x9

X7’ + X8 + x9’

X7 + %8 + x10°

X7 +x10 + x12

@ x4=1

x11=
x12=1

Oa=a

Found a conflict!

CDCL algorithm : illustration

7’
’

»

) []

@ x3=1, X8=0, x12=1

@ X7=1, x9= 0, 1

~

A

9/20

CDCL algorithm : illustration

wew steptd)

X1+ X3 +x8 ’,’

x1+x8 +x12 »

X2 + x11 @ x3=1, x8=0, x12=1
X7'+ X3 +x9 .

X7’ + X8 + x9’ A

)
X7 +x10 + x12’ P
@ x7=1, x9=1

x9=1 ~ N
-

@ x4=1

x11=1 ‘ Xx3=1Ax7=1,x8=0 — conflict ‘

Oxa=a

Find the cut that led to this conflict. From the cut, find a
conflicting condition

9/20

CDCL algorithm : illustration

If a implies b, then b’ implies a’

Step 12 X3=1AX7=1A%x8=0 — conflict

Not conflict — (x3=1Ax7=1Ax8=0)
true — (X3=1Ax7=1Ax8=0)'
(X3=1AX7=1Ax8=0Y)

Take the negation of this condition and make it a clause

9/20

CDCL algorithm : illustration

X1 + x4 Step 13 (x1) [x1=0, x4=1

X1+x3 +x8 L’

X1 +x8 +x12 »

X2 +x11 @ x3=1, x8=0, x12=1
X7+ x3" +x9 N

X7’ + X8 + X9’ A

;
X7 +x10 + x12’ ‘
@ x7=1, x9=1

x9=1 S
\4

@ x4=1

X3=1,X7=12%8=0 — conflict

x11=1
Qasn Add conflict clause: x3'+x7'+x8

Add the conflict clause to the problem

9/20

CDCL algorithm : illustration

X1+ x4
x1 +x3’ + x8& Step 14
x1+x8 +x12
x2+x11
X7+ X3 +x9
X7 + x8 + x9’
X7+ x8 + x10’
X7 4+ x10 + x12’

@ x4=1

.\X.S—U Backtrack to the decision level of x3=1:

O Xx2=0 x12=1 X7=0

Non-chronological back jump to appropriate decision level,

which in this case is the second highest decision level of the
literals in the learned clause

9/20

CDCL algorithm : illustration

x1+x4 @ x1=0, x4=1

X1 +x3" + x8’ Step 15 ’

x1+x8 + x12 Nt

x2 + x11 _ _ _ —
s o (x3) c3=1, x8=0, x12=1[x7=0|
X7" + x8 + x9’ s

x7 +x8 + x10° N
x7 + x10 + x12’

Back jump and set variable values accordingly

9/20

Contents

Lazy Clause Generation

10/20

Representing integers with propositional variables
(booleans)

» Integer x with initial domain {/,..., u}
» Bounds booleans : [[x < d]],/<d<u
» Equationbooleans : [[x =d]], /< d<u
> An efficient form of unary representation
» We need constraints to represent relationship among
variables
> [x<d]=[x<d+1],/I<d<n-1
> [x=d]<[x<dlr-[x<d-1]
» Ensures one to one correspondence between domains
and assignments

11/20

Atomic constraints

» Atomic constraints define changes in domain
» Fixing variable : x = d
» Changingbound : x < d, x >d
» Removing value : x # d
» Atomic constrains are just boolean literals
> x=d <& [[x =d]
> x<d&[[x <d]
> x>d& —[[x <d]
> x#d & [x=d]

12/20

Explaining propagation

>
| 2

A propagation must explain the domain changes it makes

If (D) # D then propagator f returns an explanation for
the atomic constraint changes

Example

>

>
>
>

v

D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = {1,...,4}
all-different(Xq, Xo, X3, Xs)

D(xy) = {1} makes D(xz) = {2,...,4}

Explanation: x; =1 = x» # 1

Implications of atomic constraints are clauses on the
boolean literals :

