Lignes directrices

Constraint Programming

Lecture 5. Symmetry. Real-life problems modeling
Ruslan Sadykov
INRIA Bordeaux-Sud-Ouest
3 February 2022

Symmetry

Problems modelling
Frequency assignment
Car sequencing
Sports scheduling
Timetabling
«Job-shop»
Cutting

Symmetry in CSPs

Variants of symmetry

- Variables are «interchangeable»
- Values are «interchangeable»
- Symmetry of pairs «variable-value"

Symmetry consequences

- Enumeration (search) tree contains several equivalent sub-trees
- If one of such sub-trees does not contain a solution, the equivalent sub-trees does not contain it neither!
- If we do not recognise equivalent sub-trees, useless search will be performed

Symmetry of variables : an example

Symmetry of values: 3-colouring example

A solution
$x_{1}=1$
$x_{2}=2$
$x_{3}=2$
$x_{4}=1$
$x_{5}=3$

Mapping
\rightarrow -
\rightarrow
\rightarrow
Another solution
$x_{1}=1$
$x_{2}=2$
$x_{3}=2$
$x_{4}=1$
$x_{5}=3$

Symmetry of variables:4-queens example

	x_{1}	χ_{2}	x_{3}	χ_{4}
1			Q	
2	Q			
3				Q
4		Q		

Symmetry of variables : 4-queens example

Partial assignment
$x_{1}=1$
Symmetric assignement
$x_{1}=4$

Symmetry : formal definition

For a $\operatorname{CSP}\langle\mathbf{X}, \mathbf{D}, \mathbf{C}\rangle$, with

- \mathbf{X} set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$
- D set of domaines $\left\{D_{x_{1}}, \ldots, D_{x_{n}}\right\}$
- Let \mathcal{D} be the union of domains $\mathcal{D}=\bigcup_{x \in \mathbf{X}} D_{x}$ (set of values)

A symmetry of P
Is a permutation of the set $\mathbf{X} \times \mathcal{D}$ which preserves the set of solutions of P

Particular cases

- Variables symmetry $\sigma(x, v)=\left(\sigma^{\prime}(x), v\right)$
- Values symmetry $\sigma(x, v)=\left(x, \sigma^{\prime}(v)\right)$

Symmetry elimination (decreasing)

- Reformulate the model
- Example : variables which take sets as values (packing)
- Add constraints to the model
- At least one of symmetric solutions (assignments) should satisfy them
- Eliminating the symmetry during the search
- Recognise and ignore dynamically the symmetric sub-trees during the search

Variables-values symmetry : 4-queens example

Identité

Rotation 90°

$\downarrow \downarrow \downarrow$
12234556788910111213141516

12233455678910111213141516
$\downarrow \downarrow \downarrow$

Symmetry elimination : example I

We fix the colors of vertices which belong to a clique

Symmetry elimination : example I

We eliminate the horizontal symmetry by adding the constraint $x_{1} \leq 2$

We eliminate the vertical symmetry by adding the constraint $x_{2} \leq x_{3}$

Lignes directrices

Symmetry

Problems modelling
Frequency assignment
Car sequencing
Sports scheduling
Timetabling
«Job-shop"
Cutting

Elimination of several symmetries : a danger

By adding $x_{2} \leq x_{3}$, we eliminate this solution

By adding $x_{1} \leq 2$, we eliminate this solution

But there are only 2 solutions!

Lignes directrices

Symmetry

Problems modelling
Frequency assignment
Car sequencing
Sports scheduling
Timetabling
«Job-shop "
Cutting

Frequency assignment : problem definition

- There are 5 transmitters and 7 possible transmission frequencies.
- We need to assign frequencies to transmitters so that parasites between nearby transmitters are avoided.
- All assigned frequencies should be different

Frequency assignment : model

- Variables : F_{i} — frequency assigned to transmitter i.
- Domains : $D_{F_{i}}=\{1, \ldots, 7\}$, $\forall i$.
- Constraints :
- $\left|F_{i}-F_{j}\right| \geq d_{i j}$ ou $F_{i}-F_{j} \geq d_{i j} \vee F_{i}-F_{j} \leq-d_{i j}, \forall(i, j)$;
- all-different $\left(F_{1}, \ldots, F_{5}\right)$.

