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device used to study plasmas.
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What is a Langmuir probe ?

@ A Langmuir probe is a cylindrical or spherical metallic measurement
device used to study plasmas.

@ It grabs the electrons of the plasma and registers electric current.

@ This permits to determine the density, the temperature and the
potential of the plasma.
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What is a Langmuir probe ?

One of two Langmuir probes from the Swedish Institute of Space Physics in Uppsala
on board ESA’s space vehicle Rosetta (in Titanium).

Rosetta in orbit around the 67P/C—G comet (artist view)
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Modeling a Cylindrical Langmuir probe

Main assumptions and simplifications:
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Modeling a Cylindrical Langmuir probe

Main assumptions and simplifications:
@ The probe is an infinite cylinder of radius 1.
@ The plasma is 2-species and collisionless (Vlasov-Poisson equations).

@ The plasma has reached its permanent regime (steady equations).

@ Invariance and symmetries along the probe (polar coordinates).
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Modeling a Cylindrical Langmuir probe

Main assumptions and simplifications:

@ The probe is an infinite cylinder of radius 1.

The plasma is 2-species and collisionless (Vlasov-Poisson equations).

The plasma has reached its permanent regime (steady equations).

Invariance and symmetries along the probe (polar coordinates).

Invariance by rotations (Radial Poisson equation).
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Modeling a Cylindrical Langmuir probe

Main assumptions and simplifications:

@ The probe is an infinite cylinder of radius 1.

The plasma is 2-species and collisionless (Vlasov-Poisson equations).

The plasma has reached its permanent regime (steady equations).

Invariance and symmetries along the probe (polar coordinates).

Invariance by rotations (Radial Poisson equation).

Invariance by axial symmetry (No orthoradial macroscopic current).
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Modeling a Cylindrical Langmuir probe

An illustration of the cylindrical probe

Figure: Sketch of a trajectory of a particle into a radial force field coming from
the outer ionizing source (plasma core) into the neigborhood of the probe (at
r = rp) with a velocity v.
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Modeling a Cylindrical Langmuir probe
The Vlasov-Poisson equations

@ Vlasov equation for the ionic density f;(r, v,, vp):

Vr Vg

v, Orfi —

V2
5“,8f+ ( - ,¢> 0, fi =0.
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Modeling a Cylindrical Langmuir probe
The Vlasov-Poisson equations

@ Vlasov equation for the ionic density f;(r, v,, vp):

Vr Vg

V2
v, O f; — 5“,8f + ( - ,(;5) 0, fi =0.

@ Vlasov equation for the electronic density fe(r, v,, vp):

ViV
Vr Orfe —

V2
&,ef + (j + a,¢>) Ay, fo=0.
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Modeling a Cylindrical Langmuir probe
The Vlasov-Poisson equations

@ Vlasov equation for the ionic density f;(r, v,, vp):

Vr Vg

V2
v, O f; — 5“,8f + ( - ,(;5) 0, fi =0.

@ Vlasov equation for the electronic density fe(r, v,, vp):

Vr Vo

2
vedfe = S0, fo + (Vf + a,¢>) B, f. = 0.

@ Poisson equation for the macroscopic electric potential ¢:

_rdr( ‘jf)( ) = ni(r) = ne(r),
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Modeling a Cylindrical Langmuir probe
The Vlasov-Poisson equations

@ Vlasov equation for the ionic density f;(r, v,, vp):

Vr Vg

V2
v, O f; — 5“,8f + ( - ,(;5) 0, fi =0.

@ Vlasov equation for the electronic density fe(r, v,, vp):

Vr Vo

2
vedfe = S0, fo + (Vf + a,¢>) B, f. = 0.

@ Poisson equation for the macroscopic electric potential ¢:

_rdr( ‘jf)( ) = ni(r) = ne(r),

where n; and ne are the ions and electrons macroscopic charge densities:

ni(r) = CI/ fi(r,vr,vo) dv, dvg, ne(r) = q/ fo(r, vy, vg) dv, dvy.
R?2 R?2
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Modeling a Cylindrical Langmuir probe

Boundary conditions

@ Incoming particles from the plasma core:

vvr g Oa fi(rb; Vr7V0) - f;-b(Vr,Vg), f;e(rb,vrv VO) - f;b(V,,Ve),

where (v, vg) — £(v, vp) and (v,, vg) = £2(v,, vp) are given functions.
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Boundary conditions

@ Incoming particles from the plasma core:
vvr g Oa fi(rb; Vr7V0) - f;-b(Vr,Vg), f;e(rb,vrv VO) - f;b(V,,Ve),

where (v, vg) — £(v, vp) and (v,, vg) = £2(v,, vp) are given functions.

@ Non-emitting Langmuir probe:

Vv, > 0» f;(l, Vi, VG) = 07 7"—e(]-a Vr, V9) =0.
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Modeling a Cylindrical Langmuir probe

Boundary conditions

@ Incoming particles from the plasma core:
vvr S Oa fi(rb; Vr7V0) f (Vravb‘) f;e(rbavrv VO) - f;b(V,,VQ),

where (v, vg) — £(v, vp) and (v,, vg) = £2(v,, vp) are given functions.

@ Non-emitting Langmuir probe:

Vv, > 0» f;(l, Vi, VG) = 07 7"—e(]-a Vr, V9) =0.

@ Boundary datum for the Poison equation:

#(1) =9, €R, é(rp) = 0.
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Modeling a Cylindrical Langmuir probe
Main result
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Modeling a Cylindrical Langmuir probe
Main result

Theorem (M. Badsi, L.G-C. 2022)

Assume that the incoming particle distributions f° and f2 are in L' and satisfy
the following integrability conditions (0 < v < 1) :
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Modeling a Cylindrical Langmuir probe
Main result

Theorem (M. Badsi, L.G-C. 2022)

Assume that the incoming particle distributions f° and f2 are in L' and satisfy
the following integrability conditions (0 < v < 1) :

Ivefllia ooy == / sup | v, f(vr, vo)| dvg < +o0,
6= R v,ER

dv,

||f||L§,(Lfg;dv,/\.,,|W) o= A;ue%|f(vr7V9)| MR < +o0.
Then there exists a weak-strong solution (for Vlasov: fi . € CE(Li,,vg) and for
Poisson: ¢ € C>*).
v
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Modeling a Cylindrical Langmuir probe
Main result

Theorem (M. Badsi, L.G-C. 2022)

Assume that the incoming particle distributions f° and f2 are in L' and satisfy
the following integrability conditions (0 < v < 1) :

Ivefllia ooy == / sup | v, f(vr, vo)| dvg < +o0,
6= R v,ER

dv,

”f”L&,(Lfg;dvr/\v,l‘Y) ::/ sup |f(Vr7V9)| < +o00.

