Une analyse asymptotique des schémas de Boltzmann sur réseau

François Dubois*

atelier "Schémas numériques de type Boltzmann" Institut de Mathématiques de Bordeaux, 24 novembre 2022

^{*} Laboratoire de Mathématiques d'Orsay [U. Paris-Saclay] et CNAM Paris

Exa's Powerflow software (2017)

complex vortex structure under the Boeing 777

www.nasa.gov

LaBS-ProLB: aerodynamics software (Renault, 2013)

lyoncalcul.univ-lyon1.fr

3

186 surfaces generate 2.3 millions of triangles10 levels of mesh refinement (octree) size of the smallest mesh: 1.25 mm88.6 millions of meshes, 300 000 time iterations

LaBS-ProLB: aerodynamics software (Renault, 2013) 4

instantaneous velocity

m2p2.fr

LaBS-ProLB : aérodynamique (Renault, 2013)

with the internal flow

m2p2.fr

5

flows in porous media

Palabos project, university of Geneva

www.cfdem.com

fluid mechanics for civil engineering

Technische Universität Braunschweig

tu-braunschweig.de

pylbm

Loïc Gouarin (CMAP, Écolpe Polytechnique) et Benjamin Graille (LMO Orsay)

github.com/pylbm

 $www.imo.universite-paris-saclay.fr/\sim benjamin.graille/pylbm.php\\www.youtube.com/channel/UCEfCyEjGAZx1UsjaqRmtcVg/videos$

- module Python permettant d'utiliser différentes méthodes de Boltzmann sur réseau
- s'appuie sur le package SymPy pour décrire de manière formelle les polynômes associés aux schémas utilisés
- un code est ensuite généré en fonction de ces paramètres physiques et mathématiques.
- l'utilisateur peut créer des domaines complexes
 - s'appuyant sur l'union de formes simples
- logiciel disponible à l'adresse pylbm.readthedocs.io

pylbm : Orsag-Tang vortex

pylbm : Karman vortex street (Re = 2500)

pylbm : Karman vortex street (Re = 2500)

pylbm : Karman vortex street (Re = 2500)

12

pylbm : Karman vortex street (Re = 2500)

"collide-stream" for lattice Boltzmann schemes

advection

collision

advection

D2Q9 scheme

18

D2Q13

D3Q19

D3Q27

D1Q2, D1Q3

D1Q2 : Torsten Carleman (1892-1949)

D1Q3 : James Broadwell (1921-2018)

interior algorithm

23

Boltzmann model with a finite number of velocities $\frac{\partial f_i}{\partial t} + v_i . \nabla_x f_i = Q_i(f), \ 0 \le i < q$

$$\begin{split} m &= M f: \text{ vector of moments } m \in \mathbb{R}^q: \\ \text{ constant invertible matrix } M (\text{``d'Humières matrix'', 1992}) \\ m_k &\equiv \sum_{0 \leq j < q} M_{kj} f_j, \ 0 \leq k < q \\ N \text{ conservation laws } (1 \leq N < q) \\ \text{ the } N \text{ first moments of the collision kernel are equal to zero:} \\ &\sum_{0 \leq j < q} M_{kj} Q_j(f) = 0, \quad \forall f \in \mathbb{R}^q, \ 0 \leq k < N \end{split}$$

divide the vector of moments into two families: $m \equiv \begin{pmatrix} W \\ Y \end{pmatrix}$

N conservation laws for macroscopic variables W

 $\frac{\partial W_k}{\partial t} + \sum_{1 \le \alpha \le d} \sum_{0 \le j < q} M_{kj} \ v_j^{\alpha} \ \frac{\partial f_j}{\partial x_{\alpha}} = 0 \,, \quad 0 \le k < N$ q - N nonconserved moments or microscopic variables Y interior algorithm (ii)

 $\frac{\partial f_i}{\partial t} + v_i \cdot \nabla_x f_i = Q_i(f), \ 0 \le i < q$ equilibrim states f^{eq} defined by the conditions $Q(f^{\text{eq}}) = 0$ characterized with a regular vector field $\Phi : \mathbb{R}^N \longrightarrow \mathbb{R}^{q-N}$

$$f^{\mathrm{eq}} = M^{-1} \begin{pmatrix} W \\ \Phi(W) \end{pmatrix}$$

the vector field $\, {\cal W} \longmapsto {\cal Y}^{\mathrm{eq}} \equiv \Phi({\cal W})\,$ defines the equilibrium states

hypothesis : the jacobian matrix $dQ(f^{eq})$ at equilibrium is diagonalizable with real eigenvalues and real eigenvectors

$$M \,\mathrm{d}Q(f^{\mathrm{eq}}) \, M^{-1} = -\mathrm{diag}\left(0, \, \ldots, \, 0, \, \frac{1}{\tau_1}, \, \ldots, \, \frac{1}{\tau_{q-N}}\right), \, \, \tau_\ell > 0$$

MRT hypothesis: the jacobian operator $dQ(f^{eq})$ admits the matrix M^{-1} as a matrix of eigenvectors

Bhatnagar-Gross-Krook type hypothesis the state f is close to equilibrium f^{eq} collision kernel Q approximated at first order: $Q(f) \simeq Q(f^{eq}) + dQ(f^{eq}).(f - f^{eq}) \simeq dQ(f^{eq}).(f - f^{eq})$ interior algorithm (iii)

Lattice Boltzmann scheme with multiple relaxation times (d'Humières, 1992)

 $\begin{array}{l} f_j: \text{ discrete particle distribution with velocity } v_j \\ \text{ moments } m = (W, Y)^t \equiv M f \\ \frac{\partial f_i}{\partial t} + v_i . \nabla_x f_i = \left(\mathrm{d}Q(f^{\mathrm{eq}}).(f - f^{\mathrm{eq}}) \right)_i, \ 0 \leq i < q \end{array}$

(i) "collide": nonlinear relaxation, neglect the advection operator $\frac{\partial W}{\partial t} = 0, \quad \frac{\partial Y}{\partial t} = -\text{diag}\left(\frac{1}{\tau_1}, \dots, \frac{1}{\tau_{q-N}}\right)(Y - \Phi(W))$ use a simple forward Euler scheme: $W^* = W, \quad Y^* = Y + S\left(\Phi(W) - Y\right), \quad S = \text{diag}\left(\frac{\Delta t}{\tau}\right)$

 $f^* = M^{-1} \begin{pmatrix} W^* \\ Y^* \end{pmatrix}; \quad s_k = \frac{\Delta t}{\tau_k} \text{ fixed numerical parameter}$

(ii) "stream": linear advection, neglect the local nonlinear collision $\frac{\partial f_i}{\partial t} + v_i \cdot \nabla_x f_i = 0$ method of characteristics when it is exact ! compact description: $f_i(x, t + \Delta t) = f_i^*(x - v_i \Delta t, t)$

interior algorithm (iv)

advectioncollisionadvectionf m, W^*, Y^*, f^* f

boundary conditions : staircase approximation

Ed Llewellin, Dunham university

boundary conditions : precise approach

curved boundary: take into account all the red links Bouzidi - Firdaouss - Lallemand boundary condition (2001)

boundary conditions : precise approach (ii)

Mei, Yu, Shyy, Luo, Phys. Rev. E, april 2002

boundary conditions : precise approach *(iii)* 30

"ABCD" method: exact exponential expansion

$$f_{j}(x, t + \Delta t) = f_{j}^{*}(x - v_{j}\Delta t, t)$$

$$m_{k}(x, t + \Delta t) = \sum_{j} M_{kj} f_{j}^{*}(x - v_{j}\Delta t, t)$$

$$= \sum_{j\ell} M_{kj} (M^{-1})_{j\ell} m_{\ell}^{*}(x - v_{j}\Delta t, t)$$

$$= \sum_{j\ell} M_{kj} (M^{-1})_{j\ell} \sum_{n=0}^{\infty} \frac{1}{n!} (-\Delta t \sum_{\alpha} v_{j}^{\alpha} \partial_{\alpha})^{n} m_{\ell}^{*}(x, t)$$

$$= \sum_{\ell} \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{j} M_{kj} (-\Delta t \sum_{\alpha} v_{j}^{\alpha} \partial_{\alpha})^{n} (M^{-1})_{j\ell} m_{\ell}^{*}(x, t)$$

$$= \sum_{\ell} \left[\sum_{n=0}^{\infty} \frac{1}{n!} (-\Delta t \Lambda)_{k\ell}^{n} \right] m_{\ell}^{*}(x, t)$$

$$= \sum_{\ell} \exp(-\Delta t \Lambda)_{k\ell} m_{\ell}^{*}(x, t)$$

$$= \left(\exp(-\Delta t \Lambda) m^{*}(x, t) \right)_{k}$$

"ABCD" method: exact exponential expansion (ii) 32

$$f_j(x, t + \Delta t) = f_j^*(x - v_j \Delta t, t)$$

Momentum-velocity operator matrix

$$\begin{split} \Lambda &= M \operatorname{diag} \left(\sum_{1 \le \alpha \le d} v^{\alpha} \partial_{\alpha} \right) M^{-1} \\ m(x, t + \Delta t) &= \exp(-\Delta t \Lambda) m^{*}(x, t) \\ \exp(-\Delta t \Lambda) &= \mathrm{I} - \Delta t \Lambda + \frac{\Delta t^{2}}{2} \Lambda^{2} + \ldots + (-1)^{k} \frac{\Delta t^{k}}{k!} \Lambda^{k} + \ldots \end{split}$$

important elementary remark to obtain the final results

block decomposition
$$\Lambda \equiv \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

 $\Lambda^2 = \Lambda \Lambda \equiv \begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix}$ with $\begin{pmatrix} A_2 & B_2 \\ C_2 & D_2 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix}$
 $A_2 = A^2 + B C, B_2 = A B + B D, C_2 = C A + D C, D_2 = C B + D^2$

example: D2Q9 scheme

the lines of this invertible matrix are chosen orthogonal

example: D2Q9 scheme (ii)

34

Momentum-velocity operator matrix $\Lambda \equiv M \operatorname{diag} \left(\sum_{\alpha} v^{\alpha} \partial_{\alpha} \right) M^{-1}$ $1 \leq \alpha \leq 2 = \operatorname{space \ dimension}$ Block decomposition $\Lambda \equiv \begin{pmatrix} A & B \\ C & D \end{pmatrix}$

Operator matrix Λ for the isothermal D2Q9 scheme

"ABCD" method: asymptotic expansion at second order 35

Asymptotic hypothesis: emerging partial differential equations $\partial_t W + \Gamma_1 + \Delta t \Gamma_2 = O(\Delta t^2)$

> Γ_j : vector obtained after *j* space derivations of the conserved moments *W* and the equilibrium vector $\Phi(W)$.

