Function spaces and interpolation theory

under minimal geometric assumptions and with mixed boundary conditions

Sebastian Bechtel

TU Darmstadt

Joint work with Moritz Egert (Orsay)

Analysis seminar
Delft (Zoom), 7th of July 2020

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,
- $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right]$.

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,
- $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right]$.

Define spaces

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,
- $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right]$.

Define spaces

- without trace condition

$$
H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right)
$$

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,
- $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right]$.

Define spaces

- without trace condition

$$
H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Restrict }}{ }{ }^{s^{s_{0}}, p_{0}}(O)
$$

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,
- $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right]$.

Define spaces

- without trace condition

$$
H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Restrict }}{\cdots} H^{s_{0}, p_{0}}(O),
$$

- with trace condition

$$
H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)
$$

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,
- $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right]$.

Define spaces

- without trace condition

$$
H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Restrict }}{\leadsto} H^{s_{0}, p_{0}}(O)
$$

- with trace condition

$$
H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Trace }}{\rightsquigarrow} H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)
$$

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,
- $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right]$.

Define spaces

- without trace condition

$$
H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Restrict }}{\longrightarrow} H^{s_{0}, p_{0}}(O),
$$

- with trace condition

$$
H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Trace }}{\leadsto} H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Restrict }}{\rightsquigarrow} H_{D}^{s_{1}, p_{1}}(O)
$$

Introduction and Motivation

- $O \subseteq \mathbb{R}^{d}$ open,
- $D \subseteq \partial O$ is Dirichlet boundary part,
- $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right]$.

Define spaces

- without trace condition

$$
H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Restrict }}{\rightsquigarrow} H^{s_{0}, p_{0}}(O),
$$

- with trace condition

$$
H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Trace }}{\rightsquigarrow} H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right) \stackrel{\text { Restrict }}{\rightsquigarrow} H_{D}^{s_{1}, p_{1}}(O)
$$

Problem

$$
\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}=? \quad \theta \in(0,1)
$$

Introduction and Motivation

Why should we care?

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),
4 much more!

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),
4 much more!

Related results?

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),
4 much more!

Related results?

- Egert, Haller-Dintelmann, Tolksdorf '14 (cf. Axelsson, Keith, McIntosh '06): $p=2$,

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),
4 much more!

Related results?

- Egert, Haller-Dintelmann, Tolksdorf '14 (cf. Axelsson, Keith, McIntosh '06): $p=2$,
- Griepentrog, Gröger, Kaiser, Rehberg '02: Localization, very regular situation.

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),
4 much more!

Related results?

- Egert, Haller-Dintelmann, Tolksdorf '14 (cf. Axelsson, Keith, McIntosh '06): $p=2$,
- Griepentrog, Gröger, Kaiser, Rehberg '02: Localization, very regular situation.

Problem

$$
\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}=? \quad \theta \in(0,1) .
$$

Introduction and Motivation

Why should we care?

1 Calculate domains of fractional powers,
2 perturbation arguments,
3 determine admissible initial values in Cauchy problems (real),
4 much more!

Related results?

- Egert, Haller-Dintelmann, Tolksdorf '14 (cf. Axelsson, Keith, McIntosh '06): $p=2$,
- Griepentrog, Gröger, Kaiser, Rehberg '02: Localization, very regular situation.

Solution?

$$
\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}=H_{(D)}^{s, p}(O) \quad \theta \in(0,1) .
$$

Some tools from interpolation theory

1 Retraction/Coretraction principle

Some tools from interpolation theory

1 Retraction/Coretraction principle
Retraction $\hat{=}$ interpolation "morphism" with right inverse.

Some tools from interpolation theory

1 Retraction/Coretraction principle
Retraction $\hat{=}$ interpolation "morphism" with right inverse. Then:

$$
R[X, Y]_{\theta}=[R X, R Y]_{\theta} .
$$

Some tools from interpolation theory

1 Retraction/Coretraction principle
Retraction $\hat{=}$ interpolation "morphism" with right inverse. Then:

$$
R[X, Y]_{\theta}=[R X, R Y]_{\theta} .
$$

Examples: restrictions (need extension operator), projections.