R vg ER |Vf |'y
Then there exists a weak-strong solution (for Viasov: f; . € CO(L}

vi,vg) and for
Poisson: ¢ € C>*).

Moreover, the solutions to the Vlasov equations are given by an explicit formula
depending on ¢ and f?, fL.

V.
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Modeling a Cylindrical Langmuir probe
Main result

Theorem (M. Badsi, L.G-C. 2022)

Assume that the incoming particle distributions f° and f2 are in L' and satisfy
the following integrability conditions (0 < v < 1) :

Ivefllia ooy == / sup | v, f(vr, vo)| dvg < +o0,
6= R v,ER

dv,

||f||L5,(L$g;dvr/\v,|‘Y) ::/ sup |f(Vr7V9)| < +o00.

R vpER |Vr|W

Then there exists a weak-strong solution (for Viasov: f;. € C°(L. , ) and for

VryVe
Poisson: ¢ € C>*).

Moreover, the solutions to the Vlasov equations are given by an explicit formula
depending on ¢ and f?, fL.

V.

Sufficient condition for the integrability conditions:

1

v (v, R?, flve,vo)] < ——————.
(vr,vo) € [f(vr, vo)| < T wET 1

Condition satisfied by the Maxwellian distributions.
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

@ For this part, we fix the electric potential ¢ to be any function in W2,
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

@ For this part, we fix the electric potential ¢ to be any function in W2,

@ The characteristics for ionic Vlasov equation are given by:

< (1) = (o),

d vt de
avr(f)— () —E(r(t)),

d __vr(t) ve(2)
w =
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

@ For this part, we fix the electric potential ¢ to be any function in W2,

@ The characteristics for ionic Vlasov equation are given by:

< (1) = (o),
d _vp(t)®  do

G0 ="~ G ),

d __vr(t) ve(2)
w =

@ Constants of motion: the total energy and the angular momentum.

d (v2(t) +v5(t) _

% (r(t)\/g(t)) =0.
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

@ For this part, we fix the electric potential ¢ to be any function in W2,

@ The characteristics for ionic Vlasov equation are given by:

< (1) = (o),

d B ve(t)?  do
=" " v
d _ _v,(t) vo(t)
w =

@ Constants of motion: the total energy and the angular momentum.

d (v2(t) +v5(t) _

% (r(t)\/g(t)) =0.

@ The characteristics are contained in the level sets defined for L € R and e € R by

2 2
vy +v9
2

Cle:= {(r7 Vi, Vo) € (1, 1) X R?: np=1L and

+ o(r) = e}.
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

@ The characteristics are contained in the level sets defined for L € R and e € R by

V2 4+ 2
Cle:= {(r, vi,vg) € (1,r) xR? : rvg =L and 'Te + ¢(r) = e}.

13/48 Ludovic Godard-Cadillac Bi-species kinetic model for a cylindrical Langmuir probe.



Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

@ The characteristics are contained in the level sets defined for L € R and e € R by

V2 4+ 2
Cle:= {(r, vi,vg) € (1,r) xR? : rvg =L and 'Te + ¢(r) = e}.

@ For fixed L € R the effective potential is defined by:

L2
vre[l,n] Ulr):= 52T B(r).
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

@ The characteristics are contained in the level sets defined for L € R and e € R by
2 2
+
Cre = {(r, Vi, Vg) € (1, 1p) X R?>: np=L and % + o(r) = e}.
@ For fixed L € R the effective potential is defined by:

L2
Vre 1] Ul(r) = +¢(r).
2r2
@ Its maximum value is denoted :

Uy = U .
L= max 1(r)

The maximal value U, defines a global potential barrier that separates trajectories
that collapse with the Langmuir probe with others.
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

Effective potential, potential barrier position and phase diagram for the particles dynamics.
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

Effective potential, potential barrier position and phase diagram for the particles dynamics.

@ Position of the potential barrier when e < U :

ri(L,e) :=min{a € [1,rp] : UL(s) <e,Vs € [a,n]}.
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Explicit resolution of the Vlasov equation

ionic phase diagram and characteristics

Effective potential, potential barrier position and phase diagram for the particles dynamics.

@ Position of the potential barrier when e < U :
ri(L,e) :=min{a € [1,r] : Ui(s) <e,Vs € [an]}

The quantities U; and r;(L, €) are non-local with respect to ¢.
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Explicit resolution of the Vlasov equation
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Explicit resolution of the Vlasov equation

@ Decomposition of the phase space:

D?’I(L) = {(r7 vi) € (L) xR : v, < —/2(Up — UL(r))} ,

2
Df’2(L) — {(r, vi) € (1,r) xR : V?' +Up(r) < Uy and r > ri(L, e)}.
N————

=.e
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Explicit resolution of the Vlasov equation

@ Decomposition of the phase space:

D0 = () € @) x R s v < —\/2(00 - U

2
Df’2(L) — {(r, vi) € (1,r) xR : V?' +Up(r) < Uy and r > ri(L, e)}.
N————

=.e

For every point (r,v,) € Df’ there exists a unique characteristics curves that passes
through (r, vr) and originates from r = r, with a negative velocity.
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Explicit resolution of the Vlasov equation

@ Decomposition of the phase space:

D0 = () € @) x R s v < —\/2(00 - U

2
Df’2(L) — {(r, vi) € (1,r) xR : V?' +Up(r) < Uy and r > ri(L, e)}.
N————

=.e

For every point (r,v,) € Df’ there exists a unique characteristics curves that passes
through (r, vr) and originates from r = r, with a negative velocity.

@ The solutions of the Vlasov equation are constant on the characteristics. It is
natural to define:

fi(r, v, vp) := {

o <,\/V,2 T2(0.(r) — U(r)); 79) if (r,v;) € DP(L) with L = rvg.

0 otherwise.
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Explicit resolution of the Vlasov equation

@ Decomposition of the phase space:
D?’I(L) = {(r7 vi) € (L) xR : v, < —/2(Up — UL(r))} ,

2
Df’2(L) — {(r, vi) € (1,r) xR : V?' +Up(r) < Uy and r > ri(L, e)}.
N————

=.e

For every point (r,v,) € Df’ there exists a unique characteristics curves that passes
through (r, vr) and originates from r = r, with a negative velocity.

@ The solutions of the Vlasov equation are constant on the characteristics. It is
natural to define:

) o {fib <,\/V,2 T2(0.(r) — U(r)); 79) if (r,v;) € DP(L) with L = rvg.

0 otherwise.

