Optimization Software. Heuristic Solvers for VRPs. Introduction to OR-Tools.

Ruslan Sadykov

INRIA Bordeaux—Sud-Ouest

17 October 2022

OR-Tools : open-source solvers for combinatorial optimization

- Linear Programming Solver
- A wrapper for Mixed-Integer Linear Programming Solvers
- ► (Original) Constraint Programming Solver
- CP-SAT Solver (discrete domains)
- Solver for Scheduling Problems (based on CP solvers)
- Solver for Vehicle Routing Problems (based on the original CP solver)

OR-Tools : open-source solvers for combinatorial optimization

- Linear Programming Solver
- ▶ A wrapper for Mixed-Integer Linear Programming Solvers
- (Original) Constraint Programming Solver
- CP-SAT Solver (discrete domains)
- Solver for Scheduling Problems (based on CP solvers)
- Solver for Vehicle Routing Problems (based on the original CP solver)

OR-Tools: Installation and running Jupyter Notebooks

First, create a new folder and go there. Then

```
python3 -m pip install --upgrade --user ortools
git clone https://github.com/google/or-tools.git or-tools
cd or-tools/examples/notebook
jupyter notebook
```

OR-Tools: Constraint Programming Example

```
1 from ortools.constraint solver import pywrapcp
2 solver = pywrapcp.Solver('CPSimple')
3 \text{ num vals} = 3
4 x = solver.IntVar(0, num vals - 1, 'x')
5 y = solver.IntVar(0, num_vals - 1, 'y')
6 z = solver.IntVar(0, num vals - 1, 'z')
7 solver.Add(x != y)
8 decision builder = solver.Phase([x, y, z],
9
                                    solver.CHOOSE FIRST UNBOUND,
                                    solver.ASSIGN MIN VALUE)
11 status = solver.Solve(model)
12 solution = 'Solution :\n'
13 for var in [x, y, z] :
      solution += ' {} = {}'.format(var.Name(), var.Value())
14
15 print (solution)
```

See Notebook

constraint_solver/simple_cp_program.ipynb

OR-Tools: Other Constraint Programming Examples

- ▶ Notebook constraint_solver/cp_is_fun_cp.ipynb
- ▶ Notebook constraint_solver/nqueens_cp.ipynb

OR-Tools : Simple VRP example

Guide:

developers.google.com/optimization/routing/vrp
Notebook:constraint_solver/vrp.ipynb

OR-Tools : CVRP example (+ Heterogeneous Fleet)

Guide:

developers.google.com/optimization/routing/cvrp
Notebook:constraint_solver/cvrp.ipynb

OR-Tools: VRP layer (I)

Two sets of indices

- Nodes (a special node is depot)
- Vehicles

Path variables

- next(i) immediate successor of node i
- vehicle(i) vehicle visiting node i
- active(i) node i is visited or not

Relations between path variables

- ▶ $active(i) = 0 \Leftrightarrow next(i) = i \Leftrightarrow vehicle(i) = -1$
- $ightharpoonup next(i) = j \Rightarrow vehicle(i) = vehicle(j)$

OR-Tools: VRP layer (II)

Dimension variables

- cumul(i,d) quantity of dimension d when arriving to node i
- transit(i,d) quantity of dimension d added after visiting node i

Relation between path and dimension variables

▶ $next(i) = j \Rightarrow cumul(j, d) = cumul(i, d) + transit(i, d)$

Costs

- Vehicle arc costs
- Dimension span costs (i.e. maximim time)
- Disjunction costs (node is visited or not)

OR-Tools: VRPTW example

Guide:

developers.google.com/optimization/routing/vrptw
Notebook:

constraint_solver/vrp_time_windows.ipynb

OR-Tools : Multi-Depot VRP example

Notebook:

constraint_solver/vrp_starts_ends.ipynb

OR-Tools: Team Orienteering example

Guide:

developers.google.com/optimization/routing/penalties
Notebook:constraint_solver/vrp_drop_nodes.ipynb

OR-Tools: Routing and Scheduling example

Guide:

developers.google.com/optimization/routing/cvrptw_resources
Notebook:constraint_solver/vrp_resources.ipynb

OR-Tools: Multi-Trip VRP example

Notebook: constraint_solver/cvrp_reload.ipynb