Some tools from interpolation theory

1 Retraction/Coretraction principle
Retraction $\hat{=}$ interpolation "morphism" with right inverse. Then:

$$
R[X, Y]_{\theta}=[R X, R Y]_{\theta} .
$$

Examples: restrictions (need extension operator), projections.
2 Reiteration

Some tools from interpolation theory

1 Retraction/Coretraction principle
Retraction $\hat{=}$ interpolation "morphism" with right inverse. Then:

$$
R[X, Y]_{\theta}=[R X, R Y]_{\theta} .
$$

Examples: restrictions (need extension operator), projections.
2 Reiteration
Let $\theta_{0}, \theta_{1}, \eta \in(0,1)$.

$$
\left[[X, Y]_{\theta_{0}},[X, Y]_{\theta_{1}}\right]_{\eta} .
$$

Some tools from interpolation theory

1 Retraction/Coretraction principle
Retraction $\hat{=}$ interpolation "morphism" with right inverse. Then:

$$
R[X, Y]_{\theta}=[R X, R Y]_{\theta} .
$$

Examples: restrictions (need extension operator), projections.
2 Reiteration
Let $\theta_{0}, \theta_{1}, \eta \in(0,1)$. With $\lambda:=(1-\eta) \theta_{0}+\eta \theta_{1}$:

$$
\left[[X, Y]_{\theta_{0}},[X, Y]_{\theta_{1}}\right]_{\eta}=[X, Y]_{\lambda} .
$$

Some tools from interpolation theory

1 Retraction/Coretraction principle
Retraction $\hat{=}$ interpolation "morphism" with right inverse. Then:

$$
R[X, Y]_{\theta}=[R X, R Y]_{\theta} .
$$

Examples: restrictions (need extension operator), projections.
2 Reiteration
Let $\theta_{0}, \theta_{1}, \eta \in(0,1)$. With $\lambda:=(1-\eta) \theta_{0}+\eta \theta_{1}$:

$$
\left[[X, Y]_{\theta_{0}},[X, Y]_{\theta_{1}}\right]_{\eta}=[X, Y]_{\lambda} .
$$

3 "Gluing" interpolation scales

Some tools from interpolation theory

1 Retraction/Coretraction principle
Retraction $\hat{=}$ interpolation "morphism" with right inverse. Then:

$$
R[X, Y]_{\theta}=[R X, R Y]_{\theta} .
$$

Examples: restrictions (need extension operator), projections.
2 Reiteration
Let $\theta_{0}, \theta_{1}, \eta \in(0,1)$. With $\lambda:=(1-\eta) \theta_{0}+\eta \theta_{1}$:

$$
\left[[X, Y]_{\theta_{0}},[X, Y]_{\theta_{1}}\right]_{\eta}=[X, Y]_{\lambda} .
$$

3 "Gluing" interpolation scales
Can glue together overlapping scales (Wolff's Theorem).
Example: $\left\{H_{(D)}^{s, p}(O)\right\}_{\frac{1}{p} \neq s \in[0,1]}$ and $\left\{H_{D}^{s, p}(O)\right\}_{s \in\left(\frac{1}{p}, 1+\frac{1}{p}\right)}$ overlap.

Easy inclusion

$$
\text { Let } f \in\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta} \text {. Aim: } f \in H_{(D)}^{s, p}(O) \text {. }
$$

Easy inclusion

Let $f \in\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{0}$. Aim: $f \in H_{(D)}^{s, p}(O)$.

- First:

$$
E f \in\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H_{D}^{s_{1, p}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta}
$$

Easy inclusion

Let $f \in\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}$. Aim: $f \in H_{(D)}^{s, p}(O)$.

- First:

$$
E f \in\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \subseteq\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta}
$$

Easy inclusion

Let $f \in\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}$. Aim: $f \in H_{(D)}^{s, p}(O)$.

- First:

$$
\begin{aligned}
E f & \in\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \subseteq\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \\
& =H^{s, p}\left(\mathbb{R}^{d}\right) .
\end{aligned}
$$

Easy inclusion

Let $f \in\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}$. Aim: $f \in H_{(D)}^{s, p}(O)$.

- First:

$$
\begin{aligned}
E f & \in\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \subseteq\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \\
& =H^{s, p}\left(\mathbb{R}^{d}\right) .
\end{aligned}
$$

- $H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)$ dense in interpolation space $\Longrightarrow E f \in H_{(D)}^{s, p}\left(\mathbb{R}^{d}\right)$.