> xi=1=x #1

> [=1]l = e =1]]

> [xa =1V -l =1]]
Unit propagation on the clause will cause the change in

domain
13/20

Explaining propagation : continued example

> Xo < X5
> D(x2) ={2,...,4} enforces D(xs) = {2,...,4}
» Explanation: x, > 2= x5 > 2
> X1+ Xo+ X3+ X4 <9
> D(xy)={1,...,4}, D(x2) ={2,...,4}, D(x3) = {3,4},
D(xs) = {1,...,4} enforces D(x4) = {1,...,3}
» Explanation:x >2AXx3 >3=x4<3
» x; > 1is not included in the explanation since this is
universally true (initial domain)

14/20

Explaining failure

» When f(D)(x) = {}, failure detected

» The propagator must also explain failure
> all-different(Xq, Xo, X3, X4)
> D(x3) = {3}, D(x4) = {3} gives failure
» Explanation : x3 = 3 A x4 = 3 = false
» And
> D(X1) = {173}! D(XZ) = {17273}! D(XS) = {173}’
D(xa) = {1,3}
» Explanation :
X1 <BAXI Z2AX3<3AX3£2A X4 <3N X2 #2 = false

15/20

Minimal explanations

» An explanation should be as general as possible. Why ?

» Sometimes there are multiple possible explanations, none
better than others

Example
D(x1) ={4,6,...,9}, D(x2) ={1.2}, x1 +1 < X
> X1 >4AXy #5AN X < 2= false
> xg >4 Ax < 2= false
> x1 >4 Ax < 4= false
> x; > 2AXx < 2= false

16/20

Finite Domain Propagation Example

D(x1) = D(x2) = D(x3) = D(xs) = D(xs) = {1,...

> X2 < X5
» all-different(Xy, Xo, X3, X4)
> X1+ Xo+ X3+ X4 <9

On the table

17/20

Finite Domain Propagation Example

alldiff X2 < Xs | X2 < Xs alldiff > <9 alldiff

be # 1hDe > 2]
X3 > 2
T
il
X4 > 2 X4 §£ 2t Xy >3] (x4 <3p{x4 =3

bz 2| <2n=2
M~

18/20

Lazy Clause Generation

alldiff X2 < Xs | X2 < Xs alldiff > <9 alldiff

Pe £ 1]-Pe > 2]
x> 2 =3
tail
1 > 2 = 3|

/
(x5 > 2]|[x < 2J+{x5 = 2] conflict cut
V

19/20

Lazy Clause Generation

alldiff X2 < Xs

X2 < Xs

alldiff

be # 1hPe > 2]

EN
[x2 < 2p{x2 = 2]/1UIP (first uni

alldiff

e implication point)

X3 > 2

Xs < 3]+{x = 3]
~

X4 > 2

233

w2l e=2
M~

conflict cut

19/20

Lazy Clause Generation

alldiff X2 < Xs | X2 < Xs alldiff > <9 alldiff

L ™
’Xg #1 HXQ > 2[’Xg < 2HX2 = 2|/1UIP (first unigue implication point)
1h{x > 2 X < 3|+{xs = 3]
S
| fail
X4 > 2 4 < 3xs = 3|

conflict cut

pes 2| <2Hx=2
M~

Explanation : xo > 2 A X3 > 2A X4 > 2N\ Xo = 2 = false

1UIP No-good (learned clause) :
[xe < 1]V IIxa < 1]V [[xa < 1]V —[xe = 2]]

19/20

Non-chronological backtrack (backjumping)

alldiff X2 < Xs

X2 < Xs

» Backtrack to second last
level in the no-good
(learned clause)

» Learned clause will
propagate
» We obtain smaller domains

than after usual
backtracking.

> Here : D(x2) = {3,4}

20/20

	SAT problem and solution algorithms
	

	Lazy Clause Generation
	