Proposition

The function f; is a weak solution of the ionic Vlasov equation with macroscopic

electric potential ¢ and with incoming fluxes f,-b S L,loc at radius r = rp.
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Explicit resolution of the Vlasov equation

@ Decomposition of the phase space:
D?’I(L) = {(r7 vi) € (L) xR v, < —/2(UL — UL(r))} ,

2
Df’2(L) — {(r, vi) € (1,r) xR : V?' +Up(r) < Uy and r > ri(L, e)}.
N————

=.e

For every point (r,v,) € Df’ there exists a unique characteristics curves that passes
through (r, vr) and originates from r = r, with a negative velocity.

@ The solutions of the Vlasov equation are constant on the characteristics. It is
natural to define:

) o {fib <,\/V,2 T2(0.(r) — U(r)); 79) if (r,v;) € DP(L) with L = rvg.

0 otherwise.

Proposition

The function f; is a weak solution of the ionic Vlasov equation with macroscopic

electric potential ¢ and with incoming fluxes f,-b S L,loc at radius r = rp.

@ For the electrons: replace ¢ by —¢ (define V, := L2/2r% — ¢).
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Explicit resolution of the Vlasov equation

computation of the macroscopic densities
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Explicit resolution of the Vlasov equation

computation of the macroscopic densities

@ Define:

plYl(e) :=inf{a€[L,ry] : forae s€[ar], ¥(s)<e}.
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Explicit resolution of the Vlasov equation

computation of the macroscopic densities

@ Define:
plYl(e) :=inf{a€[L,ry] : forae s€[ar], ¥(s)<e}.

We check that ri(L, e) = p[UL](e), and re(L, €) = p[Vi](e).

16/48 Ludovic Godard-Cadillac Bi-species kinetic model for a cylindrical Langmuir probe.



Explicit resolution of the Vlasov equation

computation of the macroscopic densities

@ Define:
plYl(e) :=inf{a€[L,ry] : forae s€[ar], ¥(s)<e}.
We check that ri(L, e) = p[UL](e), and re(L, €) = p[Vi](e).

@ Define also
B: Rx[LinxR — R

1
2
(v,r,L) — 2u+L(r—2—

1)
= ).
b

16/48 Ludovic Godard-Cadillac Bi-species kinetic model for a cylindrical Langmuir probe.



16/48

Explicit resolution of the Vlasov equation

computation of the macroscopic densities

@ Define:

plY](e) :==inf{a € [L,r] :

for a.e s € [a, 1), ¥(s) < e}.

We check that ri(L, e) = p[UL](e), and re(L, €) = p[Vi](e).
@ Define also

B: Rx[LinxR — R

1
2
(v,r,L) — 2u+L(r—2—

cr\w‘ L
N—

Rx[Lnp]xRxR — R

— _(2(; ) if v2 > B(v,r, L),
0

(V7 r7 v7 L)

otherwise.
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Explicit resolution of the Vlasov equation

computation of the macroscopic densities

@ Define:

plY](e) :==inf{a € [L,r] :

for a.e s € [a, 1), ¥(s) < e}.

We check that ri(L, e) = p[UL](e), and re(L, €) = p[Vi](e).
@ Define also

B: Rx[LinxR — R

1
2
(v,r,L) — 2u+L(r—2—

cr\w‘ L
N—

Rx[Lnp]xRxR — R

— _(2(; ) if v2 > B(v,r, L),
0

(V7 r7 v7 L)

otherwise.

Proposition

1 B L
- /Rz F(p(r),r,v,L)f; (v, r—b) (1 + 11V2+%<27L> urzﬁ[UL](%+£) dvdL.

2r2
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Explicit resolution of the Vlasov equation

computation of the macroscopic densities

@ Define:
plYl(e) :=inf{a€[L,ry] : forae s€[ar], ¥(s)<e}.
We check that ri(L, e) = p[UL](e), and re(L, €) = p[Vi](e).

@ Define also
B: Rx[LinxR — R

1 1
(v,r,L) — 21/+L2(—2——2).
r g

N Rx[l,np]xRxR — R

# if v2 > B(v,r, L),
(ervva) — v —ﬂ(lj,r’l_)
0 otherwise.

Proposition

1 " L
ni(r) = . /Rz F(p(r),r,v,L)f; (v, r—b) (1 4 1v2+%<2ui> ]lrzﬁ[uL](%+;—i) dvdL.
b b

@ Analogous formula for electrons with —¢.
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Existence of solution for the
Poisson equation




Existence of solution for the Poisson equation
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Existence of solution for the Poisson equation

@ We are interested in solving the following 1D elliptic equation:

d (oo
{—dr(rdr)(r) = (i~ n)(),
#(1)=¢p ¢(rp) =0,

with
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Existence of solution for the Poisson equation

@ We are interested in solving the following 1D elliptic equation:

{_dr< ‘Z;f)(r) = r(n; — ne)(r),

(1) =¢p ¢(rs) =0,

with

L
. — ,b
rni(r) = /RZ F(¢(r),r,v,L)f (v, rb) (1+ 1v2+f—§<2w)]1r>p[uu(v7 2 ) dvdL.
b b

1 o L
rne(r) = v /R2 F( —P(r), r,v, L) f. (v7 Tb) (1 + 1v2+”%§<ZVL) ]lrz'p“[VL]( 2 +;z) dvdL.
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Existence of solution for the Poisson equation

@ We are interested in solving the following 1D elliptic equation:

{—dr( r22) 0 = rlor = )0,
B = by o) =0,

with

L
. — ,b
rni(r) = /RZ F(¢(r),r,v,L)f (v, rb) (1+ 1v2+f—§<2w)]1r>p[uu(v7 2 ) dvdL.
b b

1 !
rne(r) = . /R2 F(—=o(r),r, v, L) f (v, Tb) (1 + 1v2+%<2VL) ]lrz,ﬁ[m( 2 +;z) dvdL.

@ Recall that:

12 12
Ur)= oz +0(0), Vi) =55 —6(), &= max 4(r),

refl,rp]

and

plvl(e) :==inf{a € [1,r] : forae s€[a, ], ¥(s) <e}.
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Existence of solution for the Poisson equation

Natural strategy:
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Natural strategy:
@ Replace the non-local terms by parameters.
@ Solve the associated local elliptic problem.
@ Adjust the parameters via an iterated fixed-point procedure.

@ Pass to the limit to conclude.

The iterated fixed-point procedure. Assume that ¢, is well-defined and then set:
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Existence of solution for the Poisson equation

Natural strategy:
@ Replace the non-local terms by parameters.
@ Solve the associated local elliptic problem.
@ Adjust the parameters via an iterated fixed-point procedure.

