Constraint Programming

Lecture 5. Symmetry. Real-life problems modeling

Ruslan Sadykov

INRIA Bordeaux—Sud-Ouest

3 February 2022

Lignes directrices

Symmetry

Problems modelling

Frequency assignment Car sequencing Sports scheduling Timetabling

« Job-shop »

Cutting

Lignes directrices

Symmetry

Problems modelling

Frequency assignment Car sequencing Sports scheduling Timetabling « Job-shop »

Cuttina

Symmetry in CSPs

Variants of symmetry

- Variables are « interchangeable »
- Values are « interchangeable »
- Symmetry of pairs « variable-value »

Symmetry consequences

- Enumeration (search) tree contains several equivalent sub-trees
- ▶ If one of such sub-trees does not contain a solution, the equivalent sub-trees does not contain it neither!
- If we do not recognise equivalent sub-trees, useless search will be performed

Symmetry in CSPs

Variants of symmetry

- Variables are « interchangeable »
- Values are « interchangeable »
- Symmetry of pairs « variable-value »

Symmetry consequences

- Enumeration (search) tree contains several equivalent sub-trees
- ▶ If one of such sub-trees does not contain a solution, the equivalent sub-trees does not contain it neither!
- If we do not recognise equivalent sub-trees, useless search will be performed

Symmetry of variables : an example

Symmetry of variables : an example

Symmetry of values: 3-colouring example

A solution

 $X_1 = 1$

 $v_2 - 2$

 $x_4 - 1$

 $X_4 = 1$

 $x_5 = 3$

Mapping

ightarrow

 \rightarrow

 \rightarrow

Another solution

 $X_1 = 1$

 $x_2 = 2$

 $x_3 = 2$

 $X_4 = 1$

 $x_5 = 3$

Symmetry of values : 3-colouring example

Mapping

- \rightarrow
- \rightarrow

Another solution

 $x_1 = 1$

 $x_2 = 2$

 $x_3 = 2$

 $x_4 = 1$

 $x_5 = 3$

Symmetry of values : 3-colouring example

Mapping

Another solution

 $x_1 = 1$ • $x_2 = 2$ •

 $x_3 = 2$

 $x_4 = 1$

 $x_5 = 3$

Symmetry of variables: 4-queens example

Partial assignment

$$x_1 = 1$$

Symmetric assignement

$$x_1 = 4$$

Symmetry of variables: 4-queens example

horizontal symmetry

Partial assignment

$$x_1 = 1$$

Symmetric assignement

$$x_1 = 4$$

Symmetry: formal definition

For a CSP $\langle \mathbf{X}, \mathbf{D}, \mathbf{C} \rangle$, with

- **X** set of variables $\{x_1, \ldots, x_n\}$
- ▶ **D** set of domaines $\{D_{x_1}, \ldots, D_{x_n}\}$
- ▶ Let \mathcal{D} be the union of domains $\mathcal{D} = \bigcup_{x \in \mathbf{X}} D_x$ (set of values)

A symmetry of P

Is a permutation of the set $\mathbf{X} \times \mathcal{D}$ which preserves the set of solutions of P

Particular cases

- ▶ Variables symmetry $\sigma(x, v) = (\sigma'(x), v)$
- ▶ Values symmetry $\sigma(x, v) = (x, \sigma'(v))$

Variables-values symmetry: 4-queens example

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	
1	1	2	3	4	
2	5	6	7	8	
3	9	10	11	12	
4	13	14	15	16	

Identité x_1 x_2 x_3 x_4 1 13 9 5 1 2 14 10 6 2 3 15 11 7 3 4 16 12 8 4

Rotation 90°

Symmetry elimination (decreasing)

- Reformulate the model
 - Example : variables which take sets as values (packing)
- Add constraints to the model
 - At least one of symmetric solutions (assignments) should satisfy them
- Eliminating the symmetry during the search
 - Recognise and ignore dynamically the symmetric sub-trees during the search

