
Constraint Programming
Lecture 4. Solving CSPs using Lazy Clause Generation.

Ruslan Sadykov

INRIA Bordeaux—Sud-Ouest

27 January 2022

1 / 20



Contents

SAT problem and solution algorithms

Lazy Clause Generation

2 / 20



What is the SAT problem?

Given a propositional formula (Boolean variables with AND,
OR, NOT), is there an assignment to the variables such that the
formula evaluates to true?

I NP-complete problem with applications in AI, formal
methods

I Input usually given as Conjunctive Normal Form (CNF)
formulas

I It is possible to do the linear reduction from general
propositional formulas

3 / 20



Conjunctive Normal Form

SAT solvers usually take input in CNF : an AND of ORs of
literals :
I Atom — a propositional variable : a, b, c
I Literal — an atom or its negation : a, ā, b, b̄
I Clause — A disjunction of some literals : a ∨ b̄ ∨ c
I CNF formula — A conjunction of some clauses :

(a ∨ b̄ ∨ c) ∧ (c̄ ∨ ā)

A formula is satisfied by a variable assignment if every clause
has at least one literal which is true under that assignment.

A formula is unsatisfied by a variable assignment if some
clause’s literals are all false under that assignment.

4 / 20



DPLL algorithm for the SAT problem (1)

Unit propagation
If a clause is a unit clause, i.e. it contains only a single
unassigned literal, this clause can only be satisfied by
assigning the necessary value to make this literal true.

Pure literal elimination
If a propositional variable occurs with only one polarity in the
formula, it is called pure. Pure literals can always be assigned
in a way that makes all clauses containing them true. Thus,
these clauses do not constrain the search anymore and can be
deleted.

5 / 20



DPLL algorithm for the SAT problem (2)

Algorithm 1: DPLL(Φ)
if Φ is a consistent set of literals then

return true;

if Φ contains an empty clause then
return false;

foreach unit clause {l} in Φ do
Φ← unit-propagate(l ,Φ);

foreach literal l that occurs pure in Φ do
Φ← pure-literal-assign(l ,Φ);

l ← choose-literal(Φ);
return DPLL (Φ ∧ {l}) or DPLL (Φ ∧ {̄l});

6 / 20



DPLL algorithm : illustration

All clauses making a CNF formula

7 / 20



DPLL algorithm : illustration

Pick a variable

7 / 20



DPLL algorithm : illustration

Make a decision, variable a = False (a = 0)

7 / 20



DPLL algorithm : illustration

After making several decisions, we find an implication graph
that leads to a conflict

7 / 20



DPLL algorithm : illustration

Now backtrack to immediate level and by force assign opposite
value to that variable

7 / 20



DPLL algorithm : illustration

But a forced decision still leads to another conflict

7 / 20



DPLL algorithm : illustration

Backtrack to previous level and make a forced decision

7 / 20



DPLL algorithm : illustration

Make a new decision, but it leads to a conflict

7 / 20



DPLL algorithm : illustration

Make a forced decision, but again it leads to a conflict

7 / 20



DPLL algorithm : illustration

Backtrack to previous level

7 / 20



DPLL algorithm : illustration

Continue in this way and the final implication graph

7 / 20



Conflict-Driven Clause Learning (CDCL)

Works as follows
1. Select a variable and assign True or False. This is called

decision state. Remember the assignment.
2. Apply Boolean Constraint Propagation (unit propagation).
3. Build the implication graph.
4. If there is any conflict

I Find the cut in the implication graph that led to the conflict
I Derive a new clause which is the negation of the

assignments that led to the conflict
I Non-chronologically backtrack (back jump) to the

appropriate decision level, where the first-assigned variable
involved in the conflict was assigned

5. Otherwise continue from step 1 until all variable values are
assigned

8 / 20



CDCL algorithm : illustration

At first pick a branching variable, namely x1. A yellow circle
means an arbitrary decision

9 / 20



CDCL algorithm : illustration

Now apply unit propagation, which yields that x4 must be 1 (i.e.
True). A gray circle means a forced variable assignment during
unit propagation. The resulting graph is called an implication
graph

9 / 20



CDCL algorithm : illustration

Arbitrarily pick another branching variable, x3

9 / 20



CDCL algorithm : illustration

Apply unit propagation and find the new implication graph

9 / 20



CDCL algorithm : illustration

Here the variable x8 and x12 are forced to be 0 and 1,
respectively

9 / 20



CDCL algorithm : illustration

Pick another branching variable, x2

9 / 20



CDCL algorithm : illustration

Find implication graph

9 / 20



CDCL algorithm : illustration

Pick another branching variable, x7

9 / 20



CDCL algorithm : illustration

Find implication graph

9 / 20



CDCL algorithm : illustration

Found a conflict !

