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Introduction and Motivation

I O ⊆ Rd open,

I D ⊆ ∂O is Dirichlet boundary part,
I p0,p1 ∈ (1,∞), s0 ∈ [0,1/p0), s1 ∈ (1/p1,1].

Define spaces
I without trace condition

Hs0,p0(Rd)

Restrict
Hs0,p0(O),

I with trace condition

Hs1,p1(Rd)

Trace
Hs1,p1

D (Rd)

Restrict
Hs1,p1

D (O).

Problem [
Hs0,p0(O),Hs1,p1

D (O)
]
θ
= ? θ ∈ (0,1).
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Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,

2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),
4 much more!

Related results?

I Egert, Haller-Dintelmann, Tolksdorf ’14 (cf. Axelsson, Keith,
McIntosh ’06): p = 2,

I Griepentrog, Gröger, Kaiser, Rehberg ’02: Localization, very
regular situation.
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Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),
4 much more!

Related results?
I Egert, Haller-Dintelmann, Tolksdorf ’14 (cf. Axelsson, Keith,

McIntosh ’06): p = 2,
I Griepentrog, Gröger, Kaiser, Rehberg ’02: Localization, very

regular situation.

Solution? [
Hs0,p0(O),Hs1,p1

D (O)
]
θ
= Hs,p

(D)(O) θ ∈ (0,1).



Some tools from interpolation theory

1 Retraction/Coretraction principle

Retraction =̂ interpolation “morphism” with right inverse.

Then:

R
[
X ,Y

]
θ
=
[
RX ,RY

]
θ
.

Examples: restrictions (need extension operator), projections.

2 Reiteration

Let θ0, θ1, η ∈ (0,1).

With λ := (1− η)θ0 + ηθ1:

[
[X ,Y ]θ0 , [X ,Y ]θ1

]
η
.

3 “Gluing” interpolation scales

Can glue together overlapping scales (Wolff’s Theorem).

Example:
{

Hs,p
(D)(O)

}
1
p 6=s∈[0,1] and

{
Hs,p

D (O)
}

s∈( 1
p ,1+

1
p )

overlap.
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Easy inclusion

Let f ∈ [Hs0,p0(O),Hs1,p1
D (O)]θ. Aim: f ∈ Hs,p

(D)(O).

I First:

Ef ∈ [Hs0,p0(Rd),Hs1,p1
D (Rd)]θ

⊆ [Hs0,p0(Rd),Hs1,p1(Rd)]θ

= Hs,p(Rd).

I Hs1,p1
D (Rd) dense in interpolation space =⇒ Ef ∈ Hs,p

(D)(R
d).

I Restriction to O =⇒ f ∈ Hs,p
(D)(O).

Used minimal geometric assumption in first step (later!).
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Hard inclusion – A first reduction: Localization

I Geometric:

I Spaces:

Hs,p
(D)(O) Hs,p

(E)(O)
(
×

i
Hs,p
(Ei )

(Rd
+)
)
× Hs,p

(∂O)(O)

E

R

Hs,p
(E)(O) interpolates component wise, so:

pure Dirichlet on O

& mixed BC on Rd
+

}
=⇒ interpolation of Hs,p

(D)(O).
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Bullet spaces: The key to both cases

Let U ⊆ Rd closed, put (with X ∈ {H,W})

X s,p
• (cU) :=

{
f ∈ X s,p(Rd) : f vanishes on U

}
(s ∈ R).

I With Rychkov ’00:

U “full dimensional” =⇒ for s > 0 projection 1− ER
bounded.

I With Sickel ’99 (going back to Frazier–Jawerth ’90):

codim(∂U) =: t > 0 =⇒ for |s| “small” projection 1− 1U
bounded.

Use retraction-coretraction principle and glue together using Wolff!
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Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.

s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.

I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.

s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.

I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.

s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.

I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.
s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.

I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.
s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.

I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.
s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.
I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.
s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.
I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.
s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.
I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.
s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.
I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

I Step 1: multiplier 1cO : Hs,p
(∂O)(R

d)→ Hs,p
• (cO) bounded:

s small: by multiplier property.
s large: reduce to s small: ∇ and 1cO commute.

I Step 2: identify Hs,p
(∂O)(O) = Hs,p

• (O)|O.
I Step 3: Conclude with retraction principle.

Geometric requirements?

1 Hs,p
• (O) complemented for s > 0: cO full dimensional.

2 Multiplier bounded (codim(∂O) = 1) & density (for Step 2): ∂O is
(d − 1)-regular.

3 Restriction to O retraction: O full dimensional.



Mixed BC on Rd
+: Another reduction

1 Step 1: s small.

Reduces to pure Dirichlet situation (even on O):

Hs,p(O) =
[
Lp0 ,H1,p1

∂O (O)
]

s ⊆
[
Lp0 ,H1,p1

D (O)
]

s.

2 Step 2: Work in the boundary Rd−1.

Write

f = f − ERf︸ ︷︷ ︸
pure Dirichlet BC X

+ ERf .︸ ︷︷ ︸
♥ of the matter
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The ♥ of the matter

Need quality of Ei in Rd−1!

Namely

1 Ei is (d − 1)-regular

:
Which means: Hd−1(B(x , r) ∩ Ei) ≈ rd−1 for all x ∈ Ei and r ≤ 1.

D has this property and “preserved” under bi-Lipschitz chart.

2 codim(∂Ei) > 0:

Luukkainen: Equivalent to ∂Ei porous, that is:

∀x ∈ ∂Ei , r ≤ 1 ∃y ∈ B(x , r) : B(y , κr) ∩ ∂Ei = ∅.

Follows from porousity of ∂D in ∂O.
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The ♥ of the matter

Schema for the inclusion

Hs,p
Ei

(Rd
+)

[
Lp0(Rd

+),H
1,p1
Ei

(Rd
+)
]

s

[
H

1
q−ε,q(Rd

+),H
1,p1
Ei

(Rd
+)
]
η

W
s− 1

p ,p
• (cEi)

[
W−ε,q
• (cEi),W

1− 1
p1
,p1

• (cEi)

]
η

R

reiteration

(♥)

E



Summary

Theorem (B., Egert, JFAA 2019)

Let
1 O ⊆ Rd open,
2 O and cO is d-regular,
3 D ⊆ ∂O is (d − 1)-regular,
4 ∂O \ D has uniform bi-Lipschitz charts, and
5 ∂D is porous in ∂O.

Fix p0,p1 ∈ (1,∞), s0 ∈ [0,1/p0), s1 ∈ (1/p1,1], θ ∈ (0,1) and put

s := (1− θ)s0 + θs1 and
1
p
:=

1− θ
p0

+
θ

p1
.

Then [
Hs0,p0(O),Hs1,p1

D (O)
]
θ
= Hs,p

(D)(O).



Outlook: Can we do even more crazy stuff?

Recall “easy inclusion”: Forgot BC and used Rychkov extension
(need full dimensional O).

Can we benefit from BC?
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Thank you for your attention!

S. Bechtel and M. Egert.
Interpolation theory for Sobolev functions

with partially vanishing trace on irregular open sets.
J. Fourier Anal. Appl. (2019).