Symmetry elimination: example I

We fix the colors of vertices which belong to a clique

Symmetry elimination: example I

We eliminate the horizontal symmetry by adding the constraint $x_1 \le 2$

We eliminate the vertical symmetry by adding the constraint $x_2 \le x_3$

Elimination of several symmetries : a danger

By adding $x_2 \le x_3$, we eliminate this solution

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
1		Q		
2				Ю
3	Q			
4			Ø	

By adding $x_1 \le 2$, we eliminate this solution

Elimination of several symmetries : a danger

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
1			Q	
2	Q			
3				Q
4		Q		

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
1		Q		
2				Q
3	Q			
4			Q	

By adding $x_2 \le x_3$, we eliminate this solution

By adding $x_1 \le 2$, we eliminate this solution

But there are only 2 solutions!

Lignes directrices

Symmetry

Problems modelling

Frequency assignment Car sequencing Sports scheduling Timetabling

« Job-shop »

Cutting

Lignes directrices

Symmetry

Problems modelling Frequency assignment

Car sequencing Sports scheduling Timetabling « Job-shop » Cutting

Frequency assignment: problem definition

- There are 5 transmitters and 7 possible transmission frequencies.
- We need to assign frequencies to transmitters so that parasites between nearby transmitters are avoided.
- All assigned frequencies should be different

Frequency assignment: model

- ▶ Variables : F_i frequency assigned to transmitter i.
- ▶ Domains : $D_{F_i} = \{1, ..., 7\}, \forall i$.
- Constraints:
 - $| F_i F_j | \ge d_{ij}$ ou $F_i F_j \ge d_{ij} \lor F_i F_j \le -d_{ij}, \forall (i,j);$
 - ightharpoonup all-different (F_1,\ldots,F_5) .

Frequency assignment: additional constraints

- ► There are low frequencies or VHF (1,2,3) and high frequencies or UHF (4,5,6,7).
- Exactly 2 low frequencies and 3 high frequencies should be assigned.
- ▶ Additional variables : $S_i = 0$ if low and 1 if high.
- Additional constraints :
 - element(S_i , {0,0,0,1,1,1,1}, F_i), $\forall i$.
 - ightharpoonup gcc($\{S_i\}_{\forall i}, \{0,1\}, 2, 3, 2, 3$).

Lignes directrices

Symmetry

Problems modelling

Frequency assignment

Car sequencing

Sports scheduling

Timetabling

« Job-shop »

Cutting

Car sequencing : definition

Source: Alan M. Frisch

Car sequencing: model

- Data :
 - n options, m vehicle types.
 - ▶ d_i vehicles of type i should be produced, $1 \le i \le m$, $T = \sum_{i=1}^{m} d_i$.
 - ▶ $a_{ij} = 1$ if type i requires option j, otherwise $a_{ij} = 0$, $1 \le i \le m$, $1 \le j \le n$.
 - For each subsequence of q_j vehicles, option j can be installed on at most p_j , $1 \le j \le n$.
- ► Variables:
 - ► X_k number of vehicle type in position k in the sequence, 1 < k < T.
 - ▶ $O_{kj} = 1$ if the vehicle in position k requires option j, otherwise $O_{kj} = 0$, $1 \le k \le T$, $1 \le j \le n$.
- Domains:
 - ▶ $D_{X_k} = \{1, ..., m\}, \forall k.$
 - $D_{O_{ki}} = \{0, 1\}, \forall k, j.$

Car sequencing: model

- Data :
 - n options, m vehicle types.
 - ▶ d_i vehicles of type i should be produced, $1 \le i \le m$, $T = \sum_{i=1}^{m} d_i$.
 - ▶ $a_{ij} = 1$ if type i requires option j, otherwise $a_{ij} = 0$, $1 \le i \le m$, $1 \le j \le n$.
 - For each subsequence of q_j vehicles, option j can be installed on at most p_j , $1 \le j \le n$.
- Variables:
 - ▶ X_k number of vehicle type in position k in the sequence, $1 \le k \le T$.
 - ▶ $O_{kj} = 1$ if the vehicle in position k requires option j, otherwise $O_{kj} = 0$, $1 \le k \le T$, $1 \le j \le n$.
- Domains:

 - $D_{O_{ki}} = \{0, 1\}, \forall k, j.$

Car sequencing: model

- Data :
 - n options, m vehicle types.
 - ▶ d_i vehicles of type i should be produced, $1 \le i \le m$, $T = \sum_{i=1}^{m} d_i$.
 - ▶ $a_{ij} = 1$ if type i requires option j, otherwise $a_{ij} = 0$, $1 \le i \le m$, $1 \le j \le n$.
 - For each subsequence of q_j vehicles, option j can be installed on at most p_j , $1 \le j \le n$.
- Variables :
 - ▶ X_k number of vehicle type in position k in the sequence, $1 \le k \le T$.
 - ▶ $O_{kj} = 1$ if the vehicle in position k requires option j, otherwise $O_{kj} = 0$, $1 \le k \le T$, $1 \le j \le n$.
- Domains:
 - $D_{X_k} = \{1,\ldots,m\}, \forall k.$
 - ► $D_{O_{kj}} = \{0, 1\}, \forall k, j.$

Car sequencing : constraints

The demand for each vehicle type should be satisfied :

$$\gcd\left(\{X_k\}_{\forall k},\{1,\ldots,m\},\{d_i\}_{\forall i},\{d_i\}_{\forall i}\right).$$

► Link between variables X and O:

element
$$(O_{kj}, \{a_{ij}\}_{\forall i}, X_k), \forall k, j.$$

Sequence constraints :

$$\sum_{k'=k}^{k+q_j} O_{k'j} \leq p_j, \quad \forall j, \quad 1 \leq k \leq T-q_j+1.$$

Global sequencing constraint

The last two constrains can be replaces by the global sequencing constraint (Source: Puget et Régin):

$$gsc(X_1,\ldots,X_n,\mathcal{V},q,p)$$

This constraints requires that in each sub-sequence of X of size q the total number of taken values in \mathcal{V} should be at most p.

For our problem:

$$\mathrm{gsc}\left(\{X_k\}_{\forall k},\{i\}_{a_{ij}=1},q_j,p_j\right),\quad 1\leq j\leq n.$$

Global sequencing constraint

The last two constrains can be replaces by the global sequencing constraint (Source: Puget et Régin):

$$gsc(X_1,\ldots,X_n,\mathcal{V},q,p)$$

This constraints requires that in each sub-sequence of X of size q the total number of taken values in \mathcal{V} should be at most p.

For our problem:

$$\gcd\left(\{X_k\}_{\forall k},\{i\}_{a_{ij}=1},q_j,p_j\right),\quad 1\leq j\leq n.$$

Lignes directrices

Symmetry

Problems modelling

Frequency assignment

Car sequencing

Sports scheduling

Timetabling « Job-shop »

Cutting

Sports scheduling : definition

- ▶ n teams, n-1 weeks, $\frac{n}{2}$ periods.
- Each pair of teams plays exactly one time.
- Each team plays one match per week.
- Each team plays at most two times in each period.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

Source : Jean-Charles Régin

Sports scheduling: variables

For each cell, 2 variables represent the playing teams :

$$T^h_{pw}$$
 et T^a_{pw} , $p \in [1, ..., \frac{n}{2}], w \in [1, ..., n-1].$
 $D(T^h_{pw}) = D(T^a_{pw}) = \{0, ..., n-1\}, T^h_{pw} < T^a_{pw}, \forall p, w.$

For each cell, one variable represents the match:

$$M_{pw}, p \in [1, ..., \frac{n}{2}], w \in [1, ..., n-1].$$

 $D(M_{pw}) = \{1, ..., \frac{n(n-1)}{2}\}, M_{pw} = n \cdot T_{pw}^h + T_{pw}^a, \forall p, w$