9 / 20



CDCL algorithm : illustration

Find the cut that led to this conflict. From the cut, find a
conflicting condition

9 / 20



CDCL algorithm : illustration

Take the negation of this condition and make it a clause

9 / 20



CDCL algorithm : illustration

Add the conflict clause to the problem

9 / 20



CDCL algorithm : illustration

Non-chronological back jump to appropriate decision level,
which in this case is the second highest decision level of the
literals in the learned clause

9 / 20



CDCL algorithm : illustration

Back jump and set variable values accordingly

9 / 20



Contents

SAT problem and solution algorithms

Lazy Clause Generation

10 / 20



Representing integers with propositional variables
(booleans)

I Integer x with initial domain {l , . . . ,u}
I Bounds booleans : [[x ≤ d ]], l ≤ d < u
I Equation booleans : [[x = d ]], l ≤ d ≤ u

I An efficient form of unary representation
I We need constraints to represent relationship among

variables
I [[x ≤ d ]]⇒ [[x ≤ d + 1]], l ≤ d < n − 1
I [[x = d ]]⇔ [[x ≤ d ]] ∧ ¬[[x ≤ d − 1]]

I Ensures one to one correspondence between domains
and assignments

11 / 20



Atomic constraints

I Atomic constraints define changes in domain
I Fixing variable : x = d
I Changing bound : x ≤ d , x ≥ d
I Removing value : x 6= d

I Atomic constrains are just boolean literals
I x = d ⇔ [[x = d ]]
I x ≤ d ⇔ [[x ≤ d ]]
I x ≥ d ⇔ ¬[[x ≤ d ]]
I x 6= d ⇔ ¬[[x = d ]]

12 / 20



Explaining propagation
I A propagation must explain the domain changes it makes
I If f (D) 6= D then propagator f returns an explanation for

the atomic constraint changes

Example
I D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = {1, . . . ,4}
I all-different(x1, x2, x3, x4)
I D(x1) = {1} makes D(x2) = {2, . . . ,4}
I Explanation : x1 = 1⇒ x2 6= 1

I Implications of atomic constraints are clauses on the
boolean literals :
I x1 = 1⇒ x2 6= 1
I [[x1 = 1]]⇒ ¬[[x2 = 1]]
I [[x1 = 1]] ∨ ¬[[x2 = 1]]

I Unit propagation on the clause will cause the change in
domain

13 / 20



Explaining propagation : continued example

I x2 ≤ x5
I D(x2) = {2, . . . ,4} enforces D(x5) = {2, . . . ,4}
I Explanation : x2 ≥ 2⇒ x5 ≥ 2

I x1 + x2 + x3 + x4 ≤ 9
I D(x1) = {1, . . . ,4}, D(x2) = {2, . . . ,4}, D(x3) = {3,4},

D(x4) = {1, . . . ,4} enforces D(x4) = {1, . . . ,3}
I Explanation : x2 ≥ 2 ∧ x3 ≥ 3⇒ x4 ≤ 3
I x1 ≥ 1 is not included in the explanation since this is

universally true (initial domain)

14 / 20



Explaining failure

I When f (D)(x) = {}, failure detected
I The propagator must also explain failure
I all-different(x1, x2, x3, x4)

I D(x3) = {3}, D(x4) = {3} gives failure
I Explanation : x3 = 3 ∧ x4 = 3⇒ false

I And
I D(x1) = {1,3}, D(x2) = {1,2,3}, D(x3) = {1,3},

D(x4) = {1,3}
I Explanation :

x1 ≤ 3 ∧ x1 6= 2 ∧ x3 ≤ 3 ∧ x3 6= 2 ∧ x4 ≤ 3 ∧ x2 6= 2⇒ false

15 / 20



Minimal explanations

I An explanation should be as general as possible. Why?
I Sometimes there are multiple possible explanations, none

better than others

Example
D(x1) = {4,6, . . . ,9}, D(x2) = {1,2}, x1 + 1 ≤ x2

I x1 ≥ 4 ∧ x1 6= 5 ∧ x2 ≤ 2⇒ false
I x1 ≥ 4 ∧ x2 ≤ 2⇒ false
I x1 ≥ 4 ∧ x2 ≤ 4⇒ false
I x1 ≥ 2 ∧ x2 ≤ 2⇒ false