Non-Conserved moments:

 $Y = \Phi(W) + \Delta t S^{-1} \Psi_1 + O(\Delta t^2)$

General nonlinear "Vilnius" algorithm at second order $\Gamma_1 = A W + B \Phi(W)$ $\Psi_1 = d\Phi(W) \cdot \Gamma_1 - (C W + D \Phi(W))$ $\Gamma_2 = B \Sigma \Psi_1 \quad \text{with } \Sigma \text{ the Hénon matrix: } \Sigma \equiv S^{-1} - \frac{1}{2} I$

"ABCD" method: fourth order expansion

asymptotic expansion for the microscopic moments $Y = \Phi(W) + S^{-1} \left(\Delta t \Psi_1(W) + \Delta t^2 \Psi_2(W) + \Delta t^3 \Psi_3(W) \right) + O(\Delta t^4)$

partial differential equation for the conserved moments $\partial_t W + \Gamma_1(W) + \Delta t \Gamma_2(W) + \Delta t^2 \Gamma_3(W) + \Delta t^3 \Gamma_4(W) = O(\Delta t^4)$

third order terms

$$\begin{split} \Psi_2(W) &= \Sigma \, \mathrm{d}\Psi_1(W).\Gamma_1(W) + \, \mathrm{d}\Phi(W).\Gamma_2(W) - D \, \Sigma \, \Psi_1(W) \\ \Gamma_3(W) &= B \, \Sigma \, \Psi_2(W) + \frac{1}{12} B_2 \, \Psi_1(W) - \frac{1}{6} \, B \, \, \mathrm{d}\Psi_1(W).\Gamma_1(W) \end{split}$$

fourth order terms

$$\begin{split} \Psi_{3}(W) &= \Sigma \ \mathrm{d}\Psi_{1}(W).\Gamma_{2}(W) + \ \mathrm{d}\Phi(W).\Gamma_{3}(W) - D \Sigma \Psi_{2}(W) \\ &+ \Sigma \ \mathrm{d}\Psi_{2}(W).\Gamma_{1}(W) + \frac{1}{6} \ D \ \mathrm{d}\Psi_{1}(W).\Gamma_{1}(W) \\ &- \frac{1}{12} \ D_{2} \Psi_{1}(W) - \frac{1}{12} \ \mathrm{d} \left(\ \mathrm{d}\Psi_{1}(W).\Gamma_{1} \right).\Gamma_{1}(W) \\ \Gamma_{4}(W) &= B \Sigma \Psi_{3}(W) + \frac{1}{4} \ B_{2} \Psi_{2}(W) + \frac{1}{6} \ B \ D_{2} \Sigma \Psi_{1}(W) \\ &- \frac{1}{6} \ A B \ \Psi_{2}(W) - \frac{1}{6} \ B \left(\ \mathrm{d} \left(\ \mathrm{d}\Phi.\Gamma_{1} \right).\Gamma_{2}(W) \\ &+ \ \mathrm{d} \left(\ \mathrm{d}\Phi.\Gamma_{2} \right).\Gamma_{1}(W) \right) - \frac{1}{6} \ B \Sigma \ \mathrm{d} \left(\ \mathrm{d}\Psi_{1}(W).\Gamma_{1} \right).\Gamma_{1}(W) \end{split}$$

FD, Asymptotic Analysis, 2022.

36
37

(111)

"ABCD" method: zero-order expansion

expand one iteration of the scheme:

$$m(x, t + \Delta t) = \exp(-\Delta t \Lambda) \ m^*(x, t), \qquad m \equiv \begin{pmatrix} W \\ Y \end{pmatrix}$$
$$m + \Delta t \partial_t m + \frac{1}{2} \Delta t^2 \partial_t^2 m + O(\Delta t^3) =$$
$$= m^* - \Delta t \Lambda \ m^* + \frac{1}{2} \Delta t^2 \Lambda^2 \ m^* + O(\Delta t^3)$$

replace the vector m by its two components W and Y

$$W + \Delta t \partial_t W + \frac{1}{2} \Delta t^2 \partial_t^2 W + O(\Delta t^3) =$$

= $W - \Delta t (A W + B Y^*) + \frac{1}{2} \Delta t^2 (A_2 W + B_2 Y^*) + O(\Delta t^3)$
$$Y + \Delta t \partial_t Y + \frac{1}{2} \Delta t^2 \partial_t^2 Y + O(\Delta t^3) =$$

= $Y^* - \Delta t (C W + D Y^*) + \frac{1}{2} \Delta t^2 (C_2 W + D_2 Y^*) + O(\Delta t^3)$

at zero-order: $Y - Y^* = O(\Delta t)$ and $Y^* \equiv Y + S(\Phi(W) - Y)$

the matrix S is supposed fixed then $Y = \Phi(W) + O(\Delta t)$ and $Y^* = \Phi(W) + O(\Delta t)$

"ABCD" method: first-order expansion

$$= \Phi(W) + O(\Delta t)$$

 Y^*

second-order partial differential equations reduced at first-order:

$$\partial_t W + \mathcal{O}(\Delta t) = -(AW + BY^*) + \mathcal{O}(\Delta t)$$

then $\partial_t W + \Gamma_1 = \mathcal{O}(\Delta t)$ with $\Gamma_1 = AW + B\Phi(W)$

we report this result for the microscopic variables

$$\partial_t Y = d\Phi(W) \cdot \partial_t W + O(\Delta t) = d\Phi(W) \cdot (-\Gamma_1) + O(\Delta t)$$

 $\partial_t Y = -d\Phi(W) \cdot \Gamma_1 + O(\Delta t)$

but we know that

$$Y + \Delta t \,\partial_t Y + O(\Delta t^2) = Y^* - \Delta t \left(C W + D Y^*\right) + \frac{1}{2} + O(\Delta t^2)$$

then $Y - Y^* = -\Delta t \,\partial_t Y - \Delta t \left(C W + D Y^*\right) + O(\Delta t^2)$
and $S(Y - \Phi) = \Delta t \left(d\Phi(W) \cdot \Gamma_1 - (C W + D \Phi) \right) + O(\Delta t^2)$

finally

$$Y = \Phi + \Delta t \ S^{-1} \left(d\Phi(W) \cdot \Gamma_1 - (C \ W + D \ \Phi) \right) + O(\Delta t^2)$$

and
$$\Psi_1 = d\Phi(W) \cdot \Gamma_1 - (C \ W + D \ \Phi)$$

"ABCD" method: non-conserved moments at first-order 39

$$\Psi_{1} = d\Phi(W).\Gamma_{1} - (CW + D\Phi)$$
Hénon matrix: $\Sigma \equiv S^{-1} - \frac{1}{2}I$

$$Y = \Phi(W) + \Delta t \ S^{-1} \ \Psi_{1} + O(\Delta t^{2})$$
then
$$Y^{*} = Y + S(\Phi - Y)$$

$$= Y - (\Delta t \Psi_{1} + O(\Delta t^{2}))$$

$$= \Phi(W) + (\Sigma + \frac{1}{2}I) (\Delta t \Psi_{1} + O(\Delta t^{2})) - (\Delta t \Psi_{1} + O(\Delta t^{2}))$$

$$= \Phi(W) + (\Sigma - \frac{1}{2}I) \Delta t \Psi_{1} + O(\Delta t^{2})$$

and

$$\begin{split} Y &= \Phi(W) + \left(\Sigma + \frac{1}{2} \operatorname{I}\right) \Delta t \, \Psi_1 + \operatorname{O}(\Delta t^2) \\ Y^* &= \Phi(W) + \left(\Sigma - \frac{1}{2} \operatorname{I}\right) \Delta t \, \Psi_1 + \operatorname{O}(\Delta t^2) \end{split}$$

"ABCD" method: second-order expansion

 $Y^* = \Phi(W) + (\Sigma)$

$$Y^* = \Phi(W) + \left(\Sigma - \frac{1}{2}I\right)\Delta t \Psi_1 + O(\Delta t^2)$$

$$\partial_t W + \frac{1}{2}\Delta t \partial_t^2 W + O(\Delta t^2) =$$

40

$$= (A W + B Y^*) + \frac{1}{2} \Delta t (A_2 W + B_2 Y^*) + O(\Delta t^2)$$

$$A_2 = A^2 + B C, B_2 = A B + B D$$

$$\partial_t W = -\Gamma_1 + O(\Delta t) = -(AW + B\Phi(W)) + O(\Delta t)$$

then $\partial_t^2 W = -\partial_t (\Gamma_1 + O(\Delta t)) = -d\Gamma_1 \cdot \partial_t W + O(\Delta t)$
 $= d\Gamma_1 \cdot \Gamma_1 + O(\Delta t)$
 $= A\Gamma_1 + B d\Phi \cdot \Gamma_1 + O(\Delta t)$

$$\partial_t W = -\frac{1}{2} \Delta t \left(A \Gamma_1 + B \, \mathrm{d} \Phi . \Gamma_1 \right) - \mathbf{A} \mathbf{W} - B \left(\mathbf{\Phi} + \left(\Sigma - \frac{1}{2} \mathrm{I} \right) \Delta t \, \Psi_1 \right) \\ + \frac{1}{2} \Delta t \left(\left(A^2 + B \, C \right) W + \left(A B + B \, D \right) \Phi \right) + \mathrm{O}(\Delta t^2)$$

$$= -\mathbf{A} \mathbf{W} - \mathbf{B} \mathbf{\Phi} - \Delta t \left[\frac{1}{2} (A(A W + B \Phi)) + \frac{1}{2} B d\Phi \Gamma_{1} + B \Sigma \Psi_{1} - \frac{1}{2} B (d\Phi \Gamma_{1} - C W - D \Phi) \right]$$

$$-\frac{1}{2}(A^{2} + BC)W - \frac{1}{2}(AB + BD)\Phi + O(\Delta t^{2})$$

$$= -\mathbf{A} \mathbf{W} - \mathbf{B} \mathbf{\Phi} - \Delta t B \Sigma \Psi_1 + \mathcal{O}(\Delta t^2)$$

 $\partial_t W = -\Gamma_1 - \Delta t B \Sigma \Psi_1 + O(\Delta t^2)$ $\Gamma_2 = B \Sigma \Psi_1$ and

"ABCD" Taylor expansion method

$$\begin{split} \Lambda &= M \operatorname{diag} \left(\sum_{1 \leq \alpha \leq d} v^{\alpha} \partial_{\alpha} \right) M^{-1} \equiv \begin{pmatrix} A & B \\ C & D \end{pmatrix} \\ m(x, t + \Delta t) &\equiv \begin{pmatrix} W \\ Y \end{pmatrix} (x, t + \Delta t) = \exp(-\Delta t \Lambda) m^{*}(x, t) \\ W^{*} &= W, \ Y^{*} = Y + S \left(\Phi(W) - Y \right) \end{split}$$

hypotheses: *M*, Λ , *S* and $\lambda \equiv \frac{\Delta x}{\Delta t}$ are **fixed** asymptotic expansion of the non-conserved moments

$$Y = \Phi(W) + \Delta t \, S^{-1} \, \Psi_1 + \mathrm{O}(\Delta t^2)$$

emerging asymptotic partial differential equations

 $\partial_t W + \Gamma_1 + \Delta t \, \Gamma_2 = \mathrm{O}(\Delta t^2)$

 Γ_j : vector obtained after *j* space derivations

of the conserved moments W and the equilibrium $\Phi(W)$

general nonlinear ABCD algorithm at second order

 $\Gamma_1 = A W + B \Phi(W)$

 $\Psi_1 = \mathrm{d}\Phi(W).\Gamma_1 - (CW + D\Phi(W))$

 $\Gamma_2 = B \Sigma \Psi_1$ with Σ the Hénon matrix: $\Sigma \equiv S^{-1} - \frac{1}{2}I$

possible to recover formally the Navier-Stokes equations?

formal calculus with SageMath

- SageMath: free open-source mathematics software system licensed under the GNU General Public License.
- It builds on top of many existing open-source packages: NumPy, SciPy, matplotlib, Sympy, Maxima, GAP, FLINT, R, ...

what lattice Boltzmann scheme for Naver-Stokes ? 43

• Isothermal Navier-Stokes

D2Q9 and D2Q13 D3Q19, D3Q27, D3Q33 and D3Q27-2

• Navier-Stokes with energy conservation D2Q13, D2Q17, D2V17 and D2W17 D3Q33 and D3Q27-2