Easy inclusion

Let $f \in\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}$. Aim: $f \in H_{(D)}^{s, p}(O)$.

- First:

$$
\begin{aligned}
E f & \in\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \subseteq\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \\
& =H^{s, p}\left(\mathbb{R}^{d}\right) .
\end{aligned}
$$

- $H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)$ dense in interpolation space $\Longrightarrow E f \in H_{(D)}^{s, p}\left(\mathbb{R}^{d}\right)$.
- Restriction to $O \quad \Longrightarrow \quad f \in H_{(D)}^{s, p}(O)$.

Easy inclusion

Let $f \in\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}$. Aim: $f \in H_{(D)}^{s, p}(O)$.

- First:

$$
\begin{aligned}
E f & \in\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \subseteq\left[H^{s_{0}, p_{0}}\left(\mathbb{R}^{d}\right), H^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)\right]_{\theta} \\
& =H^{s, p}\left(\mathbb{R}^{d}\right) .
\end{aligned}
$$

- $H_{D}^{s_{1}, p_{1}}\left(\mathbb{R}^{d}\right)$ dense in interpolation space $\Longrightarrow E f \in H_{(D)}^{s, p}\left(\mathbb{R}^{d}\right)$.
- Restriction to $O \Longrightarrow f \in H_{(D)}^{s, p}(O)$.

Used minimal geometric assumption in first step (later!).

Hard inclusion - A first reduction: Localization

- Geometric:

Hard inclusion - A first reduction: Localization

- Geometric:

- Spaces:

$$
H_{(D)}^{s, p}(O) \underset{R}{\mathbb{H}_{(E)}^{s, p}(O)=\left(\underset{i}{X} H_{\left(E_{i}\right)}^{s, p}\left(\mathbb{R}_{+}^{d}\right)\right) \times H_{(\partial O)}^{s, p}(O), ~(O)}
$$

Hard inclusion - A first reduction: Localization

- Geometric:

- Spaces:

$$
H_{(D)}^{s, p}(O){\underset{R}{r}}_{\mathbb{H}_{(E)}^{s, p}}^{s, 0}(O)=\left(\underset{i}{\times} H_{\left(E_{i}\right)}^{s, p}\left(\mathbb{R}_{+}^{d}\right)\right) \times H_{(\partial O)}^{s, p}(O)
$$

$\mathbb{H}_{(E)}^{s, p}(O)$ interpolates component wise, so:

$$
\left.\begin{array}{ll}
& \text { pure Dirichlet on } O \\
\& & \text { mixed } \mathrm{BC} \text { on } \mathbb{R}_{+}^{d}
\end{array}\right\} \Longrightarrow \quad \text { interpolation of } H_{(D)}^{s, p}(O) .
$$

Bullet spaces: The key to both cases

Let $U \subseteq \mathbb{R}^{d}$ closed, put (with $X \in\{H, W\}$)

$$
X_{\bullet}^{s, p}\left({ }^{c} U\right):=\left\{f \in X^{s, p}\left(\mathbb{R}^{d}\right): f \text { vanishes on } U\right\} \quad(s \in \mathbb{R}) .
$$

Bullet spaces: The key to both cases

Let $U \subseteq \mathbb{R}^{d}$ closed, put (with $X \in\{H, W\}$)

$$
X_{\bullet}^{s, p}\left({ }^{c} U\right):=\left\{f \in X^{s, p}\left(\mathbb{R}^{d}\right): f \text { vanishes on } U\right\} \quad(s \in \mathbb{R}) .
$$

Bullet spaces: The key to both cases

Let $U \subseteq \mathbb{R}^{d}$ closed, put (with $X \in\{H, W\}$)

$$
X_{\bullet}^{s, p}\left({ }^{c} U\right):=\left\{f \in X^{s, p}\left(\mathbb{R}^{d}\right): f \text { vanishes on } U\right\} \quad(s \in \mathbb{R}) .
$$

- With Rychkov '00:
U "full dimensional"
\Longrightarrow for $s>0$ projection $1-E R$ bounded.