@ Pass to the limit to conclude.

The iterated fixed-point procedure. Assume that ¢, is well-defined and then set:

L2 v2 L2
n+1 o~
R; (v,L) -7P[¢n+2ﬁ] (*"F )»

2 2r
12 vioo2
n+1 N R 7 .
NI, 1) =7 ¢n+2.2](2+2r§),
+1 L2 +1 L2
Yt = — BT = — —.
" ,max én(r) + 572 T ,max én(r) + 52

Iterated potentials:

Define ¢n+1 : [1, rp] — R as being a solution of the studied non-linear elliptic equation,
BUT the non-local terms are replaced by SR;’Jrl(v, L), ®oti(v, L), LLZ“, and ‘BZH.
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Existence of solution for the Poisson equation

Lemma (Bound on the right-hand side)
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Existence of solution for the Poisson equation

Lemma (Bound on the right-hand side)

Let f :R*> - R, in ! s.t. vaHLi(Lm) < 4oo. Let p € [1,2).
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Existence of solution for the Poisson equation

Lemma (Bound on the right-hand side)

Let f :R*> - R, in ! s.t. IVFll,100) < +00. Let p € [1,2). Then, Vv € R and r € [1, n],
L\=v

+oo +oo Pf L
/ / vIPf(v, L) ~dvdl < 2||f|la +
—es d—c3 }VZ,Lz(%,%),zylj 2—p
22

”Vf”Li(LSO)'

20/48 Ludovic Godard-Cadillac Bi-species kinetic model for a cylindrical Langmuir probe.



Existence of solution for the Poisson equation

Lemma (Bound on the right-hand side)

Let f :R*> - R, in ! s.t. IVFll,100) < +00. Let p € [1,2). Then, Vv € R and r € [1, n],
L\=v

+oo +oo Pf L
/ / vIPf(v, L) ~dvdl < 2||f|la +
—es d—c3 }VZ,Lz(%,%),zylj 2—p
22

”Vf”Li(LSO)'

We get then that the sequence (¢,) is bounded in W2 This implies compactness by Rellich -
Kondrachov theorem.
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Lemma (Bound on the right-hand side)

Let f :R*> - R, in ! s.t. ”Vf”Ll(LOO) < +oo. Let p € [1,2). Then, Vv € R and r € [1, 1),
1 (LY

+oo +oo Pf L
/ / vIPf(v, L) ~dvdl < 2||f|la +
—es d—c3 }VZ,Lz(%,%),m,lj 2—p
22

”Vf”Li(Lsoy

We get then that the sequence (¢,) is bounded in W2 This implies compactness by Rellich -
Kondrachov theorem.

Lemma (Hdlder regularity for the right-hand side)

G
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Let f :R*> - R, in ! s.t. ”Vf”Ll(LOO) < +oo. Let p € [1,2). Then, Vv € R and r € [1, 1),
1 (LY

+oo +oo Pf L
/ / vIPf(v, L) 5 dvdl < 2|f]la +
=e= v 12(% — %) — 20|t
il

p”‘/f”Li(Lsoy

We get then that the sequence (¢,) is bounded in W2 This implies compactness by Rellich -
Kondrachov theorem.

Lemma (Hdlder regularity for the right-hand side)

Let f: R* — Ry in L' N L (LE%; 135 ) with 0 < v < 1 and s.t. vaHLl (Lge) < Foo.

G
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Let f :R*> - R, in ! s.t. ”Vf”Ll(LOO) < +oo. Let p € [1,2). Then, Vv € R and r € [1, 1),
1 (LY

+oo +oo Pf L
/ / vIPf(v, L) 5 dvdl < 2|f]la +
=e= v 12(% — %) — 20|t
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p”‘/f”Li(Lsoy

We get then that the sequence (¢,) is bounded in W2 This implies compactness by Rellich -
Kondrachov theorem.

Lemma (Hdlder regularity for the right-hand side)

Let f: R* — Ry in L' N L (LE%; 135 ) with 0 < v < 1 and s.t. vaHLl (Lge) < too. Define

L
g(v,r) = /R2 F(V, r,v, L)f(v, 71;) <1 + 1v2+%<2uL) L,>m(v,0) dvdL.
b

G
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Existence of solution for the Poisson equation

Let f :R*> - R, in ! s.t. |\vf|\Li(LSQ) < 4o0. Let p € [1,2). Then, Vv € R and r € [1, 1),

+oco +oo |V‘Pf(v7 L) 4
/ / 5 dvdl < 2|Fllg + 5= IVFll g ugo)-
— —0 vszz(%f 12)721/| - P L
r s

We get then that the sequence (¢,) is bounded in W2 This implies compactness by Rellich -
Kondrachov theorem.

Lemma (Hdlder regularity for the right-hand side)

Let f: R* — Ry in L' N L (LE%; 135 ) with 0 < v < 1 and s.t. vaHLl (Lge) < too. Define

L
g(v,r) = /R2 F(V, r,v, L)f(v, 71;) <1 + 1v2+%<2uL) L,>m(v,0) dvdL.
b

Then we have for all v, v’ € R such that |v' — v| < 1 and for all r € [1, rp),

G
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Existence of solution for the Poisson equation

Let f :R*> - R, in ! s.t. |\vf|\Li(LSQ) < 4o0. Let p € [1,2). Then, Vv € R and r € [1, 1),

+oco +oo |V‘Pf(v7 L) 4
/ / 5 dvdl < 2|Fllg + 5= IVFll g ugo)-
— —0 vszz(%f 12)721/| - P L
r s

We get then that the sequence (¢,) is bounded in W2 This implies compactness by Rellich -
Kondrachov theorem.

Lemma (Hdlder regularity for the right-hand side)

Let f: R* — Ry in L' N L (LE%; 135 ) with 0 < v < 1 and s.t. vaHLl (Lge) < too. Define

L
g(v,r) = /R2 F(V, r,v, L)f(v, 71;) <1 + 1v2+%<2uL) L,>m(v,0) dvdL.
b

Then we have for all v, v’ € R such that |v' — v| < 1 and for all r € [1, rp),

P b
‘1/ = yl 2(v+1) s

|g(” ,r)fg(u,r)| < m

G
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Existence of solution for the Poisson equation

Lemma (Bound on the right-hand side)

Let f :R*> - R, in ! s.t. ”Vf”Ll(LOO) < +oo. Let p € [1,2). Then, Vv € R and r € [1, 1),
1 (LY

+oo +oo Pf L
/ / vIPf(v, L) 5 dvdl < 2|f]la +
- v 12(% — %) — 20|t
il

p”‘/f”Li(Lsoy

We get then that the sequence (¢,) is bounded in W2 This implies compactness by Rellich -
Kondrachov theorem.