D2Q9

 $\mathbf{5}$ 6 2 3 $\lambda = \frac{\Delta x}{\Delta t}$ 8 $\overline{7}$

the lines of this invertible matrix are chosen orthogonal

D2Q9 (ii)

45

Momentum-velocity operator matrix $\Lambda \equiv M \operatorname{diag}(\sum_{\alpha} v^{\alpha} \partial_{\alpha}) M^{-1}$ $1 \leq \alpha \leq 2 =$ space dimension Block decomposition $\Lambda \equiv \begin{pmatrix} A & B \\ C & D \end{pmatrix}$

Operator matrix Λ for the isothermal D2Q9 scheme

first order partial differential equations

at first order
$$\Gamma_1 = AW + B\Phi(W)$$

$$\Gamma_1 = \begin{cases} \partial_x J_x + \partial_y J_y \\ \frac{2}{3}\lambda^2 \partial_x \rho + \frac{1}{6}\partial_x \Phi_{\varepsilon} + \frac{1}{2}\partial_x \Phi_{xx} + \partial_y \Phi_{xy} \\ \frac{2}{3}\lambda^2 \partial_y \rho + \frac{1}{6}\partial_y \Phi_{\varepsilon} - \frac{1}{2}\partial_y \Phi_{xx} + \partial_x \Phi_{xy} \end{cases}$$

first order terms of the Navier-Stokes equations (Euler equations)

$$\begin{cases} \partial_t \rho + \partial_x J_x + \partial_y J_y \\ \partial_t J_x + \partial_x \left(\frac{J_x^2}{\rho} + p\right) + \partial_y \left(\frac{J_x J_y}{\rho}\right) \\ \partial_t J_y + \partial_x \left(\frac{J_x J_y}{\rho}\right) + \partial_y \left(\frac{J_y^2}{\rho} + p\right) \end{cases}$$

identify the two expressions ($J_{\rm x}\equiv\rho\,u,~J_{\rm y}\equiv\rho\,v)$

$$\begin{cases} \Phi_{\varepsilon} = 6p - 4\lambda^{2}\rho + 3\rho(u^{2} + v^{2}) \\ \Phi_{xx} = \rho(u^{2} - v^{2}) \\ \Phi_{xy} = \rho u v \end{cases}$$

47

D2Q9: towards second order equations

- Φ : vector of moments at equilibrium $\Phi = \left(\Phi_{\varepsilon}, \, \Phi_{xx}, \, \Phi_{xy}, \, \Phi_{qx}, \, \Phi_{qy}, \, \Phi_{h}\right)^{\mathrm{t}}$ $\Psi_1 = \mathrm{d}\Phi(W).\Gamma_1 - (CW + D\Phi(W)) \in \mathbb{R}^6$ viscous fluxes $-\Delta t \Gamma_2 = -\Delta t B \Sigma \Psi_1$ = physical fluxes ? $= \begin{cases} 0\\ \partial_j \tau_{xj} \equiv \partial_x (2 \mu \partial_x u + (\zeta - \mu)(\partial_x u + \partial_y v)) + \partial_y (\mu(\partial_x v + \partial_y u))\\ \partial_i \tau_{vi} \equiv \partial_x (\mu(\partial_x v + \partial_y u)) + \partial_y ((\zeta - \mu)(\partial_x u + \partial_y v) + 2 \mu \partial_y v)) \end{cases}$ Linear system of $2 \times 2 \times 2 \times 3 = 24$ equations, one equation for each of the 2 moments J_x and J_y one equation relative to each dimension
 - one equation for each of the associated partial derivatives ∂_x and ∂_y one equation for each of the 3 nonconserved variables ρ , u, vonly $3 \times 2 = 6$ unknowns (partial derivatives of Φ_{ax} and Φ_{ay})

try to avoid unphysical terms in $\partial_x \rho$ and $\partial_y \rho$ from the second order fluxes? no solution :-(

D2Q9: towards second order equations (ii)

$$\begin{split} \Phi_{\varepsilon} &= 3\,\rho\left(u^{2} + v^{2}\right) - 2\,\lambda^{2}\,\rho, \ \Phi_{xx} = \rho\left(u^{2} - v^{2}\right), \ \Phi_{xy} = \rho\,u\,v\\ \text{discrepancy reduced to third order terms in velocity when}\\ p(\rho) &= \frac{\lambda^{2}}{3}\,\rho: \text{ isothermal fluid with } c_{s} = \frac{\lambda}{\sqrt{3}}\\ \Phi_{qx} &= -\rho\,\lambda^{2}\,u + 3\,\rho\left(u^{2} + v^{2}\right)u, \ \Phi_{qy} = -\rho\,\lambda^{2}\,v + 3\,\rho\left(u^{2} + v^{2}\right)v\\ \text{Hénon matrix } \Sigma &= \text{diag}\left(\sigma_{e}, \sigma_{x}, \sigma_{x}, *, **\right)\\ \text{shear viscosity } \mu &= \frac{\lambda}{3}\,\rho\,\sigma_{x}\,\Delta x, \text{ bulk viscosity } \zeta = \frac{\lambda}{3}\,\rho\,\sigma_{e}\,\Delta x\\ -\Delta t\,\Gamma_{2} &= \begin{pmatrix} 0\\\partial_{j}\tau_{xj}\\\partial_{j}\tau_{yj} \end{pmatrix}\\ &-\sigma_{x}\,\Delta t\,\partial_{x}\begin{pmatrix} u^{3}\,\partial_{x}\rho - v^{3}\,\partial_{y}\rho + 3\,\rho\left(u^{2}\,\partial_{x}u - v^{2}\,\partial_{y}v\right)\\ -v^{3}\,\partial_{x}\rho - u^{3}\,\partial_{y}\rho - 3\,\rho\left(u^{2}\,\partial_{y}u + v^{2}\,\partial_{x}v\right) \end{pmatrix}\\ &-\sigma_{x}\,\Delta t\,\partial_{y}\begin{pmatrix} 0\\ -v^{3}\,\partial_{x}\rho - u^{3}\,\partial_{y}\rho - 3\,\rho\left(u^{2}\,\partial_{y}u + v^{2}\,\partial_{x}v\right)\\ -u^{3}\,\partial_{x}\rho + v^{3}\,\partial_{y}\rho + 3\,\rho\left(-u^{2}\,\partial_{x}u + v^{2}\,\partial_{y}v\right) \end{pmatrix} \end{split}$$

D2Q13

D2Q13: first order equations

$$\begin{aligned} \partial_t \rho + \partial_x J_x + \partial_y J_y &= 0 & \partial_t \rho + \partial_x J_x + \partial_y J_y &= 0 \\ \partial_t J_x + \partial_x (\frac{14}{13} \lambda^2 \rho + \frac{1}{26} \Phi_{\varepsilon} + \frac{1}{2} \Phi_{xx}) + \partial_y \Phi_{xy} &= 0 \\ \partial_t J_x + \partial_x (\rho \, u^2 + \rho) + \partial_y (\rho \, u \, v) &= 0 \\ \partial_t J_y + \partial_x \Phi_{xy} + \partial_y (\frac{14}{13} \lambda^2 \rho + \frac{1}{26} \Phi_{\varepsilon} - \frac{1}{2} \Phi_{xx}) &= 0 \\ \partial_t J_y + \partial_x (\rho \, u \, v) + \partial_y (\rho \, v^2 + \rho) &= 0 \end{aligned}$$

then
$$\begin{array}{ll} \frac{14}{13}\,\lambda^2\,\rho + \frac{1}{26}\Phi_{\varepsilon} + \frac{1}{2}\Phi_{xx} = \rho\,u^2 + \rho,\\ \frac{14}{13}\,\lambda^2\,\rho + \frac{1}{26}\Phi_{\varepsilon} - \frac{1}{2}\Phi_{xx} = \rho\,v^2 + \rho\\ \text{and} & \Phi_{xx} = \rho\,(u^2 - v^2),\,\Phi_{xy} = \rho\,u\,v\\ \frac{28}{13}\,\lambda^2\,\rho + \frac{1}{13}\Phi_{\varepsilon} = \rho\,(u^2 + v^2) + 2\,\rho\\ \text{then} & \Phi_{\varepsilon} = 13\,\rho\,|\mathbf{u}|^2 + 26\,p - 28\,\rho\,\lambda^2 \end{array}$$

The equilibrium values of the moments of degree two are fixed with the first order Euler equations

D2Q13: second order equations

$$\begin{split} \Phi: \text{ vector of moments at equilibrium} \\ \Phi &= \left(\Phi_{\varepsilon}, \, \Phi_{xx}, \, \Phi_{xy}, \, \Phi_{qx} \,, \Phi_{qy} \,, \, \Phi_{rx}, \, \Phi_{ry}, \, \Phi_{h}, \, \Phi_{xxe} \,, \, \Phi_{h2} \right)^{t} \end{split}$$

conservative first order fluxes

 $\Psi_1 = \,\mathrm{d} \Phi(W). \Gamma_1 - (\mathcal{C} \, W + \mathcal{D} \, \Phi(W)) \in \mathbb{R}^6$

viscous fluxes $-\Delta t \Gamma_2 = -\Delta t B \Sigma \Psi_1$ = physical fluxes ? $= \begin{bmatrix} 0 \\ \partial_j \tau_{xj} \equiv \partial_x (2 \mu \partial_x u + (\zeta - \mu)(\partial_x u + \partial_y v)) + \partial_y (\mu (\partial_x v + \partial_y u)) \\ \partial_j \tau_{yj} \equiv \partial_x (\mu (\partial_x v + \partial_y u)) + \partial_y ((\zeta - \mu)(\partial_x u + \partial_y v) + 2 \mu \partial_y v)) \end{bmatrix}$

linear system of $2 \times 2 \times 2 \times 3 = 24$ equations

for $3 \times 4 = 12$ partial derivatives

of Φ_{qx} , Φ_{qy} , Φ_{rx} , Φ_{ry} relative to ρ , u and v

52

D2Q13: second order equations (ii)

after identification, we find:

 $p = \lambda^2 c_s^2 \rho \qquad \text{and the parameter } c_s \text{ is not constrained}$ $\Phi_{qx} = \rho \left(|\mathbf{u}|^2 + 4\lambda^2 c_s^2 - 3\lambda^2 \right) u$ $\Phi_{qy} = \rho \left(|\mathbf{u}|^2 + 4\lambda^2 c_s^2 - 3\lambda^2 \right) v$ $\Phi_{rx} = \rho \left(-\frac{7}{6}\lambda^2 u^2 - 7\lambda^2 v^2 - \frac{21}{2}\lambda^4 c_s^2 + \frac{31}{6}\lambda^4 \right) u$ $\Phi_{ry} = \rho \left(-7\lambda^2 u^2 - \frac{7}{6}\lambda^2 v^2 - \frac{21}{2}\lambda^4 c_s^2 + \frac{31}{6}\lambda^4 \right) v$ $\mu = \rho \sigma_x \lambda c_s^2 \Delta x$ $\zeta = \rho \sigma_e \lambda c_s^2 \Delta x$

ok compared to a pure human algebraic calculus (april 2015)

D3Q19

D3Q19: moments

ρ j_x, j_y, j_z	4 conserved
ε xx, ww	6 of degree 2: fit the Euler equations
$\begin{array}{c} xy , yz , zx \\ q_x , q_y , q_z \\ x yz \\ y zx \end{array}$	6 to fit the viscous terms ?
z xy hh xx _e , ww _e	3 without any influence