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	T11h vs	T12h vs	T13h vs	T14h vs	T15h vs	T16h vs	T17h vs
	T11a	T12a	T13a	T14a	T15a	T16a	T17a
Period 2	T21h vs	T22h vs	T23h vs	T24h vs	T25h vs	T26h vs	T27h vs
	T21a	T22a	T23a	T24a	T25a	T26a	T27a
Period 3	T31h vs	T32h vs	T33h vs	T34h vs	T35h vs	T36h vs	T37h vs
	T31a	T32a	T33a	T34a	T35a	T36a	T37a
Period 4	T41h vs	T42h vs	T43h vs	T44h vs	T45h vs	T46h vs	T47h vs
	T41a	T42a	T43a	T44a	T45a	T46a	T47a

Sports scheduling: variables

For each cell, 2 variables represent the playing teams :

$$T^h_{pw}$$
 et T^a_{pw} , $p \in [1, ..., \frac{n}{2}], w \in [1, ..., n-1].$
 $D(T^h_{pw}) = D(T^a_{pw}) = \{0, ..., n-1\}, T^h_{pw} < T^a_{pw}, \forall p, w.$

For each cell, one variable represents the match :

$$M_{pw}, p \in [1, ..., \frac{n}{2}], w \in [1, ..., n-1].$$

 $D(M_{pw}) = \{1, ..., \frac{n(n-1)}{2}\}, M_{pw} = n \cdot T_{pw}^h + T_{pw}^a, \forall p, w.$

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	M11	M12	M13	M14	M15	M16	M17
Period 2	M21	M22	M23	M24	M25	M26	M27
Period 3	M31	M32	M33	M34	M35	M36	M37
Period 4	M41	M42	M43	M44	M45	M46	M47

- ▶ all-different($\{M_{pw}\}_{1 \le p \le n/2, 1 \le w \le n-1}$);
- ▶ all-different($\{T_{pw}^h, T_{pw}^a\}_{1 \le p \le n/2}$), $w \in [1, ..., n-1]$;
- ightharpoonup gcc($\{T^h_{pw}, T^a_{pw}\}_{1 \leq w \leq n-1}, \{k, 0, 2\}_{0 \leq k \leq n-1}, p \in [1, \dots, \frac{n}{2}].$
- implicit constraints;
- symmetry (very important) : elimination of permutations.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	M11	M12	M13	M14	M15	M16	M17
Period 2	M21	M22	M23	M24	M25	M26	M27
Period 3	M31	M32	M33	M34	M35	M36	M37
Period 4	M41	M42	M43	M44	M45	M46	M47

- ▶ all-different($\{M_{pw}\}_{1 \le p \le n/2, 1 \le w \le n-1}$);
- ▶ all-different($\{T^h_{pw}, T^a_{pw}\}_{1 \le p \le n/2}$), $w \in [1, ..., n-1]$;
- ▶ $gcc({T_{pw}^h, T_{pw}^a})_{1 \le w \le n-1}, {k, 0, 2}_{0 \le k \le n-1}), p \in [1, ..., \frac{n}{2}].$
- implicit constraints;
- symmetry (very important) : elimination of permutations.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	T11h vs	T12h vs	T13h vs	T14h vs	T15h vs	T16h vs	T17h vs
	T11a	T12a	T13a	T14a	T15a	T16a	T17a
Period 2	T21h vs	T22h vs	T23h vs	T24h vs	T25h vs	T26h vs	T27h vs
	T21a	T22a	T23a	T24a	T25a	T26a	T27a
Period 3	T31h vs	T32h vs	T33h vs	T34h vs	T35h vs	T36h vs	T37h vs
	T31a	T32a	T33a	T34a	T35a	T36a	T37a
Period 4	T41h vs	T42h vs	T43h vs	T44h vs	T45h vs	T46h vs	T47h vs
	T41a	T42a	T43a	T44a	T45a	T46a	T47a