Lemma (Hdlder regularity for the right-hand side)

Let f: R* — Ry in L' N L (LE%; 135 ) with 0 < v < 1 and s.t. vaHLl (Lge) < too. Define

L
g(v,r) = /R2 F(V, r,v, L)f(v, 71;) <1 + 1v2+%<2uL) L,>m(v,0) dvdL.
b

Then we have for all v, v’ € R such that |v' — v| < 1 and for all r € [1, rp),

0
|g(u”r)7g(u, r)| < m ‘l,’ — y| 204D

where C is a function of r and of ||f||,1, |

VfHL%(QC) ”f”Ll Lgo; |;1|vﬂ/)-

G
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Lemma (Bound on the right-hand side)

Let f :R*> - R, in ! s.t. ”Vf”Ll(LOO) < +oo. Let p € [1,2). Then, Vv € R and r € [1, 1),
1 (LY

+oo +oo Pf L
/ / vIPf(v, L) 5 dvdl < 2|f]la +
- v 12(% — %) — 20|t
il

p”‘/f”Li(Lsoy

We get then that the sequence (¢,) is bounded in W2 This implies compactness by Rellich -
Kondrachov theorem.

Lemma (Hdlder regularity for the right-hand side)

Let f: R* — Ry in L' N L (LE%; 135 ) with 0 < v < 1 and s.t. vaHLl (Lge) < too. Define

L
g(v,r) = /]1{2 F(V, r,v, L)f(v, 71;) <1 + 1v2+%<2uL) L,>m(v,0) dvdL.
b

Then we have for all v, v’ € R such that |v' — v| < 1 and for all r € [1, rp),

0
|g(ll”r)7g(l/, r)| < m ‘l,’ — y| 204D

where C is a function of r and of ||f||,1, |

VfHL%(QC) ”f”Ll Lgo; |;1|vﬂ/)-

G

This gives the continuity property required to pass to the limit in the right-hand side.
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Existence of solution for the Poisson equation

Continuity of the barrier parameters

How to pass to the limit in the quantity:

plyl(e) :=inf{a€ L, r] : Vs> a,9(s) < e}
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Continuity of the barrier parameters

How to pass to the limit in the quantity:

plyl(e) :=inf{a€ L, r] : Vs> a,9(s) < e}

It is in general not continuous with respect to
1 for the L™ or the W*'P topologies.
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Existence of solution for the Poisson equation

Continuity of the barrier parameters

How to pass to the limit in the quantity:

plyl(e) :=inf{a€ L, r] : Vs> a,9(s) < e}

It is in general not continuous with respect to
1 for the L™ or the W*'P topologies.

Lemma (Convergence property for p)

Let (1) be a sequence of continuous functions converging towards v in L.
Then for almost every e € R,

Plnl(e) — plYl(e)-
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Existence of solution for the Poisson equation

Continuity of the barrier parameters

How to pass to the limit in the quantity:

plyl(e) :=inf{a€ L, r] : Vs> a,9(s) < e}

It is in general not continuous with respect to
1 for the L™ or the W*'P topologies.

Lemma (Convergence property for p)

Let (1) be a sequence of continuous functions converging towards v in L.
Then for almost every e € R,

Plnl(e) — plYl(e)-

Enough to conclude since p only appears under an integral.
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Technical proofs
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Technical proofs

@ Proof of the bound on the right-hand side.

Proof of the Holder regularity for the right-hand side.

Proof of the Convergence property for p.

Existence for the non-linear local elliptic equation.

Conclusion of the proof
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Technical proofs

Proof of the bound on the right-hand side.
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Technical proofs

Proof of the bound on the right-hand side.

Let p € [1,2) and let h € (0,1/2]. let L,v € R and let r € [1, rp]. We define the set

11
v —1? (777) —l < hvz}.
r2 rg

Oif = {VGR:
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Technical proofs

24/48

Proof of the bound on the right-hand side.

Let p € [1,2) and let h € (0,1/2]. let L,v € R and let r € [1, rp]. We define the set

1 1
Oi: = {VGR: Vi 1? (—27—2> —2v| < hvz}.
’ r r
b
By definition of 0",
[v|P 1 +oo
[f(v,L)]dv < — |f(v,L)|dv.
ol v (2 j2(4 1 P 3
\Oy, |v—L(72—%)—21/|2 h2 J—oo
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Technical proofs

Proof of the bound on the right-hand side.

Let p € [1,2) and let h € (0,1/2]. let L,v € R and let r € [1, rp]. We define the set

11
v —1? (777) —l < hvz}.
r2 rg

Oif = {VGR:

By definition of OF’Y,
[v[?

/R\oé::’ [v2—L12(% - é) —2v|

On the other hand, since h < 1/2,

101
veop (hfl)vszz(Z7ﬁ)+2u§(h+l)v
b

= Agv
1+

Bh-d)ta | PG-34

>
IN
=y
s
:_u-

The set Otl’ is non-empty if and only if L>(1/r? —1/r2) 4+ 2v > 0. In this case we can define
X > 0 such that A2 = L2(1/r% — 1/r2) + 2v.
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Technical proofs

Proof of the bound on the right-hand side.
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Technical proofs
Proof of the bound on the right-hand side.
For X\ a positive number, direct computation gives
A
and /“17" —— 5 <
A |V2 — A2|7

[v[P~tdv

/A
f\+h }Vz - )‘2}% B

[v|P~tdv

-3

Bi-species kinetic model for a cylindrical Langmuir probe.
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Technical proofs
Proof of the bound on the right-hand side.
For X\ a positive number, direct computation gives
A
and /“17" —— 5 <
A |V2 — ,\2|§

[v[P~tdv 1
< P

/A
f\+h }Vz - )‘2}% B

[v|P~tdv

Then,
lvI?
f(v,L)|dv
Jogs TRy
lvP~! dv
1 P
- 7) 72V|2

L1
r2 2

< (SLJP\VH’((V’L){) /OL,V ‘ 2 L(
hyr |V

(SL:p|v\ f(v, L)|).

< 2
= 1-¢2

Bi-species kinetic model for a cylindrical Langmuir probe.
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Technical proofs

Proof of the bound on the right-hand side.
For X\ a positive number, direct computation gives
/A [v[P~tdv 1 p /‘\/% [v|P~tdv 1
an _ .
A L =1_¢ b =q_Fr
o[22 2 A [v2 — 2|2 2
Then,
vIP
/qu . . 1‘ ‘ - 5 |f(v,L)|dv
O/ [vi—L (?z—g)— v|2
lvP~! dv
P
- %) —2v|2

L1
r2 2

< (SLJP\VH’((V’L){) /OL,V ‘ 2 L(
hyr |V

(SL:p|v\ f(v, L)|).