D3Q19: recovering first order isothermal equations

isothermal flow: $p \equiv c_s^2 \rho$

55

$$\begin{split} \Phi_{\varepsilon} &= \rho \left(19 \, |\mathbf{u}|^2 - 30 \, \lambda^2 + 57 \, c_s^2 \right) \\ \Phi_{xx} &= \rho \left(2 \, u^2 - v^2 - w^2 \right) \\ \Phi_{ww} &= \rho \left(v^2 - w^2 \right) \\ \Phi_{xy} &= \rho \, u \, v \\ \Phi_{yz} &= \rho \, v \, w \\ \Phi_{zx} &= \rho \, wu \end{split}$$

Then

$$\partial_t \rho + \operatorname{div}(\rho \,\mathbf{u}) = \mathcal{O}(\Delta x)$$

$$\partial_t(\rho \,\mathbf{u}) + \operatorname{div}(\rho \,\mathbf{u} \otimes \mathbf{u}) + \nabla \rho = \mathcal{O}(\Delta x)$$

the value of the sound velocity is not imposed at this step

D3Q19: recovering second order equations?

at first order relative to velocity ...

the relation $c_s = \frac{\lambda}{\sqrt{3}}$ is mandatory

a total of $3 \times 3 \times 3 \times 4 = 108$ equations to solve to identify the second order terms of the Navier Stokes equations 3 equations for momentum j_x , j_y , j_z 3 conservation terms per equation: $\partial_x[**]$, $\partial_y[**]$ and $\partial_z[**]$ 3 partial derivatives ∂_x , ∂_y and ∂_z per variable 4 nonconserved variables ρ , u, v and w $4 \times 6 = 24$ unknowns

expressions that concentrate the error to high order velocity terms

$$\begin{split} \Phi_{qx} &= 5 \,\rho \,u \left(|\mathbf{u}|^2 - \frac{2}{3} \,\lambda^2 \right) \\ \Phi_{qy} &= 5 \,\rho \,v \left(|\mathbf{u}|^2 - \frac{2}{3} \,\lambda^2 \right) \\ \Phi_{qz} &= 5 \,\rho \,w \left(|\mathbf{u}|^2 - \frac{2}{3} \,\lambda^2 \right) \\ \Phi_{x \ yz} &= \rho \,u \left(v^2 - w^2 \right), \ \Phi_{x \ yz} = \rho \,u \left(v^2 - w^2 \right), \ \Phi_{z \ xy} = \rho \,w \left(u^2 - v^2 \right) \\ & \text{a total of 66 equations remain unsolved} \end{split}$$

D3Q19: recovering second order equations? (ii)

57

relaxation of second order moments

$$\varepsilon^{*} = \varepsilon + s_{e} \left(\Phi_{\varepsilon} - \varepsilon \right), \quad xx^{*} = xx + s_{x} \left(\Phi_{xx} - xx \right)$$

$$ww^{*} = ww + s_{x} \left(\Phi_{ww} - ww \right), \quad xy^{*} = xy + s_{x} \left(\Phi_{xy} - xy \right)$$

$$yz^{*} = yz + s_{x} \left(\Phi_{yz} - yz \right), \quad zx^{*} = zx + s_{x} \left(\Phi_{zx} - zx \right)$$
Hénon relations:
$$\sigma_{x} \equiv \frac{1}{s_{x}} - \frac{1}{2}, \quad \sigma_{e} \equiv \frac{1}{s_{e}} - \frac{1}{2}$$
shear viscosity
$$\mu = \frac{1}{3} \rho \sigma_{x} \Delta t \left(\lambda^{2} + O(|\mathbf{u}|^{2}) \right)$$
bulk viscosity
$$\zeta = \frac{2}{9} \rho \sigma_{e} \Delta t \left(\lambda^{2} + O(|\mathbf{u}|^{2}) \right)$$
tensor of vicosities
$$\tau_{xx} = 2 \mu \partial_{x} u + \left(\zeta - \frac{2}{3} \mu \right) \operatorname{div} \mathbf{u}$$

$$\tau_{yy} = 2 \mu \partial_{y} v + \left(\zeta - \frac{2}{3} \mu \right) \operatorname{div} \mathbf{u}, \quad \tau_{zz} = 2 \mu \partial_{z} w + \left(\zeta - \frac{2}{3} \mu \right) \operatorname{div} \mathbf{u}$$

 $\tau_{xy} = \mu \left(\partial_x v + \partial_y u \right), \ \tau_{yz} = \mu \left(\partial_y w + \partial_z v \right), \ \tau_{zx} = \mu \left(\partial_z u + \partial_x w \right)$

Approximative isothermal Navier-Stokes equations at second order $\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = O(\Delta x^2)$ $\partial_t (\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla \rho - \Delta t \operatorname{div} \tau = \Delta x O(|\mathbf{u}|^3) + O(\Delta x^2)$

D3Q27

58

D3Q27: moments

ho	4 conserved
j_x, j_y, j_z	6 of dogree 2: fit the Euler equations
xx, ww	o of degree 2. In the Luter equations
xy , yz , zx	
q_X, q_y, q_z	/ to fit the viscous terms ?
y zx	
z xy	
xyz r_x, r_y, r_z	10 without influence
hh	
xx_e , WW_e	
xy_e , yz_e , zx_e h3	

D3Q27: recovering first order isothermal equations? 60

isothermal flow: $p \equiv c_s^2 \rho$

$$\Phi_{\varepsilon} = \rho \left(|\mathbf{u}|^2 + 3c_s^2 - 2\lambda^2 \right)$$

$$\Phi_{xx} = \rho \left(2u^2 - v^2 - w^2 \right)$$

$$\Phi_{ww} = \rho \left(v^2 - w^2 \right)$$

$$\Phi_{xy} = \rho u v$$

$$\Phi_{yz} = \rho v w$$

$$\Phi_{zx} = \rho wu$$

Then

$$\partial_t \rho + \operatorname{div}(\rho \,\mathbf{u}) = \mathcal{O}(\Delta x)$$

$$\partial_t(\rho \,\mathbf{u}) + \operatorname{div}(\rho \,\mathbf{u} \otimes \mathbf{u}) + \nabla \rho = \mathcal{O}(\Delta x)$$

the value of the sound velocity is not imposed at this step essentially analogous to the D3Q19 case...

61

D3Q27: recovering second order equations?

the relation $c_s = \frac{\lambda}{\sqrt{3}}$ is imposed

a total of $3 \times 3 \times 3 \times 4 = 108$ equations to solve to identify for $4 \times 7 = 28$ unknown partial derivatives of Φ_{ax} , Φ_{av} , Φ_{az} , $\Phi_{x vz}$, $\Phi_{v zx}$, $\Phi_{z xv}$, Φ_{xvz} relative to ρ , u, v, and wnonisotropic expressions for high order velocity terms errors $\Phi_{av} = \rho u (3 |\mathbf{u}|^2 - 2\lambda^2), \quad \Phi_{av} = \rho v (3 |\mathbf{u}|^2 - 2\lambda^2)$ $\Phi_{az} = \rho w (3 |\mathbf{u}|^2 - 2 \lambda^2)$ $\Phi_{x yz} = \rho u (v^2 - w^2) - \rho u^3$ $\Phi_{v,zx} = \rho v (w^2 - u^2) + \rho v^3$ $\Phi_{z vv} = \rho w (u^2 - v^2) - \rho w^3, \quad \Phi_{xvz} = \rho u v w$ approximative isothermal Navier-Stokes equations at second order $\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = O(\Delta x^2)$ $\partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p - \operatorname{div} \tau = \Delta x \operatorname{O}(|\mathbf{u}|^3) + \operatorname{O}(\Delta x^2)$ a total of 56 [44] equations remain unsolved

D3Q33

62

D3Q33: moments

$ ho,j_x,j_y,j_z$	4 conserved
ε	6 of degree 2: fit the Euler equations
xx, ww	
xy , yz , zx	
q_x, q_y, q_z	13 to fit the viscous terms
x yz, y zx, z xy	
xyz	
r_x, r_y, r_z	
t_x, t_y, t_z	
xx _e , ww _e	10 without any influence
xx_h , ww_h	
xy_e , yz_e , zx_e	
hh, $h2$, $h4$	

D3Q33: equilibrium value to recover first order

isothermal flow: $p \equiv c_s^2 \rho$ the sound velocity c_s is a priori not imposed 64

$$\Phi_{\varepsilon} = \rho \left(11 |\mathbf{u}|^2 + 33 c_s^2 - 26 \lambda^2 \right)$$

$$\Phi_{xx} = \rho \left(2 u^2 - v^2 - w^2 \right)$$

$$\Phi_{ww} = \rho \left(v^2 - w^2 \right)$$

$$\Phi_{xy} = \rho u v$$

$$\Phi_{yz} = \rho v w$$

$$\Phi_{zx} = \rho wu$$

then
$$\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = O(\Delta x)$$

 $\partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla \rho = O(\Delta x)$

65

D3Q33: second order partial differential equations

the 108 equations are completely solved for $4 \times 13 = 52$ unknown partial derivatives of 13 red moments relative to ρ , u, v, and walgebraic nonlinear expressions for high order moments

$$\begin{split} \Phi_{qx} &= \rho \, u \left(13 \, |\mathbf{u}|^2 + 65 \, c_s^2 - 37 \, \lambda^2 \right) \\ \Phi_{qy} &= \rho \, v \left(13 \, |\mathbf{u}|^2 + 65 \, c_s^2 - 37 \, \lambda^2 \right) \\ \Phi_{qz} &= \rho \, w \left(13 \, |\mathbf{u}|^2 + 65 \, c_s^2 - 37 \, \lambda^2 \right) \\ \Phi_{x \, yz} &= \rho \, u \left(v^2 - w^2 \right) \\ \Phi_{y \, zx} &= \rho \, v \left(w^2 - u^2 \right) \\ \Phi_{z \, xy} &= \rho \, w \left(u^2 - v^2 \right) \\ \Phi_{xyz} &= \rho \, u \, v \, w \\ \Phi_{rx} + \frac{38}{13} \frac{\Phi_{tx}}{\lambda^2} &= \rho \, u \, \lambda^2 \left(- \frac{161}{39} \, u^2 - \frac{345}{13} \left(v^2 + w^2 \right) + \frac{1265}{39} \, \lambda^2 - \frac{2553}{39} \, c_s^2 \right) \\ \Phi_{ry} + \frac{38}{13} \frac{\Phi_{ty}}{\lambda^2} &= \rho \, v \, \lambda^2 \left(- \frac{161}{39} \, v^2 - \frac{345}{13} \left(w^2 + u^2 \right) + \frac{1265}{39} \, \lambda^2 - \frac{2553}{39} \, c_s^2 \right) \\ \Phi_{rz} + \frac{38}{13} \frac{\Phi_{ty}}{\lambda^2} &= \rho \, w \, \lambda^2 \left(- \frac{161}{39} \, w^2 - \frac{345}{13} \left(u^2 + v^2 \right) + \frac{1265}{39} \, \lambda^2 - \frac{2553}{39} \, c_s^2 \right) \end{split}$$