- ▶ all-different($\{M_{pw}\}_{1 \le p \le n/2, 1 \le w \le n-1}$);
- ▶ all-different($\{T_{pw}^h, T_{pw}^a\}_{1 \le p \le n/2}$), $w \in [1, ..., n-1]$;
- ightharpoonup gcc($\{T^h_{pw}, T^a_{pw}\}_{1 \leq w \leq n-1}, \{k, 0, 2\}_{0 \leq k \leq n-1}, p \in [1, \dots, \frac{n}{2}].$
- implicit constraints;
- symmetry (very important) : elimination of permutations.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	T11h vs	T12h vs	T13h vs	T14h vs	T15h vs	T16h vs	T17h vs
	T11a	T12a	T13a	T14a	T15a	T16a	T17a
Period 2	T21h vs	T22h vs	T23h vs	T24h vs	T25h vs	T26h vs	T27h vs
	T21a	T22a	T23a	T24a	T25a	T26a	T27a
Period 3	T31h vs	T32h vs	T33h vs	T34h vs	T35h vs	T36h vs	T37h vs
	T31a	T32a	T33a	T34a	T35a	T36a	T37a
Period 4	T41h vs	T42h vs	T43h vs	T44h vs	T45h vs	T46h vs	T47h vs
	T41a	T42a	T43a	T44a	T45a	T46a	T47a

- ▶ all-different($\{M_{pw}\}_{1 \le p \le n/2, 1 \le w \le n-1}$);
- ▶ all-different($\{T^h_{pw}, T^a_{pw}\}_{1 \le p \le n/2}$), $w \in [1, ..., n]$;
- ightharpoonup gcc($\{T^h_{pw}, T^a_{pw}\}_{1 \leq w \leq n-1}, \{k, \frac{2}{2}, 2\}_{0 \leq k \leq n-1}), p \in [1, \dots, \frac{n}{2}].$
- implicit constraints;
- symmetry (very important) : elimination of permutations.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Dummy
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4	5 vs 6
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6	2 vs 4
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7	1 vs 3
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3	0 vs 7

Sports scheduling : results

Using Constraint Programming, we can find a scheduling for 40 teams in 6 hours — real-life size!

Today, scheduling for Major League Baseball (US) with hundrends of constraints is produced by Operations Research (MIP, CP, heuristics) Source: Michael A. Trick

Sports scheduling : results

Using Constraint Programming, we can find a scheduling for 40 teams in 6 hours — real-life size!

Today, scheduling for Major League Baseball (US) with hundrends of constraints is produced by Operations Research (MIP, CP, heuristics) Source: Michael A. Trick

Lignes directrices

Symmetry

Problems modelling

Frequency assignment Car sequencing Sports scheduling

Timetabling

« Job-shop » Cuttina

Timetabling: definition

- 4 employees, 7-days week.
- 3 periods of work each day: day (D, difficulty 1.0), evening (E, 0.8), night (N, 0.5).
- In each period, exactly one employee should be present ⇒ each day 3 employees work, and one has a day-off.
- ► The total difficulty should not exceed ≥ 3.0.

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
M. Green	J						
M. Blue	S						
M. Red	Ν						
M. Brown	_						

Source : Gilles Pesant

Timetabling: modeling

- ▶ Variables : Job_{ij} , $1 \le i \le 4$, $1 \le j \le 7$, $Charge_{ij}$, $1 \le i \le 4$, $1 \le j \le 7$.
- ▶ Domains : $D_{Job_{ii}} = \{D, E, N, -\}, \forall i, j$.
- Constraints:
 - ▶ all-different($Job_{.i}$), $\forall j$.
 - element($Charge_{ij}$, $\{1.0, 0.8, 0.5, 0\}$, Job_{ij}), $\forall i, j$.
 - ▶ $\sum_{j=1}^{7} Charge_{ij} \geq 3.0, \forall i.$