< 2
= 1-¢2

Integrate now for the variable L and gather the two obtained estimates:
p
d = | (v, L)| dvdL
5) -~ 2t

/+oo /+oo |
—oo J—oo }V27L2(%2,r2

o 2
<22f]lp + 5
1-3

/:roo (stip|v\|f(v, L)‘) dL.
O

Bi-species kinetic model for a cylindrical Langmuir probe.

This concludes the proof.
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Technical proofs

Proof of the Holder regularity for the right-hand side.
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Technical proofs

Proof of the Holder regularity for the right-hand side.

Let v" < v € Rsuch that v — v’ < 1and let r € [1,r,). We consider the number 1 < p < 2
such that v = (p — 1) /(3 — p). We define

PP, = {(v7 L) € R? :

v,v

I/—l/l
> — .
Z =t

[v|"3=¢
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Technical proofs

Proof of the Holder regularity for the right-hand side.

Let v" < v € Rsuch that v — v’ < 1and let r € [1,r,). We consider the number 1 < p < 2
such that v = (p — 1) /(3 — p). We define

PP, = {(v7 L) € R? :

v
[v]"3=p
Step 1: Regularit rt) PP, B ity i lit; L ! < h Th
€ N egulari ropeé on . convexi inequality, — — . us,
P 8! 'y property o BY y ineq y\/5 W
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Technical proofs

Proof of the Holder regularity for the right-hand side.

Let v" < v € Rsuch that v — v’ < 1and let r € [1,r,). We consider the number 1 < p < 2
such that v = (p — 1) /(3 — p). We define
v—v
=

[v|"3=¢

\%

PP, = {(v7 L) € R? :

v,v

1

1
Step 1: Regularity property on PP ,. By convexity inequality, — — < Thus,
p 1: Regularity property on P" . By y inequality, == — ——=r <

2@
L
ﬁb(v,7>'<l+1 12 >]1,>m.(v_L, dvdL
A vy <euy =
b

b L
folv,—)|dvdL
b

v,v

1"P, = / |I'(1/',r,v,L) - (v, r7v,L)|
",

_ ’
< / [v] (v =) .
7’;’,'?,/ }vz — Lz(%2 — %2) — 2V’|5

b
< / [vI? (v = 1/),;51
SR - ) -

b

where for the last inequality we used the definition of 791'1”1’/,.
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Technical proofs

Proof of the Holder regularity for the right-hand side.

Let v" < v € Rsuch that v — v’ < 1and let r € [1,r,). We consider the number 1 < p < 2
such that v = (p — 1) /(3 — p). We define

1 1 -
PP, = {(V,L)ER2 V2 L2(7—7>—2V’ 2”7,:1}
: ot Iv*3=p
Step 1: Regularit rt) PP, B ity i lit ! < h Th
€ N egulari ropeé on ’ . convexi inequality, — — . us,
P gularity property L BY y inequality, N T RN

L

b

f,- (V, E) ' <1 + 1v2+%<2uL> ]l'me(V-,L) dv dL
r;
b

b L
folv,—)|dvdL
b

1"P, = / |I'(1/',r,v,L) - (v, r7v,L)|
PP,

v,v!

_ ’
S/ vl (v —v") .
P - (- )~
</ [v]” (V*V')pgl
= D
@ -2y - %) - 2v]F

where for the last inequality we used the definition of 791'1”1’/,.

The bound given by the previous lemma gives the conclusion.

Bi-species kinetic model for a cylindrical Langmuir probe.
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Technical proofs

Step 2: Regularity property on R? \ ”P”/”;/. This case reduces to study

L
e4)
b

v
Jr/:: ||

v,v

dvdL.

TR e e = )~
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Technical proofs

Step 2: Regularity property on R? \ ”P”/”;/. This case reduces to study

L
e4)
b

vl

TR e e = )~

o=

v,v

dvdL.

By the Holder inequality and the bound given by the previous lemma,

c 1
J < Py (K;";,) 9, where KP, = / o
) —q , ) ]RZ\’P P,
v

L
f,-b<v, 7) ‘ dvdL.
Iy
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Technical proofs

Step 2: Regularity property on R? \ ”P”/”;/. This case reduces to study

L
e4)
b

By the Holder inequality and the bound given by the previous lemma,

J’ — |V|

, =
v,
’ JRr2\prP 2
R \pu,ul {V

dvdL.

_[2(L1 L
L(,z 2

) - 2|2

1
Jy, 0 < Tq’( ;‘;,) 9, where K;:’;, = /RZ\P”P

We now observe that

L
f,-b<v, 7) ‘ dvdL.
Iy

(v,L) g PP, <=

’ ’
v—v 1 1 v—v
v2—2u/—7<L2 — — = <v2—2u,+7.

v, Sp—1 2 2 Sp—1
V[ b V5=

27/48
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Technical proofs

Step 2: Regularity property on R? \ ”P”/”;/. This case reduces to study

v
Jowr 1= 2\ pliP
JR \PV’YV, {v2

dvdL.

L
e4)
b

By the Holder inequality and the bound given by the previous lemma,

c 1
J < Py (K;":’,) 9, where KP, = / o
) —q , ) ]RZ\’P P,
v

We now observe that

’
(v,L) ¢ PP, <= 2o -2

(1 1 2 , v—v
ﬁ<L -~ 3 <V—2D+ﬁ.
v5=e R v*5=e
Foo (Ms v u/)i/2 b L
The Fubini theorem then gives K7, = 2/ / 2 (v7 —) ‘ dL dv, where
v,v oo (M‘l/ ., V/)1+/ ry

1
Mt ,;( —
[

ol =

-1 v v’
) (VZ o

~

2
b
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Technical proofs

Step 2: Regularity property on R? \ ”P”/”;/. This case reduces to study

v
Jowr 1= 2\ pliP
JR \PV’YV, {v2

dvdL.