Lignes directrices

Symmetry

Problems modelling
Frequency assignment

Car sequencing

Sports scheduling
Timetabling
«Job-shop "
Cutting

Car sequencing : definition

Source : Alan M. Frisch

Car sequencing : model

- Data:
- n options, m vehicle types.
- d_{i} vehicles of type i should be produced, $1 \leq i \leq m$, $T=\sum_{i=1}^{m} d_{i}$.
- $a_{i j}=1$ if type i requires option j, otherwise $a_{i j}=0$, $1 \leq i \leq m, 1 \leq j \leq n$.
- For each subsequence of q_{j} vehicles, option j can be installed on at most $p_{j}, 1 \leq j \leq n$.
- Variables:
- X_{k} - number of vehicle type in position k in the sequence, $1 \leq k \leq T$.
- $O_{k j}=1$ if the vehicle in position k requires option j, otherwise $O_{k j}=0,1 \leq k \leq T, 1 \leq j \leq n$.
- Domains:
- $D_{X_{k}}=\{1, \ldots, m\}, \forall k$.
- $D_{O_{k j}}=\{0,1\}, \forall k, j$.

Global sequencing constraint

The last two constrains can be replaces by the global sequencing constraint (Source : Puget et Régin) :

$$
\operatorname{gsc}\left(X_{1}, \ldots, X_{n}, \mathcal{V}, q, p\right)
$$

This constraints requires that in each sub-sequence of X of size q the total number of taken values in \mathcal{V} should be at most p.
For our problem :

$$
\operatorname{gsc}\left(\left\{X_{k}\right\}_{\forall k},\{i\}_{a_{i j}=1}, q_{j}, p_{j}\right), \quad 1 \leq j \leq n
$$

Lignes directrices

Symmetry

Problems modelling

Frequency assignment
Car sequencing

Sports scheduling

Timetabling
« Job-shop"
Cutting

Sports scheduling : definition

- n teams, $n-1$ weeks, $\frac{n}{2}$ periods.
- Each pair of teams plays exactly one time.
- Each team plays one match per week.
- Each team plays at most two times in each period.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

Source : Jean-Charles Régin

Sports scheduling: variables

- For each cell, 2 variables represent the playing teams :

$$
\begin{aligned}
& T_{p w}^{h} \text { et } T_{p w}^{a}, \quad p \in\left[1, \ldots, \frac{n}{2}\right], w \in[1, \ldots, n-1] \\
& D\left(T_{p w}^{h}\right)=D\left(T_{p w}^{a}\right)=\{0, \ldots, n-1\}, \quad T_{p w}^{h}<T_{p w}^{a}, \forall p, w .
\end{aligned}
$$

- For each cell, one variable represents the match :
$M_{p w}, \quad p \in\left[1, \ldots, \frac{n}{2}\right], w \in[1, \ldots, n-1]$.
$D\left(M_{p w}\right)=\left\{1, \ldots, \frac{n(n-1)}{2}\right\}, \quad M_{p w}=n \cdot T_{p w}^{h}+T_{p w}^{a}, \forall p, w$.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	M11	M12	M13	M14	M15	M16	M17
Period 2	M21	M22	M23	M24	M25	M26	M27
Period 3	M31	M32	M33	M34	M35	M36	M37
Period 4	M41	M42	M43	M44	M45	M46	M47

Sports scheduling : constraints

- all-different $\left(\left\{M_{p w}\right\}_{1 \leq p \leq n / 2,1 \leq w \leq n-1}\right)$;
- all-different $\left(\left\{T_{p w}^{h}, T_{p w}^{a}\right\}_{1 \leq p \leq n / 2}\right), w \in[1, \ldots, n]$;
- $\operatorname{gcc}\left(\left\{T_{p w}^{h}, T_{p w}^{a}\right\}_{1 \leq w \leq n-1},\{k, 2,2\}_{0 \leq k \leq n-1}\right), p \in\left[1, \ldots, \frac{n}{2}\right]$.
- implicit constraints;
- symmetry (very important) : elimination of permutations.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Dummy
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4	5 vs 6
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6	2 vs 4
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7	1 vs 3
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3	0 vs 7

Sports scheduling : results

Lignes directrices

Using Constraint Programming, we can find a scheduling for 40 teams in 6 hours - real-life size!