D3Q33: second order partial differential equations (ii) 66

relaxation of second order moments

$$\varepsilon^* = \varepsilon + s_e (\Phi_{\varepsilon} - \varepsilon), \quad xx^* = xx + s_x (\Phi_{xx} - xx)$$

$$ww^* = ww + s_x (\Phi_{ww} - ww), \quad xy^* = xy + s_x (\Phi_{xy} - xy)$$

$$yz^* = yz + s_x (\Phi_{yz} - yz), \quad zx^* = zx + s_x (\Phi_{zx} - zx)$$
Hénon relations:
$$\sigma_x \equiv \frac{1}{s_x} - \frac{1}{2}, \quad \sigma_e \equiv \frac{1}{s_e} - \frac{1}{2}$$
shear viscosity
$$\mu = \rho c_{\varepsilon}^2 \lambda \sigma_x \Delta x$$

bulk viscosity
$$\zeta = \frac{2}{3} \rho c_s^2 \lambda \sigma_e \Delta x$$

tensor of vicosities

$$\begin{aligned} \tau_{xx} &= 2\,\mu\,\partial_x u + \left(\zeta - \frac{2}{3}\,\mu\right) \operatorname{div} \mathbf{u} \\ \tau_{yy} &= 2\,\mu\,\partial_y \mathbf{v} + \left(\zeta - \frac{2}{3}\,\mu\right) \operatorname{div} \mathbf{u} \\ \tau_{zz} &= 2\,\mu\,\partial_z w + \left(\zeta - \frac{2}{3}\,\mu\right) \operatorname{div} \mathbf{u} \\ \tau_{xy} &= \mu\left(\partial_x \mathbf{v} + \partial_y u\right), \ \tau_{yz} &= \mu\left(\partial_y w + \partial_z \mathbf{v}\right), \ \tau_{zx} &= \mu\left(\partial_z u + \partial_x w\right) \end{aligned}$$

isothermal Navier-Stokes equations satisfied at second order :-) $\partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = O(\Delta x^2)$ $\partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p - \operatorname{div} \tau = O(\Delta x^2)$

D3Q27-2, Lallemand, d'Humières, Luo, Rubinstein (2003)67

D3Q27-2: moments

 ρ, j_x, j_v, j_z 4 conserved 6 of degree 2: fit the Euler equations ε XX, WW xy, yz, zx10 to fit the viscous terms q_x, q_y, q_z x yz, y zx, z xyxyz r_x , r_y , r_z hh 7 without influence on the Navier-Stokes equations XX_e, WW_e Xy_e , yZ_e , ZX_e h2

D3Q27-2 allows to recover isothermal Navier Stokes ! 69

:-)

 $p \equiv c_s^2 \rho$, c_s is a priori not imposed isothermal flow: $\Phi_{\varepsilon} = \rho \left(3 \, |\mathbf{u}|^2 + 9 \, c_{\varepsilon}^2 - 8 \lambda^2 \right)$ $\Phi_{xx} = \rho \left(2 u^2 - v^2 - w^2 \right)$ $\Phi_{ww} = \rho \left(v^2 - w^2 \right)$ $\Phi_{xy} = \rho u v$, $\Phi_{yz} = \rho v w$, $\Phi_{zx} = \rho w u$ $\Phi_{ax} = \rho u (|\mathbf{u}|^2 + 5 c_c^2 - 3 \lambda^2)$ $\Phi_{av} = \rho v (|\mathbf{u}|^2 + 5 c_c^2 - 3 \lambda^2)$ $\Phi_{az} = \rho w (|\mathbf{u}|^2 + 5 c_e^2 - 3 \lambda^2)$ $\Phi_{x,yz} = \rho u (v^2 - w^2)$ $\Phi_{v,zx} = \rho v (w^2 - u^2)$ $\Phi_{z xy} = \rho w (u^2 - v^2)$ $\Phi_{xvz} = \rho u v w$ $\Phi_{rx} = \rho \, u \, \lambda^2 \left(5 \, \lambda^2 - 9 \, c_{\epsilon}^2 - (u^2 + 3 \, v^2 + 3 \, w^2) \right)$ $\Phi_{rv} = \rho v \lambda^2 (5 \lambda^2 - 9 c_c^2 - (v^2 + 3 w^2 + 3 u^2))$ $\Phi_{rz} = \rho w \lambda^2 (5 \lambda^2 - 9 c_s^2 - (w^2 + 3 u^2 + 3 v^2))$ vicosities $\mu = \rho c_{\epsilon}^2 \sigma_x \Delta t$, $\zeta = \frac{2}{3} \rho c_{\epsilon}^2 \sigma_e \Delta t$

Navier - Stokes with conservation of energy

70

... in one space dimension

conserved variables ρ , $J \equiv \rho u$, $E = \frac{1}{2} \rho u^2 + \rho e$ polytropic perfect gas $p = (\gamma - 1) \rho e$, $e = c_v T$, $\gamma = \frac{c_p}{c_v}$ Prandtl number $Pr = \frac{\mu c_p}{\kappa}$

mass conservation $\partial_t \rho + \partial_x (\rho \, u) = 0$

momentum conservation

$$\partial_t(\rho u) + \partial_x(\rho u^2 + p) - \partial_x(\mu \partial_x u) = 0$$

energy conservation

 $\begin{array}{l} \partial_t E + \partial_x (E \ u + p \ u) - \partial_x (\mu \ u \ \partial_x u) - \frac{\gamma}{P_r} \partial_x (\mu \ \partial_x e) = 0 \\ \text{Fourier law of heat dissipation} & -\frac{\gamma}{P_r} \partial_x (\mu \ \partial_x e) \\ \text{viscous work} & \partial_x (\mu \ u \ \partial_x u) \end{array}$

thermal Navier-Stokes with lattice Boltzmann schemes 71

the viscous and thermal modes merge together for a critical wave number [P. Lallemand and L.-S. Luo, Phys. Rev. E, 2003]
linear analysis of D2Q13 lattice Boltzmann scheme for advective acoustics and tuning the parameters of the D2Q13

De Vahl Davis thermal test case for natural convection 72

Rayleigh number $= 10^5$, Prandtl number = 0.71D2Q13 lattice Boltzmann scheme with a single particle distribution iso-velocity curves for the modulus of the fluid speed [Pierre Lallemand and FD, CiCP, 2015]
D2Q13

D2Q13: isothermal operator matrix Λ

74

75

D2Q13: momentum-velocity operator matrix A

 $\Lambda =$

76

D2Q13: first order equations

$$\begin{aligned} \partial_t \rho + \partial_x J_x + \partial_y J_y &= 0 & \partial_t \rho + \partial_x J_x + \partial_y J_y = 0 \\ \partial_t J_x + \partial_x (\frac{14}{13} \lambda^2 \rho + \frac{1}{26} \varepsilon + \frac{1}{2} \Phi_{xx}) + \partial_y \Phi_{xy} &= 0 \\ \partial_t J_x + \partial_x (\rho u^2 + \rho) + \partial_y (\rho u v) &= 0 \\ \partial_t J_y + \partial_x \Phi_{xy} + \partial_y (\frac{14}{13} \lambda^2 \rho + \frac{1}{26} \varepsilon - \frac{1}{2} \Phi_{xx}) &= 0 \\ \partial_t J_y + \partial_x (\rho u v) + \partial_y (\rho v^2 + \rho) &= 0 \\ \partial_t \varepsilon + 11 \lambda^2 (\partial_x J_x + \partial_y J_y) + 13 (\partial_x \Phi_{qx} + \partial_y \Phi_{qy}) &= 0 \\ \partial_t E + \partial_x (E u + \rho u) + \partial_y (E v + \rho v) &= 0 \end{aligned}$$
then
$$\frac{14}{13} \lambda^2 \rho + \frac{1}{26} \varepsilon + \frac{1}{2} \Phi_{xx} &= \rho u^2 + \rho, \qquad \Phi_{xy} = \rho u v$$

 $\frac{14}{13}\lambda^2 \rho + \frac{1}{26}\varepsilon - \frac{1}{2}\Phi_{xx} = \rho v^2 + p \quad \text{and} \quad \Phi_{xx} = \rho \left(u^2 - v^2\right)$ Lattice Boltzmann: $\frac{28}{12}\lambda^2 \rho + \frac{1}{12}\varepsilon = \rho \left(u^2 + v^2\right) + 2p$ is conserved

Physics: $E \equiv \frac{1}{2} \rho (u^2 + v^2) + \rho e$ is conserved

then $p = \rho e$, $\gamma = 2$ and $\varepsilon = 26 E - 28 \lambda^2 \rho$ $\Phi_{qx} = \rho u (|\mathbf{u}|^2 + 4 e - 3 \lambda^2), \quad \Phi_{qy} = \rho v (|\mathbf{u}|^2 + 4 e - 3 \lambda^2)$

77

D2Q13: towards second order equations

 Φ : vector of moments at equilibrium $\Phi = \left(\Phi_{xx}, \Phi_{xy}, \Phi_{qx}, \Phi_{qy}, \Phi_{rx}, \Phi_{ry}, \Phi_{h}, \Phi_{xxe}, \Phi_{h2}\right)^{t}$ $\Psi_1 = \mathrm{d}\Phi(W).\Gamma_1 - (CW + D\Phi(W)) \in \mathbb{R}^9$ viscous fluxes $-\Delta t \Gamma_2 = -\Delta t B \Sigma \Psi_1$ = physical fluxes ? $= \begin{bmatrix} \partial_{j}\sigma_{xj} \equiv \partial_{x}(2\mu\partial_{x}u + (\zeta - \mu)(\partial_{x}u + \partial_{y}v)) + \partial_{y}(\mu(\partial_{x}v + \partial_{y}u)) \\ \partial_{j}\sigma_{yj} \equiv \partial_{x}(\mu(\partial_{x}v + \partial_{y}u)) + \partial_{y}((\zeta - \mu)(\partial_{x}u + \partial_{y}v) + 2\mu\partial_{y}v)) \\ 26[\partial_{j}(u_{i}\sigma_{ij}) + \frac{\gamma}{Pr}(\partial_{x}(\mu\partial_{x}e) + \partial_{y}(\mu\partial_{y}e))] \end{bmatrix}$ $3 \times 2 \times 2 \times 4 = 48$ equations to solve 3 equations (i_x, i_y, E) 2 conservation terms ∂_x and ∂_y per equation 2 partial derivatives ∂_x and ∂_y per variable 4 nonconserved variables ρ , u, v, e16 unknowns

- 4 moments Φ_{rx} , Φ_{ry} , Φ_h , Φ_{xxe}
- 4 partial derivatives relative to ρ , u, v, e per moment

D2Q13: towards second order equations (ii)

78

48 equations to solve

16 unknowns

important remaining discrepancies

22 equations cannot be solved

$$\begin{aligned} \Phi_{rx} &= \rho \, u \, \lambda^2 \left(\frac{31}{6} \, \lambda^2 - \frac{7}{6} \left(u^2 + 6 \, v^2 \right) - \frac{21}{2} \, e \right) \\ \Phi_{ry} &= \rho \, v \, \lambda^2 \left(\frac{31}{6} \, \lambda^2 - \frac{7}{6} \left(6 \, u^2 + v^2 \right) - \frac{21}{2} \, e \right) \\ \Phi_h &= \rho \left(\frac{77}{2} \, |\mathbf{u}|^4 + 308 \left(|\mathbf{u}|^2 + e \right) e - 361 \, \lambda^2 \left(e + |\mathbf{u}|^2 \right) + 140 \, \lambda^4 \right) \\ \Phi_{xxe} &= \rho \left(u^2 - v^2 \right) \left(\frac{17}{12} \, |\mathbf{u}|^2 + \frac{17}{2} \, e - \frac{65}{12} \, \lambda^2 \right) \end{aligned}$$

viscosities: $\mu = 2 \rho e \sigma_x \Delta t$, $\zeta = 0$, $Pr = \frac{\sigma_x}{2 \sigma_e}$,