L
e4)
b

By the Holder inequality and the bound given by the previous lemma,

c 1
J < Py (K;":’,) 9, where KP, = / o
) —q , ) ]RZ\’P P,
v

We now observe that

’
(v,L) ¢ PP, <= 2o -2

(1 1 2 , v—v
ﬁ<L -~ 3 <V—2D+ﬁ.
v5=e R v*5=e
Foo (Ms v u/)i/2 b L
The Fubini theorem then gives K7, = 2/ / 2 (v7 —) ‘ dL dv, where
v,v oo (M‘l/ ., V/)1+/ ry

1
Mmoo, ( —
[

’

-1 v —v
) (VZ -2/ - 7) and M2
v,v

op—1 !
[v|"3—P

ol =
~

2
b
This eventually gives, with p such that v = (p — 1)/(3 — p),

+o00
K;’Py, < C(NVv—v' / sup Mb(v,L)|
’ —oco LER

dv
Ivr’
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Technical proofs

Proof of the Convergence property for p.
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Technical proofs

Proof of the Convergence property for p.

For ¢ : [1, 5] — R be a continuous function, we define ¢'(r) := max ¢(r').
]

rlelr,rp
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Proof of the Convergence property for p.

For ¢ : [1, 5] — R be a continuous function, we define ¢ (r) := ,max o(r').
r’€lr,rp]

The function ¢7‘L is the smallest non-increasing function such that qBT > .
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Proof of the Convergence property for p.

For ¢ : [1, 5] — R be a continuous function, we define ¢ (r) := ,max o(r').
r’€lr,rp]

The function ¢7‘L is the smallest non-increasing function such that qBT > .

Let e € R and let ¢ : [1, r,] — R be a continuous function. We have p[¢](e) = ploT](e). J
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Proof of the Convergence property for p.

For ¢ : [1, 5] — R be a continuous function, we define ¢ (r) := ,max o(r').
r’€lr,rp]

The function ¢7‘L is the smallest non-increasing function such that qBT > .

Lemma

Let e € R and let ¢ : [1, r,] — R be a continuous function. We have p[¢](e) = ploT](e). J
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Technical proofs

Proof of the Convergence property for p.

For ¢ : [1, 5] — R be a continuous function, we define ¢ (r) := ,max o(r').
r’€lr,rp]

The function ¢7‘L is the smallest non-increasing function such that qBT > .

Lemma

Let e € R and let ¢ : [1, r,] — R be a continuous function. We have p[¢](e) = ploT](e). J

Lemma (Application f is Lipschitz)

Let ¢ and ) be two continuous functions on [1, ry]. Then: ||¢T — T || 00 < || — 2h]|100.
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for

almost every e € R,
Plonl(e) — plol(e)-
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,

Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — o1 in L.
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for

almost every e € R,
Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — ¢ in L. If $T(r) > e, then there exists § > 0 such that
¢i(r) > e+4.
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for

almost every e € R,
Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — ¢ in L. If $T(r) > e, then there exists § > 0 such that
#1(r) > e+ 8. By definition of 5, we deduce that r < pl¢f](e) = pleal(e)-

29/48 Ludovic Godard-Cadillac Bi-species kinetic model for a cylindrical Langmuir probe.



Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,

Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — ¢ in L. If $T(r) > e, then there exists § > 0 such that
#1(r) > e+ 8. By definition of 5, we deduce that r < pl¢f1(e) = plenl(e). Thus,

¢'()>e = r<liminfg,](e).
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,

Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — ¢ in L. If $T(r) > e, then there exists § > 0 such that
#1(r) > e+ 8. By definition of 5, we deduce that r < pl¢f1(e) = plenl(e). Thus,

¢'()>e = r<liminfg,](e).

Since ¢ is continuous and non-increasing,

inf {r: ¢T(f) =e} < ,','L“i’;f, plonl(e),
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,

Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — ¢ in L. If $T(r) > e, then there exists § > 0 such that
#1(r) > e+ 8. By definition of 5, we deduce that r < pl¢f1(e) = plenl(e). Thus,

¢'()>e = r<liminfg,](e).

Since ¢ is continuous and non-increasing,

inf {r: ¢'(r) = e} < liminf 5[6,](e),  and sup{r:as*(r):e}zggiuogmm](e)
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,

Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — ¢ in L. If $T(r) > e, then there exists § > 0 such that
#1(r) > e+ 8. By definition of 5, we deduce that r < pl¢f1(e) = plenl(e). Thus,

(N >e = r < liminf plén](e).
n—+o00
Since ¢ is continuous and non-increasing,

inf {r: ¢'(r) = e} < liminf 5[6,](e),  and sup{r:as*(r):e}zggiuogmm](e)

Using again ¢ non-increasing: if meas{r € [1, 1] : ot(r) = e} = 0 then this set is a singleton.
In this case, we have convergence for p[¢n](e).
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,

Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — ¢ in L. If $T(r) > e, then there exists § > 0 such that
#1(r) > e+ 8. By definition of 5, we deduce that r < pl¢f1(e) = plenl(e). Thus,

(N >e = r < liminf plén](e).
n—+o00
Since ¢ is continuous and non-increasing,

inf {r: ¢'(r) = e} < liminf 5[6,](e),  and sup{r:as*(r):e}zggiuogmm](e)

Using again ¢ non-increasing: if meas{r € [1, 1] : ot(r) = e} = 0 then this set is a singleton.
In this case, we have convergence for p[¢n](e).

General fact: if f : R? — R is a measurable function, then the set of y € R such that
meas{x € RY : f(x) = y} > 0 is a set of measure 0.
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Lemma (Convergence property for p)
Let (¢n) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,

Plonl(e) — plol(e)-

én — ¢ in L implies ¢! — ¢ in L. If $T(r) > e, then there exists § > 0 such that
#1(r) > e+ 8. By definition of 5, we deduce that r < pl¢f1(e) = plenl(e). Thus,

(N >e = r < liminf plén](e).
n—+o00
Since ¢ is continuous and non-increasing,

inf {r: ¢'(r) = e} < liminf 5[6,](e),  and sup{r:as*(r):e}zggiuogmm](e)

Using again ¢ non-increasing: if meas{r € [1, 1] : ot(r) = e} = 0 then this set is a singleton.
In this case, we have convergence for p[¢n](e).

General fact: if f : R? — R is a measurable function, then the set of y € R such that
meas{x € RY : f(x) = y} > 0 is a set of measure 0.

0:/ de:/ meas {y € R: f(x) =y} dx
R Rd

= 1 dx d
/Rdxu@ {(x,y)ERI xR : f(x)=y} IX DY

:/meas {x eR?: f(x) =y} dy.
R
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Technical proofs

Existence for the non-linear local elliptic equation.
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Technical proofs

Existence for the non-linear local elliptic equation.
We study

—A¢(x) = g(¢(x),x), ¢(x) = 0 on 9.
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Technical proofs

Existence for the non-linear local elliptic equation.
We study

—A¢(x) = g(¢(x),x), ¢(x) = 0 on 9.

It is equivalent to look for critical points on Hg(2) for the functional

gw)i= [ (GIVe0 = 606, %) ) o,

where G(v,r) == [ g(s, r) ds.