Bullet spaces: The key to both cases

Let $U \subseteq \mathbb{R}^{d}$ closed, put (with $X \in\{H, W\}$)

$$
X_{\bullet}^{s, p}\left({ }^{c} U\right):=\left\{f \in X^{s, p}\left(\mathbb{R}^{d}\right): f \text { vanishes on } U\right\} \quad(s \in \mathbb{R}) .
$$

- With Rychkov '00:
for $s>0$ projection $1-E R$
U "full dimensional" $\quad \Longrightarrow$ bounded \& complements scale $\left\{X_{\bullet}^{S, p}\left({ }^{c} U\right)\right\}_{s>0}$.

Bullet spaces: The key to both cases

Let $U \subseteq \mathbb{R}^{d}$ closed, put (with $X \in\{H, W\}$)

$$
X_{\bullet}^{s, p}\left({ }^{c} U\right):=\left\{f \in X^{s, p}\left(\mathbb{R}^{d}\right): f \text { vanishes on } U\right\} \quad(s \in \mathbb{R}) .
$$

- With Rychkov '00:
for $s>0$ projection $1-E R$
U "full dimensional" $\quad \Longrightarrow$ bounded \& complements scale $\left\{X_{\bullet}^{s, p}\left({ }^{c} U\right)\right\}_{s>0}$.
- With Sickel '99 (going back to Frazier-Jawerth '90):
$\operatorname{codim}(\partial U)=: t>0 \Longrightarrow \begin{aligned} & \text { for }|s| \text { "small" projection } 1-\mathbb{1}_{U} \\ & \text { bounded. }\end{aligned}$

Bullet spaces: The key to both cases

Let $U \subseteq \mathbb{R}^{d}$ closed, put (with $X \in\{H, W\}$)

$$
X_{\bullet}^{s, p}\left({ }^{c} U\right):=\left\{f \in X^{s, p}\left(\mathbb{R}^{d}\right): f \text { vanishes on } U\right\} \quad(s \in \mathbb{R}) .
$$

- With Rychkov '00:
for $s>0$ projection $1-E R$
U "full dimensional" $\quad \Longrightarrow$ bounded \& complements scale $\left\{X_{\bullet}^{s, p}\left({ }^{c} U\right)\right\}_{s>0}$.
- With Sickel '99 (going back to Frazier-Jawerth '90): for $|s|$ "small" projection $1-\mathbb{1}_{U}$ $\operatorname{codim}(\partial U)=: t>0 \Longrightarrow$ bounded \& complements scale $\left\{X_{\bullet}^{s, p}\left({ }^{c} U\right)\right\}_{-\frac{t}{p^{\prime}}<s<\frac{t}{p}}$.

Bullet spaces: The key to both cases

Let $U \subseteq \mathbb{R}^{d}$ closed, put (with $X \in\{H, W\}$)

$$
X_{\bullet}^{s, p}\left({ }^{c} U\right):=\left\{f \in X^{s, p}\left(\mathbb{R}^{d}\right): f \text { vanishes on } U\right\} \quad(s \in \mathbb{R}) .
$$

- With Rychkov '00:
for $s>0$ projection $1-E R$
U "full dimensional" $\quad \Longrightarrow$ bounded \& complements scale $\left\{X_{\bullet}^{s, p}\left({ }^{c} U\right)\right\}_{s>0}$.
- With Sickel '99 (going back to Frazier-Jawerth '90): for $|s|$ "small" projection $1-\mathbb{1}_{U}$ $\operatorname{codim}(\partial U)=: t>0 \quad \Longrightarrow$ bounded \& complements scale $\left\{X_{\bullet}^{s, p}\left({ }^{c} U\right)\right\}_{-\frac{t}{p^{\prime}}<s<\frac{t}{p}}$.

Use retraction-coretraction principle and glue together using Wolff!

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c O}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c O}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:
s small: by multiplier property.

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c O}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:
s small: by multiplier property. s large: reduce to s small: ∇ and $\mathbb{1}_{c_{O}}$ commute.

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c O}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:
s small: by multiplier property.
s large: reduce to s small: ∇ and $\mathbb{1}_{c}$ commute.
- Step 2: identify $H_{(\partial O)}^{s, p}(O)=\left.H_{0}^{s, p}(O)\right|_{o}$.