D2Q17

D2Q17: first order equations

$$\begin{aligned} \partial_t \rho + \partial_x J_x + \partial_y J_y &= 0 & \partial_t \rho + \partial_x J_x + \partial_y J_y &= 0 \\ \partial_t J_x + \partial_x (\frac{30}{17} \lambda^2 \rho + \frac{1}{34} \varepsilon + \frac{1}{2} \Phi_{xx}) + \partial_y \Phi_{xy} &= 0 \\ \partial_t J_x + \partial_x (\rho u^2 + \rho) + \partial_y (\rho u v) &= 0 \\ \partial_t J_y + \partial_x \Phi_{xy} + \partial_y (\frac{30}{17} \lambda^2 \rho + \frac{1}{34} \varepsilon - \frac{1}{2} \Phi_{xx}) &= 0 \\ \partial_t J_y + \partial_x (\rho u v) + \partial_y (\rho v^2 + \rho) &= 0 \\ \partial_t \varepsilon + \frac{109}{3} \lambda^2 (\partial_x J_x + \partial_y J_y) + \frac{17}{3} (\partial_x \Phi_{qx} + \partial_y \Phi_{qy}) &= 0 \\ \partial_t E + \partial_x (E u + \rho u) + \partial_y (E v + \rho v) &= 0 \end{aligned}$$

then
$$\begin{array}{ll} \frac{30}{17}\,\lambda^2\,\rho + \frac{1}{34}\varepsilon + \frac{1}{2}\Phi_{xx} = \rho\,u^2 + p, & \Phi_{xy} = \rho\,u\,v\\ \frac{30}{17}\,\lambda^2\,\rho + \frac{1}{34}\varepsilon - \frac{1}{2}\Phi_{xx} = \rho\,v^2 + p & \text{and} & \Phi_{xx} = \rho\left(u^2 - v^2\right) \end{array}$$

$$\frac{60}{17} \lambda^2 \rho + \frac{1}{17} \varepsilon = \rho \left(u^2 + v^2 \right) + 2p \text{ is conserved}$$

then $p = \rho e \text{ and } \gamma = 2$

then $\varepsilon = 34 E - 60 \lambda^2 \rho$

D2Q17: first order equations (ii)

$$\varepsilon = 34 E - 60 \lambda^2 \rho$$
, $p = \rho e$

$$\partial_t \varepsilon + \frac{109}{3} \lambda^2 \left(\partial_x J_x + \partial_y J_y \right) + \frac{17}{3} \left(\partial_x q_x + \partial_y q_y \right) = 0$$

$$\partial_t (34 E - 60 \lambda^2 \rho) + \partial_x (\varepsilon u + 34 \rho u) + \partial_y (\varepsilon v + 34 \rho v) = 0$$

then
$$\begin{split} \Phi_{qx} &= \rho \, u \left(3 \, |\mathbf{u}|^2 + 12 \, e - 17 \, \lambda^2 \right) \\ \Phi_{qy} &= \rho \, v \left(3 \, |\mathbf{u}|^2 + 12 \, e - 17 \, \lambda^2 \right) \end{split}$$

 Φ : vector of moments at equilibrium

$$\Phi = \begin{pmatrix} \Phi_{xx}, \Phi_{xy}, \Phi_{qx}, \Phi_{qy} \\ \Phi_{rx}, \Phi_{ry}, \Phi_{sx}, \Phi_{sy}, \Phi_{h}, \Phi_{xxe}, \Phi_{xye} \\ \Phi_{h3}, \Phi_{h4} \end{pmatrix}$$

81

82

D2Q17: second order equations

linear system of $3 \times 2 \times 2 \times 4 = 48$ equations for $4 \times 7 = 28$ partial derivatives

possible reconstruction of the nonlinear functions:

$$\begin{split} \Phi_{rx} &+ \frac{2}{31} \frac{\Phi_{sx}}{\lambda^2} = \frac{1}{62} \rho \, u \, \lambda^2 \big(221 \, \lambda^2 - 101 \, u^2 + 54 \, v^2 - 249 \, u \, e \big) \\ \Phi_{ry} &+ \frac{2}{31} \frac{\Phi_{sy}}{\lambda^2} = \frac{1}{62} \rho \, v \, \lambda^2 \big(221 \, \lambda^2 - 101 \, v^2 + 54 \, u^2 - 249 \, u \, e \big) \\ \Phi_h &= \rho \left(620 \, \lambda^4 + \frac{109}{2} \, |\mathbf{u}|^4 + 436 \, e \left(|\mathbf{u}|^2 + e \right) - \frac{969}{2} \, \lambda^2 \left(|\mathbf{u}|^2 + 2e \right) \right) \\ \Phi_{xxe} &= \rho \left(u^2 - v^2 \right) \big(- \frac{65}{12} \, \lambda^2 + \frac{17}{12} \, |\mathbf{u}|^2 + \frac{17}{2} \, e \big) \\ \Phi_{xye} &= \rho \, u \, v \, \left(- \frac{65}{12} \, \lambda^2 + \frac{17}{24} \, |\mathbf{u}|^2 + \frac{17}{4} \, e \right) \end{split}$$

viscosities: $\mu = \rho e \sigma_x \Delta t$ and $\zeta = 0$ satisfy the relation $\sigma_x = \sigma_q$ Prandtl number: Pr = 1and all the equations are satisfied :-)

D2V17 of Philippi and Hegele (2006)

D2V17: non null elements of the Λ matrix																	
	0	*	*	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	*	0	0	*	*	*	0	0	0	0	0	0	0	0	0	0	0
	*	0	0	*	*	*	0	0	0	0	0	0	0	0	0	0	0
	0	*	*	0	0	0	*	*	0	0	0	0	0	0	0	0	0
	0	*	*	0	0	0	*	*	*	*	*	*	0	0	0	0	0
	0	*	*	0	0	0	*	*	*	*	*	*	0	0	0	0	0
	0	0	0	*	*	*	0	0	0	0	0	0	*	*	*	0	0
	0	0	0	*	*	*	0	0	0	0	0	0	*	*	*	0	0
	0	0	0	0	*	*	0	0	0	0	0	0	*	*	*	*	0
	0	0	0	0	*	*	0	0	0	0	0	0	*	*	*	*	0
	0	0	0	0	*	*	0	0	0	0	0	0	0	*	*	*	*
	0	0	0	0	*	*	0	0	0	0	0	0	0	*	*	*	*
	0	0	0	0	0	0	*	*	*	*	0	0	0	0	0	0	0
	0	0	0	0	0	0	*	*	*	*	*	*	0	0	0	0	0
	0	0	0	0	0	0	*	*	*	*	*	*	0	0	0	0	0
	0	0	0	0	0	0	0	0	*	*	*	*	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	*	*	0	0	0	0	0

84

D2V17: first order equations

$$\begin{split} \partial_t \rho + \partial_x J_x + \partial_y J_y &= 0 & \partial_t \rho + \partial_x J_x + \partial_y J_y = 0 \\ \partial_t J_x + \partial_x (\frac{1}{2} \Phi_{xx} + \frac{1}{34} \varepsilon + \frac{40}{17} \rho \lambda^2) + \partial_y \Phi_{xy} &= 0 \\ \partial_t J_x + \partial_x (\rho u^2 + p) + \partial_y (\rho u v) &= 0 \\ \partial_t J_y + \partial_x \Phi_{xy} + \partial_y (-\frac{1}{2} \Phi_{xx} + \frac{1}{34} \varepsilon + \frac{40}{17} \rho \lambda^2) - \frac{1}{2} \Phi_{xx}) &= 0 \\ \partial_t J_y + \partial_x (\rho u v) + \partial_y (\rho v^2 + p) &= 0 \\ \partial_t \varepsilon + \frac{95}{2} \lambda^2 (\partial_x J_x + \partial_y J_y) + \frac{17}{2} (\partial_x \Phi_{qx} + \partial_y \Phi_{qy}) &= 0 \\ \partial_t E + \partial_x (E u + p u) + \partial_y (E v + p v) &= 0 \end{split}$$

Then $\frac{1}{2} \Phi_{xx} + \frac{1}{34} \varepsilon + \frac{40}{17} \rho \lambda^{2} = \rho u^{2} + p$ $-\frac{1}{2} \Phi_{xx} + \frac{1}{34} \varepsilon + \frac{40}{17} \rho \lambda^{2} = \rho v^{2} + p$ $\Phi_{xy} = \rho u v \text{ and } \Phi_{xx} = \rho (u^{2} - v^{2})$ $\frac{1}{34} \varepsilon + \frac{40}{17} \rho \lambda^{2} = \frac{1}{2} \rho (u^{2} + v^{2}) + p$ so $\frac{1}{2} \rho (u^{2} + v^{2}) + p$ must be conserved and $\gamma = 2$ in consequence, $\frac{1}{34} \varepsilon + \frac{40}{17} \rho \lambda^{2} = E \equiv \frac{1}{2} \rho (u^{2} + v^{2}) + \rho e$ $\varepsilon = 34 E - 80 \lambda^{2} \rho$

D2V17: first order equations (ii)

$$\varepsilon = 34 E - 80 \lambda^2 \rho = 17 \rho (u^2 + v^2) + 34 \rho e - 80 \rho \lambda^2$$

$$\partial_t \varepsilon + \frac{95}{2} \lambda^2 (\partial_x J_x + \partial_y J_y) + \frac{17}{2} (\partial_x \Phi_{qx} + \partial_y \Phi_{qy}) = 0$$

$$\partial_t E + \partial_x (E u + p u) + \partial_y (E v + p v) = 0$$

$$\partial_t \varepsilon + \partial_x (\varepsilon u + 34 p u) + \partial_y (\varepsilon v + 34 p v) = 0$$

then

$$\frac{95}{2} \lambda^2 J_x + \frac{17}{2} \Phi_{qx} = \varepsilon \, u + 34 \, p \, u$$

$$\frac{95}{2} \lambda^2 J_y + \frac{17}{2} \Phi_{qy} = \varepsilon \, v + 34 \, p \, v$$

 and

$$\Phi_{qx} = \frac{2}{17} \varepsilon u + 4 p u - \frac{95}{17} \lambda^2 J_x$$

$$\Phi_{qy} = \frac{2}{17} \varepsilon v + 4 p v - \frac{95}{17} \lambda^2 J_y$$

$$\Phi_{qx} = (2 |\mathbf{u}|^2 + 8 e - 15 \lambda^2) \rho u$$

$$\Phi_{qy} = (2 |\mathbf{u}|^2 + 8 e - 15 \lambda^2) \rho v$$

D2V17: second order equations

reconstruction of the nonlinear functions:

$$\begin{split} \Phi_{rx} + \frac{5}{3} \frac{\Phi_{sx}}{\lambda^2} &= \rho \, u \, \lambda^2 \left(\frac{1}{9} \, u^2 - \frac{8}{3} \, v^2 - \frac{7}{3} \, e + \frac{35}{9} \, \lambda^2 \right) \\ \Phi_{ry} + \frac{5}{3} \frac{\Phi_{sy}}{\lambda^2} &= \rho \, v \, \lambda^2 \left(\frac{1}{9} \, v^2 - \frac{8}{3} \, u^2 - \frac{7}{3} \, e + \frac{35}{9} \, \lambda^2 \right) \\ \Phi_h &= \rho \left(\frac{19}{2} \, |\mathbf{u}|^4 + 76 \, e \left(|\mathbf{u}|^2 + e \right) - 185 \, \lambda^2 \left(\frac{1}{2} |\mathbf{u}|^2 + e \right) + 100 \, \lambda^4 \right) \\ \Phi_{xxe} &= \rho \left(u^2 - v^2 \right) \left(\frac{41}{36} \, |\mathbf{u}|^2 + \frac{41}{6} \, e - \frac{365}{36} \, \lambda^2 \right) \\ \Phi_{xye} &= \rho \, u \, v \left(\frac{17}{24} \, |\mathbf{u}|^2 + \frac{17}{4} \, e - \frac{65}{12} \, \lambda^2 \right) \end{split}$$

viscosities: $\mu = \rho e \sigma_x \Delta t$ and $\zeta = 0$ satisfy the relation $\sigma_x = \sigma_q$ Prandtl number: Pr = 1as for the D2Q17 lattice Boltzmann scheme

