
Optimization Software.
Heuristic Solvers for VRPs.

Introduction to Local Solver.

Ruslan Sadykov

INRIA Bordeaux—Sud-Ouest

28 October 2022



LocalSolver : an optimization solver

I Originally, a local search meta-heuristic solver
I Today, it can provide lower bounds in some cases
I A model-and-run solver

Setting up Python interface
1 pip install localsolver -i https ://pip.localsolver.com



LocalSolver : knapsack example

1 import localsolver
2 with localsolver.LocalSolver() as ls :
3 model = ls.model
4

5 # Decision variables x[i]
6 x = [model.bool() for i in range(nb_items)]
7

8 # Weight constraint
9 knapsack_weight = model.sum(x[i] * weights[i]

10 for i in range(nb_items))
11 model.constraint(knapsack_weight <= knapsack_bound)
12

13 # Maximize value
14 knapsack_value = model.sum(x[i] * values[i]
15 for i in range(nb_items))
16 model.maximize(knapsack_value)
17

18 model.close()
19 ls.param.time_limit = 20
20

21 ls.solve()

Full example : examples/knapsack/knapsack.py



LocalSolver : variables, constraints, objectives

Variables
Boolean, floating-point, integer, set, list

Constraints
Arithmetic, relational, logical, conditional, set related,
« element-like »

1 # These two formulations are equivalent
2 model.constraint(knapsackWeight <= 102)
3 weightCst = knaspackWeight <= 102
4 model.constraint(weightCst)

Objectives
Can be hierarchical

1 model.maximize(revenues)
2 model.minimize(resources)
3 model.maximize(desiderata)



Collection (list and set) variables
I Defined by an unique constant operand n
I A value of a set (or list) variable is an (ordered) collection of

pairwise different integers within domain [0,n − 1]
I A set of list do not necessarily contain all values in [0, n − 1]

Special operators
I count (number of elements in a collection)
I contains (a collection contains or not an element)
I disjoint (collections are disjoint or not)
I cover (collections cover all elements or not)
I partition (collections form a partition of all elems or not)
I at (element at a position of a list)
I indexOf (position of an element in a list, or −1)

Usage
Lists→ routing problems
Sets→ packing problems



Travelling Salesman Problem
1 model = ls.model
2

3 # A list variable : cities[i] is the index of the ith city in the
tour

4 cities = model.list(nb_cities)
5

6 # All cities must be visited
7 model.constraint(model.count(cities) == nb_cities)
8

9 # Create a LocalSolver array for the distance matrix in order to
be able to access it with "at" operators.

10 distance_array = model.array(distance_weight)
11

12 # Minimize the total distance
13 dist_selector = model.lambda_function(
14 lambda i : model.at(distance_array, cities[i-1], cities[i]))
15 obj = (model.sum(model.range(1, nb_cities), dist_selector)
16 + model.at(distance_array, cities[nb_cities-1], cities[0]))
17 model.minimize(obj)
18

19 model.close()
20 ls.param.time_limit = 5
21 ls.solve()

Full example : examples/tsp/tsp.py



Capacitated Vehicle Routing Problem

Model : docs/exampletour/vrp.html
Full example : examples/cvrp/cvrp.py



Capacitated Vehicle Routing Problem with Time
Windows

Model : docs/exampletour/vrptw.html
Full example : examples/cvrptw/cvrptw.py



Multi-Depot Vehicle Routing Problem
(Location-Routing)

Model :
docs/exampletour/location-routing-problem-lrp.html
Full example : examples/location_routing_problem/
location_routing_problem.py