16 / 20



Finite Domain Propagation Example

D(x1) = D(x2) = D(x3) = D(x4) = D(x5) = {1, . . . ,4}
I x2 ≤ x5

I all-different(x1, x2, x3, x4)
I x1 + x2 + x3 + x4 ≤ 9

On the table

17 / 20



Finite Domain Propagation Example

alldiff x2 ≤ x5 x2 ≤ x5 alldiff
∑
≤ 9 alldiff

x1 = 1

x5 ≤ 2

fail

x2 6= 1

x3 6= 1

x4 6= 1

x2 ≥ 2

x3 ≥ 2

x4 ≥ 2

x5 ≥ 2

x2 ≤ 2

x5 = 2

x2 = 2

x4 6= 2

x3 6= 2 x3 ≥ 3

x4 ≥ 3

x3 ≤ 3

x4 ≤ 3

x3 = 3

x4 = 3

18 / 20



Lazy Clause Generation

alldiff x2 ≤ x5 x2 ≤ x5 alldiff
∑
≤ 9 alldiff

x1 = 1

x5 ≤ 2

fail

x2 = 2x2 6= 1

x3 6= 1

x4 6= 1

x2 ≥ 2

x3 ≥ 2

x4 ≥ 2

x5 ≥ 2

x2 ≤ 2

x5 = 2

x4 6= 2

x3 6= 2 x3 ≥ 3

x4 ≥ 3

x3 ≤ 3

x4 ≤ 3

x3 = 3

x4 = 3

conflict cut

19 / 20



Lazy Clause Generation

alldiff x2 ≤ x5 x2 ≤ x5 alldiff
∑
≤ 9 alldiff

x1 = 1

x5 ≤ 2

fail

x2 = 2 1UIP (first unique implication point)x2 6= 1

x3 6= 1

x4 6= 1

x2 ≥ 2

x3 ≥ 2

x4 ≥ 2

x5 ≥ 2

x2 ≤ 2

x5 = 2

x4 6= 2

x3 6= 2 x3 ≥ 3

x4 ≥ 3

x3 ≤ 3

x4 ≤ 3

x3 = 3

x4 = 3

conflict cut

19 / 20



Lazy Clause Generation

alldiff x2 ≤ x5 x2 ≤ x5 alldiff
∑
≤ 9 alldiff

x1 = 1

x5 ≤ 2

fail

x2 = 2 1UIP (first unique implication point)x2 6= 1

x3 6= 1

x4 6= 1

x2 ≥ 2

x3 ≥ 2

x4 ≥ 2

x5 ≥ 2

x2 ≤ 2

x5 = 2

x4 6= 2

x3 6= 2 x3 ≥ 3

x4 ≥ 3

x3 ≤ 3

x4 ≤ 3

x3 = 3

x4 = 3

conflict cut

Explanation : x2 ≥ 2 ∧ x3 ≥ 2 ∧ x4 ≥ 2 ∧ x2 = 2⇒ false

1UIP No-good (learned clause) :
[[x2 ≤ 1]] ∨ [[x3 ≤ 1]] ∨ [[x4 ≤ 1]] ∨ ¬[[x2 = 2]]

19 / 20



Non-chronological backtrack (backjumping)

alldiff x2 ≤ x5 x2 ≤ x5

x1 = 1

x2 6= 1

x3 6= 1

x4 6= 1

x2 ≥ 2

x3 ≥ 2

x4 ≥ 2

x5 ≥ 2

x2 6= 2 x2 ≥ 3

x5 ≥ 3

I Backtrack to second last
level in the no-good
(learned clause)

I Learned clause will
propagate

I We obtain smaller domains
than after usual
backtracking.
I Here : D(x2) = {3,4}

20 / 20


	SAT problem and solution algorithms
	

	Lazy Clause Generation
	