:-)

D2W17 of Pierre Lallemand

D2W17: first order equations

$$\begin{split} \partial_t \rho + \partial_x J_x + \partial_y J_y &= 0 & \partial_t \rho + \partial_x J_x + \partial_y J_y = 0 \\ \partial_t J_x + \partial_x (\frac{1}{2} \Phi_{xx} + \frac{1}{34} \varepsilon + \frac{26}{17} \rho \lambda^2) + \partial_y \Phi_{xy} &= 0 \\ \partial_t J_x + \partial_x (\rho u^2 + p) + \partial_y (\rho u v) &= 0 \\ \partial_t J_y + \partial_x \Phi_{xy} + \partial_y (-\frac{1}{2} \Phi_{xx} + \frac{1}{34} \varepsilon + \frac{26}{17} \rho \lambda^2) - \frac{1}{2} \Phi_{xx}) &= 0 \\ \partial_t J_y + \partial_x (\rho u v) + \partial_y (\rho v^2 + p) &= 0 \\ \partial_t \varepsilon + \frac{259}{13} \lambda^2 (\partial_x J_x + \partial_y J_y) + \frac{17}{13} (\partial_x \Phi_{qx} + \partial_y \Phi_{qy}) &= 0 \\ \partial_t E + \partial_x (E u + p u) + \partial_y (E v + p v) &= 0 \end{split}$$

then $\frac{1}{2} \Phi_{xx} + \frac{1}{34} \varepsilon + \frac{26}{17} \rho \lambda^2 = \rho u^2 + p$ $-\frac{1}{2} \Phi_{xx} + \frac{1}{34} \varepsilon + \frac{26}{17} \rho \lambda^2 = \rho v^2 + p$ $\Phi_{xy} = \rho u v \text{ and } \Phi_{xx} = \rho (u^2 - v^2)$ $\frac{1}{34} \varepsilon + \frac{26}{17} \rho \lambda^2 = \frac{1}{2} \rho (u^2 + v^2) + p$ so $\frac{1}{2} \rho (u^2 + v^2) + p$ must be conserved and $\gamma = 2$ in consequence, $\frac{1}{34} \varepsilon + \frac{26}{17} \rho \lambda^2 = E \equiv \frac{1}{2} \rho (u^2 + v^2) + \rho e$ $\varepsilon = 34 E - 52 \lambda^2 \rho$

D2W17: first order equations (ii)

$$\varepsilon = 34 E - 52 \lambda^2 \rho = 17 \rho (u^2 + v^2) + 34 \rho e - 52 \rho \lambda^2$$

$$\partial_t \varepsilon + \frac{259}{13} \lambda^2 (\partial_x J_x + \partial_y J_y) + \frac{17}{13} (\partial_x \Phi_{qx} + \partial_y \Phi_{qy}) = 0$$

$$\partial_t E + \partial_x (E u + p u) + \partial_y (E v + p v) = 0$$

$$\partial_t \varepsilon + \partial_x (\varepsilon u + 34 p u) + \partial_y (\varepsilon v + 34 p v) = 0$$

then

$$\frac{259}{13} \lambda^2 J_x + \frac{17}{13} \Phi_{qx} = \varepsilon \, u + 34 \, p \, u$$
$$\frac{259}{13} \lambda^2 J_y + \frac{17}{13} \Phi_{qy} = \varepsilon \, v + 34 \, p \, v$$

and

$$\begin{split} \Phi_{qx} &= \frac{13}{17} \varepsilon \, u + 26 \, p \, u - \frac{259}{17} \, \lambda^2 \, J_x \\ \Phi_{qy} &= \frac{13}{17} \varepsilon \, v + 26 \, p \, v - \frac{259}{17} \, \lambda^2 \, J_y \\ \Phi_{qx} &= (13 \, |\mathbf{u}|^2 + 52 \, e - 55 \, \lambda^2) \, \rho \, u \\ \Phi_{qy} &= (13 \, |\mathbf{u}|^2 + 52 \, e - 55 \, \lambda^2) \, \rho \, v \end{split}$$

90

D2W17: second order equations

reconstruction of the nonlinear functions:

$$\begin{split} \Phi_{rx} &+ \frac{171}{2} \, \Phi_{xy2} = \rho \, u \, \lambda^2 \left(\frac{85}{4} \, u^2 - 50 \, v^2 + \frac{55}{4} \, e + \frac{35}{4} \, \lambda^2 \right) \\ \Phi_{ry} &+ \frac{171}{2} \, \Phi_{yx2} = \rho \, u \, \lambda^2 \left(-50 \, u^2 + \frac{85}{4} \, v^2 + \frac{55}{4} \, e + \frac{35}{4} \, \lambda^2 \right) \\ \Phi_h &= \rho \left(\frac{259}{2} \, |\mathbf{u}|^4 + 1036 \left(|\mathbf{u}|^2 + e \right) e - 1543 \, \lambda^2 \left(\frac{1}{2} \, |\mathbf{u}|^2 + e \right) + 684 \, \lambda^4 \right) \\ \Phi_{xxe} &= \rho \left(u^2 - v^2 \right) \left(\frac{19}{12} \, |\mathbf{u}|^2 + \frac{19}{2} \, e - \frac{91}{12} \, \lambda^2 \right) \\ \Phi_{xye} &= \rho \, u \, v \left(\frac{3}{2} \, |\mathbf{u}|^2 + 9 \, e - 7 \, \lambda^2 \right) \end{split}$$

viscosities: $\mu = \rho e \sigma_x \Delta t$ and $\zeta = 0$ satisfy the relation $\sigma_x = \sigma_q$ Prandtl number: Pr = 1as for the previous D2Q17 and D2V17 schemes

:-)

D3Q33

92

D3Q33: moments

0	2
u	-≺
3	9

$ ho,j_{X},j_{y},j_{z},\varepsilon$	5 conserved
xx, ww	8 to fit the Euler equations
xy, yz, zx	
q_x, q_y, q_z	
x yz, y zx, z xy	16 to fit the viscous terms
xyz	
r_x, r_y, r_z	
t_x, t_y, t_z	
xx_e , ww_e	
xy_e, yz_e, zx_e	
hh	
XX_h , WW_h	4 without any influence
h3 h4	

D3Q33: first order equations

$$\begin{array}{l} \partial_t \rho + \partial_x J_x + \partial_y J_y + \partial_z J_z = 0 & \partial_t \rho + \partial_x J_x + \partial_y J_y + \partial_z J_z = 0 \\ \partial_t J_x + \partial_x (\frac{1}{3} \rho |\mathbf{u}|^2 + \frac{1}{3} \Phi_{xx} + \frac{2}{3} \rho e) + \partial_y \Phi_{xy} + \partial_z \Phi_{zx} = 0 \\ \partial_t J_x + \partial_x (\rho u^2 + p) + \partial_y (\rho u v) + \partial_z (\rho u w) = 0 \\ \partial_t J_y + \partial_x \Phi_{xy} + \partial_y (\frac{1}{3} \rho |\mathbf{u}|^2 - \frac{1}{6} \Phi_{xx} + \frac{1}{2} \Phi_{ww} + \frac{2}{3} \rho e) + \partial_z \Phi_{yz} = 0 \\ \partial_t J_y + \partial_x (\rho u v) + \partial_y (\rho v^2 + p) + \partial_z (\rho v w) = 0 \\ \partial_t J_z + \partial_x (\rho u w) + \partial_y (\rho v w) + \partial_z (\rho w^2 + p) = 0 \\ \partial_t J_z + \partial_x (\rho u w) + \partial_y (\rho v w) + \partial_z (\rho w^2 + p) = 0 \\ \partial_t \varepsilon + \partial_x (3 \Phi_{qx} + \rho u \lambda^2) + \partial_y (3 \Phi_{qy} + \rho v \lambda^2) + \partial_z (3 \Phi_{qz} + \rho w \lambda^2) = 0 \\ \partial_t E + \partial_x (E u + p u) + \partial_y (E v + p v) + \partial_z (E w + p w) = 0 \\ \end{array}$$
then
$$\begin{cases} \frac{1}{3} \rho |\mathbf{u}|^2 - \frac{1}{6} \Phi_{xx} + \frac{1}{2} \Phi_{ww} + \frac{2}{3} \rho e = \rho u^2 + p \\ \frac{1}{3} \rho |\mathbf{u}|^2 - \frac{1}{6} \Phi_{xx} - \frac{1}{2} \Phi_{ww} + \frac{2}{3} \rho e = \rho w^2 + p \end{cases}$$
so
$$p = \frac{2}{3} \rho e, \quad \gamma \equiv \frac{c_p}{5} = \frac{5}{3} \\ \text{and} \quad \varepsilon = 22 E - 26 \lambda^2 \rho \quad \text{with} \quad E = \frac{1}{2} \rho |\mathbf{u}|^2 + \rho e \\ \varepsilon + 26 \rho \lambda^2 = 11 \rho |\mathbf{u}|^2 + 22 \rho e \quad \text{and} \quad e = \frac{1}{22\rho} \varepsilon - \frac{1}{2} |\mathbf{u}|^2 + \frac{13}{11} \lambda^2 \end{cases}$$

95

D3Q33: necessary relations for the equilibria

$$\begin{aligned} \Phi_{xx} &= \rho \left(2 \, u^2 - v^2 - w^2 \right), \ \Phi_{ww} = \rho \left(v^2 - w^2 \right) \\ \Phi_{xy} &= \rho \, u \, v \,, \ \Phi_{yz} = \rho \, v \, w \,, \ \Phi_{zx} = \rho \, w \, u \\ \Phi_{qx} &= \left(13 \, |\mathbf{u}|^2 + \frac{130}{3} \, e - 37 \, \lambda^2 \right) \rho \, u \\ \Phi_{qy} &= \left(13 \, |\mathbf{u}|^2 + \frac{130}{3} \, e - 37 \, \lambda^2 \right) \rho \, v \\ \Phi_{qz} &= \left(13 \, |\mathbf{u}|^2 + \frac{130}{3} \, e - 37 \, \lambda^2 \right) \rho \, w \end{aligned}$$
[15 equations]

algebraic equations for second order partial differential equations

a total of 4 × 3 × 5 × 3 = 180 equations to solve to identify the second order terms of the Navier Stokes equations 4 equations for momentum and energy 3 conservation terms per equation: ∂_x[**], ∂_y[**] and ∂_z[**] 5 nonconserved variables ρ, u, v, w and e 3 partial derivatives ∂_x, ∂_y and ∂_z per variable for 5 × 16 = 80 partial derivatives