Timetabling: modeling

- ▶ Variables : Job_{ij} , $1 \le i \le 4$, $1 \le j \le 7$, $Charge_{ij}$, $1 \le i \le 4$, $1 \le j \le 7$.
- ▶ Domains : $D_{Job_{ij}} = \{D, E, N, -\}, \forall i, j.$
- Constraints:
 - ▶ all-different(Job_{ij}), $\forall j$.
 - element($Charge_{ij}$, $\{1.0, 0.8, 0.5, 0\}$, Job_{ij}), $\forall i, j$.
 - ▶ $\sum_{j=1}^{7} Charge_{ij} \geq 3.0, \forall i.$

M. Green
M. Blue
M. Red
M Brown

Mon	Tue	Wed	Thu	Fri	Sat	Sun
D	_	D	_	D	_	D
_	N	Ν	Ν	N	N	Ν
Ν	D	_	D	Е	D	_
Е	E	Е	Е	_	Е	Е

Timetabling: series length

- Additional constraint : the length of a series should be inside an interval.
- ► Modeling: stretch(Job_i ., {2,1,1,1}, {4,4,4,7}).

M. Green M. Blue M. Red M. Brown

Mon	Tue	Wed	Thu	Fri	Sat	
D		D		D		D
	N	Ν	N	Ν	Ν	Ν
Ν	D		D	Е	D	
Е	Е	Е	Е		Е	Е

Timetabling: series length

- Additional constraint : the length of a series should be inside an interval.
- Modeling: stretch(Job_i., {2,1,1,1}, {4,4,4,7}).

	Mon		Wed		Fri		
	D		D		D		D
M. Blue		N	N	N	Ν	N	Ν
M. Red	Ν	D		D	Е	D	
	Е	Е	Е	Е		Е	Е

Timetabling: series length

- Additional constraint : the length of a series should be inside an interval.
- Modeling: stretch(Job_i., {2, 1, 1, 1}, {4, 4, 4, 7}).

	Mon	Tue	Wed	Thu	Fri	Sat	
M. Green	D	D	_	N	Е	D	
M. Blue	Ν	N	N	_	N	N	
M. Red	_	_	D	D	D	_	
M. Brown	Ш	E	E	E	_	E	

Sun

Timetabling: constraint Pattern

- Additional constraint :
 - No period change without a day-off.
 - Forward rotation : D... E... N... D...
- Modelling: pattern($Job_{i.}$, A), $\forall i.$ These constraints are satisfied if every sequence (« word ») (Job_{i1} , ..., Job_{i7}) is satisfied by a finite automaton A.

	Mon	Tue	Wed	Thu	Fri	Sat	
	D	D		N	Е	D	D
M. Blue	N	Ν	N		Ν	Ν	Ν
M. Red			D	D	D		
	Е	Е	Е	Е		Е	Е

Timetabling : constraint Pattern

- Additional constraint :
 - No period change without a day-off.
 - Forward rotation : D... E... N... D...
- ▶ Modelling : pattern($Job_{i.}$, A), $\forall i$. These constraints are satisfied if every sequence (« word ») (Job_{i1} , ..., Job_{i7}) is satisfied by a finite automaton A.

	Mon	Tue	Wed	Thu	Fri	Sat	
	D	D		N	Е	D	D
M. Blue	Ν	N	N		Ν	Ν	Ν
M. Red			D	D	D		
	Е	Е	Е	Е		Е	Е

Timetabling: constraint Pattern

- Additional constraint :
 - No period change without a day-off.
 - Forward rotation : D... E... N... D...
- ▶ Modelling : pattern($Job_{i.}$, A), $\forall i$. These constraints are satisfied if every sequence (« word ») (Job_{i1} , ..., Job_{i7}) is satisfied by a finite automaton A.