Today, scheduling for Major League Baseball (US) with hundrends of constraints is produced by Operations Research (MIP, CP, heuristics) Source : Michael A. Trick

Timetabling : definition

- 4 employees, 7 -days week.
- 3 periods of work each day :
day (D , difficulty 1.0), evening ($\mathrm{E}, 0.8$), night ($\mathrm{N}, 0.5$).
- In each period, exactly one employee should be present \Rightarrow each day 3 employees work, and one has a day-off.
- The total difficulty should not exceed ≥ 3.0.

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
M. Green	J						
M. Blue	S						
M. Red	N						
M. Brown	-						

Symmetry

Problems modelling
Frequency assignment
Car sequencing
Sports scheduling
Timetabling
«Job-shop "
Cutting

Timetabling : modeling

- Variables: Job $_{i j}, 1 \leq i \leq 4,1 \leq j \leq 7$, Charge $_{i j}, 1 \leq i \leq 4,1 \leq j \leq 7$.
- Domains: $D_{J_{o b} b_{i j}}=\{\mathrm{D}, \mathrm{E}, \mathrm{N},-\}, \forall i, j$.
- Constraints :
- all-different(Job.j), $\forall j$.
- element(Charge $\left.i_{i,},\{1.0,0.8,0.5,0\}, J_{o b}^{i j}\right), \forall i, j$.
- $\sum_{j=1}^{7}$ Charge $_{i j} \geq 3.0, \forall i$.

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
M. Green M. Blue M. Red	D	-	D	-	D	-	D
	-	N	N	N	N	N	N
	N	D	-	D	E	D	-
M. Brown	E	E	E	E	-	E	E

Timetabling : series length

- Additional constraint : the length of a series should be inside an interval.
- Modeling :
stretch $\left(\right.$ Job $\left._{i} .,\{2,1,1,1\},\{4,4,4,7\}\right)$.

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
M. Green	D	D	-	N	E	D	D
M. Blue	N	N	N	-	N	N	N
M. Red	-	-	D	D	D	-	-
M. Brown	E	E	E	E	-	E	E

Finite automaton for our problem

Timetabling : constraint Pattern

- Additional constraint :
- No period change without a day-off.
- Forward rotation : D... E... N... D...
- Modelling : pattern(Job $\left.{ }_{i}, \mathcal{A}\right), \forall i$.

These constraints are satisfied if every sequence (« word») $\left(J o b_{i 1}, \ldots, J o b_{i 7}\right)$ is satisfied by a finite automaton \mathcal{A}.

	Mon Tue		Wed	Thu	Fri Sat Sun		
M. Green	D	D	-	E	E	E	E
M. Blue	E	E	E	-	N	N	N
M. Red	N	N	N	N	-	D	D
M. Brown	-	-	D	D	D	-	-

Timetabling : a real-life solution

Abstract

S M T W T FS S M T W T ES S M TWTESS M T W T F S 603042 D D D D E - - D D D D - D D D D D E - - D D D D D 12310 D D - - D D D - D 511811 D D D - D D - D D - - D D D D - D D - D D - - D 60324 - - D D D - D D - D D D - - - D D - D D D - D D D 603095 E - E E E - - - - E E E - E E E - - - E - E 603230 - D D D D - D D D D - D D - D D D D - D D D - D D D 510723 D D D - - D - D D D - D D D D - D - - D D - - D $511104-\operatorname{RRR} R$ R - - R R R R R - - - E E - E E - - E E 34108 - D D D D - D D D D - - - - R R R R R D D - - D - 11866 - D - D D D E E - D - - - D - D D D E E - D - - 35022 - R R R R R D D - - - - - - - D - D D - D D 512287 E E E - D D E E - - - - E E E E - D - E E - E - E 512287 E E E - D D E E - - - - E E E E - D - E E - - E - E 56507 D D - D D D - D - - - D D D - D D D - - D - - - D 511066 - D D - - D D - - D - - - - - D D - - D D D 600955 D D - D D $\ldots \ldots$. . . . D D D D D $-\cdots \cdots$ 602576 D D - D D D $\cdots \cdots$. . . - D D D D D D $-\cdots \cdots$ 600315 - - T T - - T T - T - T T - - T - - T T T - - T T T 511865 - - - - T T - T T T T - - - - - - - R R R R R T