D3Q33: equilibria for second order equations

$$\begin{aligned} \Phi_{x \ yz} &= \rho \ u \ (v^2 - w^2), \ \Phi_{y \ zx} = \rho \ v \ (w^2 - u^2), \ \Phi_{z \ xy} = \rho \ w \ (u^2 - v^2) \\ \Phi_{xyz} &= \rho \ u \ v \ w \\ \Phi_{rx} + \frac{38}{13} \frac{\Phi_{rx}}{\lambda^2} = \rho \ u \ \lambda^2 \ (-\frac{161}{39} \ u^2 - \frac{345}{13} \ (v^2 + w^2) - \frac{1702}{39} \ e + \frac{1265}{39} \ \lambda^2) \\ \Phi_{ry} + \frac{38}{13} \frac{\Phi_{rx}}{\lambda^2} = \rho \ v \ \lambda^2 \ (-\frac{161}{39} \ v^2 - \frac{345}{13} \ (w^2 + u^2) - \frac{1702}{39} \ e + \frac{1265}{39} \ \lambda^2) \\ \Phi_{rz} + \frac{38}{33} \frac{\Phi_{rx}}{\lambda^2} = \rho \ w \ \lambda^2 \ (-\frac{161}{39} \ w^2 - \frac{345}{13} \ (u^2 + v^2) - \frac{1702}{39} \ e + \frac{1265}{39} \ \lambda^2) \\ \Phi_{xxe} &= \rho \ (2 \ u^2 - v^2 - w^2) \ (38 \ |\mathbf{u}|^2 + \frac{266}{3} \ e - 38 \ \lambda^2) \\ \Phi_{xxe} &= \rho \ (v^2 - w^2) \ (38 \ |\mathbf{u}|^2 + \frac{266}{3} \ e - 38 \ \lambda^2) \\ \Phi_{xye} &= \rho \ v \ w \ (3 \ |\mathbf{u}|^2 + 14 \ e - 8 \ \lambda^2) \\ \Phi_{yze} &= \rho \ v \ w \ (3 \ |\mathbf{u}|^2 + 14 \ e - 8 \ \lambda^2) \\ \Phi_{bh} &= \rho \ (\frac{69}{2} \ |\mathbf{u}|^4 + 230 \ (|\mathbf{u}|^2 + e) \ e - 325 \ \lambda^2 \ (\frac{1}{2} \ |\mathbf{u}|^2 + e) + 152 \ \lambda^4) \\ \text{the equilibrium functions} \ \Phi_{xxh}, \ \Phi_{wwh}, \ \Phi_{h2}, \ \Phi_{h4} \ \text{are undetermined satisfy the relation} \ \sigma_x &= \sigma_q \\ \text{viscosities:} \ \mu &= \frac{2}{3} \ \rho \ e \ \sigma_x \ \Delta t \ \text{and} \ \zeta &= 0 \\ Prandtl number: \ Pr = 1 \end{aligned}$$

surprising D3Q27-2

97

D3Q27-2: moments

$\rho,j_{X},j_{y},j_{z},\varepsilon$	5 conserved
xx, ww	8 to fit the Euler equations
<i>xy</i> , <i>yz</i> , <i>zx</i>	
q_x, q_y, q_z	
x yz, y zx, z xy	13 to fit the viscous terms
xyz	
r_x, r_y, r_z hh	
xx _e , ww _e	
xy_e , yz_e , zx_e	

h3 1 without influence on the Navier-Stokes equations

D3Q27-2: Euler equations

$$\begin{aligned} \partial_t \rho + \partial_x J_x + \partial_y J_y + \partial_z J_z &= 0 & \partial_t \rho + \partial_x J_x + \partial_y J_y + \partial_z J_z &= 0 \\ \partial_t J_x + \partial_x (\frac{1}{3} \Phi_{xx} + \frac{1}{9} \varepsilon + \frac{8}{9} \rho \lambda^2) + \partial_y \Phi_{xy} + \partial_z \Phi_{zx} &= 0 \\ \partial_t J_x + \partial_x (\rho u^2 + p) + \partial_y (\rho u v) + \partial_z (\rho u w) &= 0 \\ \partial_t J_y + \partial_x \Phi_{xy} + \partial_y (-\frac{1}{6} \Phi_{xx} + \frac{1}{2} \Phi_{ww} + \frac{1}{9} \varepsilon + \frac{8}{9} \rho \lambda^2) + \partial_z \Phi_{yz} &= 0 \\ \partial_t J_y + \partial_x (\rho u v) + \partial_y (\rho v^2 + p) + \partial_z (\rho v w) &= 0 \\ \partial_t J_z + \partial_x \Phi_{zx} + \partial_y \Phi_{yz} + \partial_z (-\frac{1}{6} \Phi_{xx} - \frac{1}{2} \Phi_{ww} + \frac{1}{9} \varepsilon + \frac{8}{9} \rho \lambda^2) &= 0 \\ \partial_t J_z + \partial_x (\rho u w) + \partial_y (\rho v w) + \partial_z (\rho w^2 + p) &= 0 \\ \partial_t \varepsilon + \partial_x (3 \Phi_{qx} + \rho u \lambda^2) + \partial_y (3 \Phi_{qy} + \rho v \lambda^2) + \partial_z (3 \Phi_{qz} + \rho w \lambda^2) &= 0 \end{aligned}$$

$$\partial_t E + \partial_x (E u + p u) + \partial_y (E v + p v) + \partial_z (E w + p w) = 0$$

then
$$\begin{cases} \frac{1}{3} \Phi_{xx} + \frac{1}{9} \varepsilon + \frac{8}{9} \rho \lambda^2 &= \rho u^2 + p \\ -\frac{1}{6} \Phi_{xx} + \frac{1}{2} \Phi_{ww} + \frac{1}{9} \varepsilon + \frac{8}{9} \rho \lambda^2 &= \rho v^2 + p \\ -\frac{1}{6} \Phi_{xx} - \frac{1}{2} \Phi_{ww} + \frac{1}{9} \varepsilon + \frac{8}{9} \rho \lambda^2 &= \rho w^2 + p \\ \frac{1}{3} \varepsilon + \frac{8}{3} \rho \lambda^2 &= \rho |\mathbf{u}|^2 + 3p \quad \text{and} \quad \mathbf{e} = \frac{1}{6\rho} \varepsilon - \frac{1}{2} |\mathbf{u}|^2 + \frac{4}{3} \lambda^2 \\ \text{so } p = \frac{2}{3} \rho \, \mathbf{e} \,, \ \gamma \equiv \frac{c\rho}{c_v} = \frac{5}{3} \text{ and } \varepsilon = 6 \, E - 8 \, \lambda^2 \, \rho \end{cases}$$

D3Q27-2: necessary relations for the equilibria

100

$$\begin{aligned} \Phi_{xx} &= \rho \left(2 \, u^2 - v^2 - w^2 \right), \ \Phi_{ww} = \rho \left(v^2 - w^2 \right) \\ \Phi_{xy} &= \rho \, u \, v \,, \ \Phi_{yz} = \rho \, v \, w \,, \ \Phi_{zx} = \rho \, w \, u \\ \Phi_{qx} &= \rho \, u \left(|\mathbf{u}|^2 + \frac{10}{3} \, e - 3 \, \lambda^2 \right) \\ \Phi_{qy} &= \rho \, v \left(|\mathbf{u}|^2 + \frac{10}{3} \, e - 3 \, \lambda^2 \right) \\ \Phi_{qz} &= \rho \, w \left(|\mathbf{u}|^2 + \frac{10}{3} \, e - 3 \, \lambda^2 \right) \end{aligned}$$
[15 equations]

fit the Navier Stokes with conservation of energy at second order: $4 \times 3 \times 3 \times 5 = 180 \text{ equations to solve}$ for $5 \times 13 = 65$ partial derivatives

 $\Phi_{x \ yz} = \rho \ u \left(v^2 - w^2 \right)$ $\Phi_{y \ zx} = \rho \ v \left(w^2 - u^2 \right)$ $\Phi_{z \ xy} = \rho \ w \left(u^2 - v^2 \right)$ $\Phi_{xyz} = \rho \ u \ v \ w$

D3Q27-2 available for thermal Navier - Stokes ! 101

$$\begin{split} \Phi_{rx} &= \rho \, u \, \lambda^2 \left(- \left(u^2 + 3 \, v^2 + 3 \, w^2 \right) - 6 \, e + 5 \, \lambda^2 \right) \\ \Phi_{ry} &= \rho \, v \, \lambda^2 \left(- \left(3 \, u^2 + v^2 + 3 \, w^2 \right) - 6 \, e + 5 \, \lambda^2 \right) \\ \Phi_{rz} &= \rho \, w \, \lambda^2 \left(- \left(3 \, u^2 + 3 \, v^2 + w^2 \right) - 6 \, e + 5 \, \lambda^2 \right) \\ \Phi_{xxe} &= \rho \left(2 \, u^2 - v^2 - w^2 \right) \left(\frac{9}{8} \, |\mathbf{u}|^2 + \frac{21}{4} \, e - \frac{17}{4} \, \lambda^2 \right) \\ \Phi_{wwe} &= \rho \left(v^2 - w^2 \right) \left(\frac{9}{8} \, |\mathbf{u}|^2 + \frac{21}{4} \, e - \frac{17}{4} \, \lambda^2 \right) \\ \Phi_{xye} &= \rho \, u \, v \left(3 \, |\mathbf{u}|^2 + 14 \, e - 8 \, \lambda^2 \right) \\ \Phi_{yze} &= \rho \, v \, w \left(3 \, |\mathbf{u}|^2 + 14 \, e - 8 \, \lambda^2 \right) \\ \Phi_{zxe} &= \rho \, w \, u \left(3 \, |\mathbf{u}|^2 + 14 \, e - 8 \, \lambda^2 \right) \\ \Phi_{hh} &= \rho \left(\frac{3}{2} \, |\mathbf{u}|^4 + 10 \left(|\mathbf{u}|^2 + e \right) \, e - 15 \, \lambda^2 \left(\frac{1}{2} \, |\mathbf{u}|^2 + e \right) + 8 \, \lambda^4 \right) \end{split}$$

the equilibrium function is determinded for all microscopic moments

satisfy the relation $\sigma_x = \sigma_q$ viscosities: $\mu = \frac{2}{3} \rho e \sigma_x \Delta t$ and $\zeta = 0$ Prandtl number: Pr = 1

:-)

summary for fluids with lattice Boltzmann schemes 102

conclusion

lattice Boltzmann approach without the Gauss and Hermite paradigm

less velocities than proposed in previous works Philippi, Hegele, dos Santos, Surmas (2006): D2V37 Shan (2016): D3Q103

stability: a fundamental remaining question

extensions

changing the d'Humières matrix M:

no difficulty if M is well chosen! but to be done!

centered moments: no major difficulty? but to be done!

cumulants: a nonlinear version of the ABCD method?

coupling mass-momentum and energy with two distributions: no major difficulty? but to be done!

vectorial schemes like $(D2Q4)^4$ or $(D3Q7)^5$:

no major difficulty? but to be done! diffusive scaling with fixed ratio $\frac{\Delta x^2}{\Delta t}$

references

- D. d'Humières. "Generalized Lattice-Boltzmann Equations", in *Rarefied Gas Dynamics*, vol. **159** of *AIAA Prog. in Astron.*, 1992.
- P. Lallemand, L.S. Luo. "Theory of the Lattice Boltzmann Method: Acoustic and Thermal Properties", *Phys. Rev.E*, vol. **68**, 2003.
- FD. "Equivalent partial differential equations of a lattice Boltzmann scheme", *Comput. And Mathematics with Appl.*, vol. **55**, 2008.
- P. Lallemand, FD. "Comparison of Simulations of Convective Flows", *Comm. in Computational Physics*, vol. **17**, p. 1169-1184, 2015.
- FD. "Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes", *Asymptotic Analysis*, vol. **127**, p. 297-337, 2022.
- FD, P. Lallemand. "On single distribution lattice Boltzmann schemes for the approximation of Navier Stokes equations", hal.archives-ouvertes.fr/hal-03702835, 2022.

merci de votre attention !