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
M. Green	D	D	_	Е	E	Е	Е
M. Blue	Е	Ε	Е	_	N	N	Ν
M. Red	Ν	Ν	Ν	N	_	D	D
M. Brown	_	_	D	D	D	_	_

Finite automaton for our problem

Timetabling: a real-life solution

```
SMTWTFSSMTWTFSSMTWTFS
                N N - - D - - - D -
                    D D - - - D D D D -
                       - - E E E - -
             D - D D D D - D D - - D D
510723 D D D - - D - - D D D - - D D D - - D - - D
                    R R R R R - - -
                    D D - - - - R R R R R D D
11866
                  E - - D - - - D -
                             EEE
             D D - - D - - - - D D D - D D - -
            -- D D - - - - D - - - - -
                             D D D -
```

Lignes directrices

Symmetry

Problems modelling

Frequency assignment
Car sequencing
Sports scheduling
Timetabling
« Job-shop »

Cutting

Shop scheduling

Shop scheduling models problems where jobs consist of operations which require specific machines (ressources).

Application examples

- Assembly workshops.
- Conveyor belt production.

Job-shop

- ▶ Operations of each job form a chain : $O_{i1} \rightarrow O_{i2} \rightarrow \cdots \rightarrow O_{in_i}$.
- ▶ Jobs follow their own sequences on machines.

Job-shop

- ▶ Operations of each job form a chain : $O_{i1} \rightarrow O_{i2} \rightarrow \cdots \rightarrow O_{in_i}$.
- ▶ Jobs follow their own sequences on machines.

« Job-shop » scheduling : definition

- ▶ n jobs, each job J_i consists of a chain of n_i operations $(O_{i1}, \ldots, O_{i,n_i})$.
- m available machines.
- Each operation O_{ij} has duration p_{ij} and should be executed on machine $a_{ii} \in \{1, ..., m\}$.
- ▶ Aim : find a scheduling of length not exceeding T such that, on each machine, operations do not overlap.

« Job-shop » scheduling : modeling

- ▶ Variables : S_{ij} stating time of execution of operation O_{ij} , $1 \le i \le n$, $1 \le j \le n_i$.
- ▶ Domains : $D_{S_{ii}} = [0, T p_{ij}], \forall i, j$.
- Constraints:
 - ▶ precedence : $S_{ij} + p_{ij} \le S_{i,j+1}$, $\forall i, 1 \le j \le n_i 1$;
 - ▶ non-overlapping: disjunctive $(\{S_{ij}\}_{a_{ij}=k}, \{p_{ij}\}_{a_{ij}=k}), 1 \le k \le m$.

Job-shop: example

In the company « Doeverything », some products are labeled befor being packaged, while for others the label is placed on the packaging. How long does it take to prepare the following batches?

lot	A	В	C	D	Ε	F
packaging duration	10	16	14	4	8	4
labeling duration		10	12	0	6	8
packaging before labeling?	oui	oui	oui		no	no

Source : François Vanderbeck

Lignes directrices

Symmetry

Problems modelling

Frequency assignment Car sequencing Sports scheduling Timetabling « Job-shop »

Cutting

Cutting problem: definition

One needs to cut a rectangular piece (wooden, steel,...) in small pieces.

Rotations are not allowed.

Cutting problem: modelling

- Variables : X_i, Y_i x and y coordinates of the lower left corner of piece i.
- ▶ Domains : $D_{X_i} = [0, W w_i], D_{Y_i} = [0, H h_i], \forall i$.
- Constraints for each pair (i, j) of pieces :

$$egin{array}{lll} X_i + w_i \leq X_j & ee & X_i \geq X_j + w_j & ee & \ & ext{i is on the left of } & ext{or} & i ext{is on the right of } & ext{or} & \ & Y_i + h_i \leq Y_j & ee & Y_i \geq Y_j + h_j & \ & & i ext{is below } & ext{or} & i ext{is above } & \ & & i ext{or} & \ & i ext{or} & i$$

Constraints are very « loose » and local!