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c O}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:
s small: by multiplier property. s large: reduce to s small: ∇ and $\mathbb{1}_{c_{O}}$ commute.
- Step 2: identify $H_{(\partial O)}^{s, p}(O)=\left.H_{0}^{s, p}(O)\right|_{o}$.
- Step 3: Conclude with retraction principle.

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c O}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:
s small: by multiplier property. s large: reduce to s small: ∇ and $\mathbb{1}_{c_{O}}$ commute.
- Step 2: identify $H_{(\partial O)}^{s, p}(O)=\left.H_{0}^{s, p}(O)\right|_{o}$.
- Step 3: Conclude with retraction principle.

Geometric requirements?

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c O}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:
s small: by multiplier property. s large: reduce to s small: ∇ and $\mathbb{1}_{c O}$ commute.
- Step 2: identify $H_{(\partial O)}^{s, p}(O)=\left.H_{0}^{s, p}(O)\right|_{o}$.
- Step 3: Conclude with retraction principle.

Geometric requirements?
$1 H_{0}^{s, p}(O)$ complemented for $s>0:^{c} O$ full dimensional.

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c O}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:
s small: by multiplier property. s large: reduce to s small: ∇ and $\mathbb{1}_{c O}$ commute.
- Step 2: identify $H_{(\partial O)}^{s, p}(O)=\left.H_{0}^{s, p}(O)\right|_{o}$.
- Step 3: Conclude with retraction principle.

Geometric requirements?
$1 H_{0}^{s, p}(O)$ complemented for $s>00^{c} O$ full dimensional.
2 Multiplier bounded $(\operatorname{codim}(\partial O)=1)$ \& density (for Step 2): ∂O is ($d-1$)-regular.

Pure Dirichlet interpolation

With bullet spaces: Almost easy (up to some technicalities)!

- Step 1: multiplier $\mathbb{1}_{c_{O}}: H_{(\partial O)}^{s, p}\left(\mathbb{R}^{d}\right) \rightarrow H_{0}^{s, p}\left({ }^{c} O\right)$ bounded:
s small: by multiplier property. s large: reduce to s small: ∇ and $\mathbb{1}_{c O}$ commute.
- Step 2: identify $H_{(\partial O)}^{s, p}(O)=\left.H_{0}^{s, p}(O)\right|_{o}$.
- Step 3: Conclude with retraction principle.

Geometric requirements?
$1 H_{0}^{s, p}(O)$ complemented for $s>0:{ }^{c} O$ full dimensional.
2 Multiplier bounded $(\operatorname{codim}(\partial O)=1)$ \& density (for Step 2): ∂O is ($d-1$)-regular.
3 Restriction to O retraction: O full dimensional.

Mixed BC on \mathbb{R}_{+}^{d} : Another reduction

1 Step 1: s small.
Reduces to pure Dirichlet situation (even on O):

$$
H^{s, p}(O)=\left[L^{p_{0}}, H_{\partial O}^{1, p_{1}}(O)\right]_{s} \subseteq\left[L^{p_{0}}, H_{D}^{1, p_{1}}(O)\right]_{s} .
$$

2 Step 2: Work in the boundary \mathbb{R}^{d-1}.
Write

$$
f=\underbrace{f-E R f}_{\text {pure Dirichlet BC } \checkmark}+\underbrace{E R f .}_{\varrho \text { of the matter }}
$$

The \odot of the matter

Need to go in the negative scale!

The \odot of the matter

Need to go in the negative scale!

The \odot of the matter

Need quality of E_{i} in \mathbb{R}^{d-1} !

The \odot of the matter

Need quality of E_{i} in \mathbb{R}^{d-1} ! Namely
$1 E_{i}$ is $(d-1)$-regular
$2 \operatorname{codim}\left(\partial E_{i}\right)>0$:

The \odot of the matter

Need quality of E_{i} in \mathbb{R}^{d-1} ! Namely
$1 E_{i}$ is $(d-1)$-regular:
Which means: $\mathcal{H}^{d-1}\left(B(x, r) \cap E_{i}\right) \approx r^{d-1}$ for all $x \in E_{i}$ and $r \leq 1$.
$2 \operatorname{codim}\left(\partial E_{i}\right)>0$:

The \odot of the matter

Need quality of E_{i} in \mathbb{R}^{d-1} ! Namely
$1 E_{i}$ is $(d-1)$-regular:
Which means: $\mathcal{H}^{d-1}\left(B(x, r) \cap E_{i}\right) \approx r^{d-1}$ for all $x \in E_{i}$ and $r \leq 1$.
D has this property and "preserved" under bi-Lipschitz chart.
$2 \operatorname{codim}\left(\partial E_{i}\right)>0$:

The \odot of the matter

Need quality of E_{i} in \mathbb{R}^{d-1} ! Namely
$1 E_{i}$ is $(d-1)$-regular:
Which means: $\mathcal{H}^{d-1}\left(B(x, r) \cap E_{i}\right) \approx r^{d-1}$ for all $x \in E_{i}$ and $r \leq 1$.
D has this property and "preserved" under bi-Lipschitz chart.
$2 \operatorname{codim}\left(\partial E_{i}\right)>0$:
Luukkainen: Equivalent to ∂E_{i} porous, that is:

$$
\forall x \in \partial E_{i}, r \leq 1 \quad \exists y \in B(x, r): B(y, \kappa r) \cap \partial E_{i}=\emptyset
$$

The \odot of the matter

Need quality of E_{i} in \mathbb{R}^{d-1} ! Namely
$1 E_{i}$ is $(d-1)$-regular:
Which means: $\mathcal{H}^{d-1}\left(B(x, r) \cap E_{i}\right) \approx r^{d-1}$ for all $x \in E_{i}$ and $r \leq 1$.
D has this property and "preserved" under bi-Lipschitz chart.
$2 \operatorname{codim}\left(\partial E_{i}\right)>0$:
Luukkainen: Equivalent to ∂E_{i} porous, that is:

$$
\forall x \in \partial E_{i}, r \leq 1 \quad \exists y \in B(x, r) \cap \mathbb{R}^{d-1}: B(y, \kappa r) \cap \partial E_{i}=\emptyset .
$$

The \odot of the matter

Need quality of E_{i} in \mathbb{R}^{d-1} ! Namely
$1 E_{i}$ is $(d-1)$-regular:
Which means: $\mathcal{H}^{d-1}\left(B(x, r) \cap E_{i}\right) \approx r^{d-1}$ for all $x \in E_{i}$ and $r \leq 1$.
D has this property and "preserved" under bi-Lipschitz chart.
$2 \operatorname{codim}\left(\partial E_{i}\right)>0$:
Luukkainen: Equivalent to ∂E_{i} porous, that is:

$$
\forall x \in \partial E_{i}, r \leq 1 \quad \exists y \in B(x, r) \cap \mathbb{R}^{d-1}: B(y, \kappa r) \cap \partial E_{i}=\emptyset .
$$

Follows from porousity of ∂D in ∂O.

The \odot of the matter

Schema for the inclusion

Summary

Theorem (B., Egert, JFAA 2019)

Let
$1 O \subseteq \mathbb{R}^{d}$ open,
$2 O$ and ${ }^{\text {c } O}$ is d-regular,
$3 D \subseteq \partial O$ is $(d-1)$-regular,
$4 \overline{\partial O \backslash D}$ has uniform bi-Lipschitz charts, and
$5 \partial D$ is porous in ∂O.
Fix $p_{0}, p_{1} \in(1, \infty), s_{0} \in\left[0,1 / p_{0}\right), s_{1} \in\left(1 / p_{1}, 1\right], \theta \in(0,1)$ and put

$$
s:=(1-\theta) s_{0}+\theta s_{1} \quad \text { and } \quad \frac{1}{p}:=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} .
$$

Then

$$
\left[H^{s_{0}, p_{0}}(O), H_{D}^{s_{1}, p_{1}}(O)\right]_{\theta}=H_{(D)}^{s_{0}, p}(O) .
$$

Outlook: Can we do even more crazy stuff?

Outlook: Can we do even more crazy stuff?

Recall "easy inclusion": Forgot BC and used Rychkov extension (need full dimensional O).

Outlook: Can we do even more crazy stuff?

Recall "easy inclusion": Forgot BC and used Rychkov extension (need full dimensional O).

Can we benefit from BC?

Thank you for your attention!

S. Bechtel and M. Egert.

Interpolation theory for Sobolev functions with partially vanishing trace on irregular open sets.
J. Fourier Anal. Appl. (2019).