Lignes directrices

Symmetry

Problems modelling
Frequency assignment
Car sequencing
Sports scheduling
Timetabling
"Job-shop»
Cutting
Shop scheduling models problems where jobs consist of operations which require specific machines (ressources).

Application examples

- Assembly workshops.
- Conveyor belt production.
«Job-shop» scheduling : definition
- n jobs, each job J_{i} consists of a chain of n_{i} operations $\left(O_{i 1}, \ldots, O_{i, n_{i}}\right)$.
- m available machines.
- Each operation $O_{i j}$ has duration $p_{i j}$ and should be executed on machine $a_{i j} \in\{1, \ldots, m\}$.
- Aim : find a scheduling of length not exceeding T such that, on each machine, operations do not overlap.

«Job-shop» scheduling : modeling
- Variables : $S_{i j}$ - stating time of execution of operation $O_{i j}$, $1 \leq i \leq n, 1 \leq j \leq n_{i}$.
- Domains : $D_{S_{i j}}=\left[0, T-p_{i j}\right], \forall i, j$.
- Constraints :
- precedence: $S_{i j}+p_{i j} \leq S_{i, j+1}, \forall i, 1 \leq j \leq n_{i}-1$;
- non-overlapping:
disjunctive $\left(\left\{S_{i j}\right\}_{a_{j}}=k,\left\{p_{i j}\right\}_{a_{j}=k}\right), 1 \leq k \leq m$.

Lignes directrices
In the company « Doeverything », some products are labeled befor being packaged, while for others the label is placed on the packaging. How long does it take to prepare the following batches?

lot	A	B	C	D	E	F
packaging duration	10	16	14	4	8	4
labeling duration	12	10	12	0	6	8
packaging before labeling?	oui	oui	oui		no	no

Cutting problem : definition

One needs to cut a rectangular piece (wooden, steel,...) in small pieces.
Rotations are not allowed.

Cutting problem : modelling

- Variables: $X_{i}, Y_{i}-x$ and y coordinates of the lower left corner of piece i.
- Domains : $D_{X_{i}}=\left[0, W-w_{i}\right], D_{Y_{i}}=\left[0, H-h_{i}\right], \forall i$.
- Constraints for each pair (i, j) of pieces :

$$
\begin{array}{ccc}
X_{i}+w_{i} \leq X_{j} & \bigvee & X_{i} \geq X_{j}+w_{j} \\
i \text { is on the left of } j & \begin{array}{c}
\text { or } \\
i \text { is on the right of } j
\end{array} & \begin{array}{c}
\text { or } \\
Y_{i}+h_{i} \leq Y_{j} \\
i \text { is below } j
\end{array} \\
\bigvee \begin{array}{l}
\text { or }
\end{array} & Y_{i} \geq Y_{j}+h_{j}
\end{array}
$$

- Constraints are very «loose» and local!

Cutting problem : redundant constraints

- We need a « global point of view » on our problem.
- We add some more constraints :
- cumulative $\left(\left\{X_{i}\right\}_{\forall i},\left\{w_{i}\right\}_{\forall i},\left\{h_{i}\right\}_{\forall i}, H\right)$;
- cumulative $\left(\left\{Y_{i}\right\}_{\forall i},\left\{h_{i}\right\}_{\forall i},\left\{w_{i}\right\}_{\forall i}, W\right)$.
- These constraints are redundant but useful!
- Results (Source: Pedro Barahona) :

Fundamentals of «efficient» modelling

- Try to use more global constraints and less local constraints (there is Global Constraint Catalog on the Internet).
- Determine and eliminate all symmetries you can.
- Use redundant constraints (but useful).
- Try different models.
- Try different heuristics for instantiation of variables and values.