Cutting problem: modelling

- Variables : X_i, Y_i x and y coordinates of the lower left corner of piece i.
- ▶ Domains : $D_{X_i} = [0, W w_i], D_{Y_i} = [0, H h_i], \forall i$.
- Constraints for each pair (i, j) of pieces :

$$egin{array}{lll} X_i + w_i \leq X_j & ee & X_i \geq X_j + w_j & ee & \ & ext{i is on the left of } & ext{or} & i ext{is on the right of } & ext{or} & \ & Y_i + h_i \leq Y_j & ee & Y_i \geq Y_j + h_j & \ & & i ext{is below } & ext{or} & i ext{is above } & \ & & i ext{or} & \ & i ext{or} & i$$

Constraints are very « loose » and local!

Cutting problem : redundant constraints

- We need a « global point of view » on our problem.
- We add some more constraints :
 - ightharpoonup cumulative($\{X_i\}_{\forall i}, \{w_i\}_{\forall i}, \{h_i\}_{\forall i}, H$);
 - ightharpoonup cumulative $(\{Y_i\}_{\forall i}, \{h_i\}_{\forall i}, \{w_i\}_{\forall i}, W)$.
- ► These constraints are redundant but useful!
- Results (Source : Pedro Barahona):

Without cumulative: 24 seconds.

With cumulative: 40 milliseconds.

Cutting problem : redundant constraints

- We need a « global point of view » on our problem.
- We add some more constraints :
 - ightharpoonup cumulative($\{X_i\}_{\forall i}, \{w_i\}_{\forall i}, \{h_i\}_{\forall i}, H$);
 - ightharpoonup cumulative $(\{Y_i\}_{\forall i}, \{h_i\}_{\forall i}, \{w_i\}_{\forall i}, W)$.
- These constraints are redundant but useful!
- ► Results (Source : Pedro Barahona):

Without cumulative: 24 seconds

With cumulative: 40 milliseconds.

Cutting problem: redundant constraints

- We need a « global point of view » on our problem.
- We add some more constraints :
 - ightharpoonup cumulative $(\{X_i\}_{\forall i}, \{w_i\}_{\forall i}, \{h_i\}_{\forall i}, H);$
 - ightharpoonup cumulative $(\{Y_i\}_{\forall i}, \{h_i\}_{\forall i}, \{w_i\}_{\forall i}, W)$.
- These constraints are redundant but useful!
- Results (Source : Pedro Barahona) :

Without cumulative: 24 seconds.

With cumulative: 40 milliseconds.

Cutting and placement problems : an application

- ➤ Try to use more global constraints and less local constraints (there is *Global Constraint Catalog* on the Internet).
- ▶ Determine and eliminate all symmetries you can.
- Use redundant constraints (but useful).
- ► Try different models.
- Try different heuristics for instantiation of variables and values.

- ➤ Try to use more global constraints and less local constraints (there is *Global Constraint Catalog* on the Internet).
- Determine and eliminate all symmetries you can.
- Use redundant constraints (but useful).
- ► Try different models.
- Try different heuristics for instantiation of variables and values.

- ➤ Try to use more global constraints and less local constraints (there is *Global Constraint Catalog* on the Internet).
- Determine and eliminate all symmetries you can.
- Use redundant constraints (but useful).
- ► Try different models.
- Try different heuristics for instantiation of variables and values.

- ➤ Try to use more global constraints and less local constraints (there is *Global Constraint Catalog* on the Internet).
- Determine and eliminate all symmetries you can.
- Use redundant constraints (but useful).
- Try different models.
- Try different heuristics for instantiation of variables and values.

- ➤ Try to use more global constraints and less local constraints (there is *Global Constraint Catalog* on the Internet).
- Determine and eliminate all symmetries you can.
- Use redundant constraints (but useful).
- Try different models.
- Try different heuristics for instantiation of variables and values.