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Problem
For which spaces V do we have D(L%) = V with equivalent norms?
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Wt This is known for mixed boundary conditionsX !

Theorem (AKM '06, EHT '14/16, B.—Egert—Haller-Dintelmann ’19)

Suppose:
» O Dbowunded domain A
» O is d=regutar
» 00 is (d=H—egular pesatis
» D C 90 is uniformly (d — 1)-regular boundary
» O is biEbpsettiz locally uniform near 0O \ D

Then the Kato property holds forV = HBZ(O).

Aim: only demand for boundary regularity!

» inspection of proof: no connectedness

» better interpolation theory (joint work with M. Egert): no
boundedness

» better extension and approximation theory: no charts

» thickening of O and “localization”: no d-regularity
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» diameter of connected components away
from N degenerates
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» Decomposition/Localization of functional calculi



Thank you for your attention!
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