Optimization Software. Heuristic Solvers for VRPs.

 Introduction to OR-Tools.Ruslan Sadykov

INRIA Bordeaux—Sud-Ouest
17 October 2022

OR-Tools : open-source solvers for combinatorial optimization

- Linear Programming Solver
- A wrapper for Mixed-Integer Linear Programming Solvers
- (Original) Constraint Programming Solver
- CP-SAT Solver (discrete domains)
- Solver for Scheduling Problems (based on CP solvers)
- Solver for Vehicle Routing Problems (based on the original CP solver)

OR-Tools : open-source solvers for combinatorial optimization

- Linear Programming Solver
- A wrapper for Mixed-Integer Linear Programming Solvers
- (Original) Constraint Programming Solver
- CP-SAT Solver (discrete domains)
- Solver for Scheduling Problems (based on CP solvers)
- Solver for Vehicle Routing Problems (based on the original CP solver)

OR-Tools : Installation and running Jupyter Notebooks

First, create a new folder and go there. Then
1 python3 -m pip install --upgrade --user ortools
2 git clone https ://github.com/google/or-tools.git or-tools
3 cd or-tools/examples/notebook
4 jupyter notebook

OR-Tools : Constraint Programming Example

```
from ortools.constraint_solver import pywrapcp
solver = pywrapcp.Solver('CPSimple')
num_vals = 3
x = solver.IntVar(0, num_vals - 1, ' x')
y = solver.IntVar(0, num_vals - 1, 'y')
z = solver.IntVar(0, num_vals - 1, 'z')
solver.Add(x != y)
decision_builder = solver.Phase([x, y, z],
    solver.CHOOSE_FIRST_UNBOUND,
    solver.ASSIGN_MIN_VALUE)
status = solver.Solve(model)
solution = 'Solution :\n'
for var in [x, y, z] :
    solution += ' {} = {}'.format(var.Name(), var.Value())
print(solution)
```


See Notebook

constraint_solver/simple_cp_program.ipynb

OR-Tools : Other Constraint Programming Examples

- Notebook constraint_solver/cp_is_fun_cp.ipynb
- Notebook constraint_solver/nqueens_cp.ipynb

OR-Tools : Simple VRP example

Guide :
developers.google.com/optimization/routing/vrp Notebook: constraint_solver/vrp.ipynb

OR-Tools : CVRP example (+ Heterogeneous Fleet)

Guide :
developers.google.com/optimization/routing/cvrp Notebook: constraint_solver/cvrp.ipynb

OR-Tools : VRP layer (I)

Two sets of indices

- Nodes (a special node is depot)
- Vehicles

Path variables

- next(i) - immediate successor of node i
- vehicle(i) - vehicle visiting node i
- active(i) — node i is visited or not

Relations between path variables

- $\operatorname{active}(i)=0 \Leftrightarrow \operatorname{next}(i)=i \Leftrightarrow \operatorname{vehicle}(i)=-1$
- $\operatorname{next}(i)=j \Rightarrow \operatorname{vehicle}(i)=\operatorname{vehicle}(j)$

OR-Tools: VRP layer (II)

Dimension variables

- cumul(i,d) - quantity of dimension d when arriving to node i
- transit(i,d) - quantity of dimension d added after visiting node i

Relation between path and dimension variables

- next $(i)=j \Rightarrow \operatorname{cumul}(j, d)=\operatorname{cumul}(i, d)+\operatorname{transit}(i, d)$

Costs

- Vehicle arc costs
- Dimension span costs (i.e. maximim time)
- Disjunction costs (node is visited or not)

OR-Tools : VRPTW example

Guide :
developers.google.com/optimization/routing/vrptw Notebook:
constraint_solver/vrp_time_windows.ipynb

OR-Tools : Multi-Depot VRP example

Notebook:
constraint_solver/vrp_starts_ends.ipynb

OR-Tools : Team Orienteering example

Guide :

developers.google.com/optimization/routing/penalties Notebook: constraint_solver/vrp_drop_nodes.ipynb

OR-Tools: Routing and Scheduling example

Guide :

developers.google.com/optimization/routing/cvrptw_resources Notebook: constraint_solver/vrp_resources.ipynb

OR-Tools : Multi-Trip VRP example

Notebook: constraint_solver/cvrp_reload.ipynb