30/48 Ludovic Godard-Cadillac Bi-species kinetic model for a cylindrical Langmuir probe.



Technical proofs

Existence for the non-linear local elliptic equation.
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We study
—A¢(x) = g(d(x),x),  ¢(x) =0on Q.
It is equivalent to look for critical points on Hg(2) for the functional

T ::/ﬂ(;vw(xnzf G(0(). x) ) o,

where G(v,r) == [ &(s, r) d:

Lemma (Bound on the energy)

1
The function J satisfy the following inequality: = / | V(x) ‘ dx < Cq (J(w) 4k ||g”Loo)
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Existence for the non-linear local elliptic equation.

30/48

We study
—A¢(x) = g(d(x),x),  ¢(x) =0on Q.
It is equivalent to look for critical points on Hg(2) for the functional

T ::/ﬂ(;vw(xnt G(0(). x) ) o,

where G(v,r) == [ &(s, r) d:

Lemma (Bound on the energy)

1
The function J satisfy the following inequality: = / | V(x) ‘ dx < Cq (J(w) 4k ||g”Loo)

/‘G(w x), x dx_/ ’/ g(v, x) dv

dx < lglleoo@x o, 191l o,y < Callgllioe lldll2
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Technical proofs

Existence for the non-linear local elliptic equation.
We study

—A¢(x) = g(¢(x),x), ¢(x) = 0 on 9.

It is equivalent to look for critical points on Hg(2) for the functional

T ::/ﬂ(;vw(xnt G(0(). x) ) o,

where G(v,r) == [ &(s, r) d:

Lemma (Bound on the energy)

1
The function J satisfy the following inequality: = / | V(x) ‘ dx < Cq (J(w) 4k ||g”Loo)

P (x)
g(l/, x) dv

/‘G(w x), x (dx_

We now bound J from below using the Young inequality and the Poincaré inequality :

; dx < llglleoe ®xpo,1) 1%l o,y < Callgllioe 1] 2

T 2 3 [[ 19000l b — Callglle 191

> 2 [ 900 dx — 2 gl — = Callvily
Q £

(% 7€CQ>/Q|V1[J(X)(X)|2dX* %Hg\lfo«

v
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Existence for the non-linear local elliptic equation.

Lemma (Existence of a minimizer) J

The functional J admits a minimizer and then the equation admits a solution.
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Existence for the non-linear local elliptic equation.

Lemma (Existence of a minimizer) J

The functional J admits a minimizer and then the equation admits a solution.

Consider a sequence (¢,) in Hy () that is minimizing J.

31/48 Ludovic Godard-Cadillac Bi-species kinetic model for a cylindrical Langmuir probe.



Existence for the non-linear local elliptic equation.

Lemma (Existence of a minimizer) J

The functional J admits a minimizer and then the equation admits a solution.

Consider a sequence (1) in H&(Q) that is minimizing 7. By the previous lemma, V) is a
bounded sequence in L2, Therefore, by compact embedding (up to an omitted extraction),

Yy — P, strongly in L2
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Existence for the non-linear local elliptic equation.

Lemma (Existence of a minimizer) J

The functional J admits a minimizer and then the equation admits a solution.

Consider a sequence (1) in H&(Q) that is minimizing 7. By the previous lemma, V) is a
bounded sequence in L2, Therefore, by compact embedding (up to an omitted extraction),

Yy — P, strongly in L2

Using now the Lebesgue dominated convergence theorem,

1 1
/0 G(wn(x), X) dx —> A G(?,ZJ (%), x) dx, as n — +oo.
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Existence for the non-linear local elliptic equation.

Lemma (Existence of a minimizer)

The functional J admits a minimizer and then the equation admits a solution. J

Consider a sequence (1) in H&(Q) that is minimizing 7. By the previous lemma, V) is a
bounded sequence in L2, Therefore, by compact embedding (up to an omitted extraction),

Yy — P, strongly in L2

Using now the Lebesgue dominated convergence theorem,
1 1
/ G(a/)n(x), X) dx —> / G(w*(x), x) dx, as n — +oo.
0 0

Moreover, since ¥ +— [, [V4))? is convex on Hy (), by properties of the weak convergence:

! * 2 P ! 2
/(; [ Vo™ (x)|2dx < ,Illmlr;g/(; | Vpn(x)|*dx.
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Existence for the non-linear local elliptic equation.

Lemma (Existence of a minimizer) J

The functional J admits a minimizer and then the equation admits a solution.

Consider a sequence (1) in H&(Q) that is minimizing 7. By the previous lemma, V) is a
bounded sequence in L2, Therefore, by compact embedding (up to an omitted extraction),

Yy — P, strongly in L2
Using now the Lebesgue dominated convergence theorem,

1 1
/ G(a/)n(x), X) dx —> / G(w*(x), x) dx, as n — +oo.
0 0
Moreover, since ¥ +— [, [V4))? is convex on Hy (), by properties of the weak convergence:
! 2 ! 2
/ [ Vo™ (x)|2dx < Iiminf/ | Vpn(x)|*dx.
0 n—+oo Jq

These two facts together imply, since v, is a minimizing sequence for 7,

JW*) < infJ(y),
weHi(o,1)

which eventually gives the existence of a minimizer for 7. O
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Conclusion of the first part:
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@ The proof opens on the question of numerical analysis (next part).

@ s this strategy working only with simple geometries ?
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Conclusion of the first part:

@ The theorem is proved.
@ The proof opens on the question of numerical analysis (next part).

@ s this strategy working only with simple geometries ?

@ What happens if the plasma has collisions (Fokker-Planck, Landau,
Boltzmann...) ?
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Conclusion of the first part:

@ The theorem is proved.
@ The proof opens on the question of numerical analysis (next part).
@ s this strategy working only with simple geometries ?

@ What happens if the plasma has collisions (Fokker-Planck, Landau,
Boltzmann...) ?

@ The mass of the electron is small in comparison with the mass of ions. Is
it possible to do an asymptotic expansion ?
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Conclusion of the first part:

@ The theorem is proved.
@ The proof opens on the question of numerical analysis (next part).
@ s this strategy working only with simple geometries ?

@ What happens if the plasma has collisions (Fokker-Planck, Landau,
Boltzmann...) ?

@ The mass of the electron is small in comparison with the mass of ions. Is
it possible to do an asymptotic expansion ?

Describing the obtained solution with calculus of variations techniques
(partial results).
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Radial solutions
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Analysis of radial solution
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Analysis of radial solutions

@ We are interested in solving the following 1D elliptic equation:

2
(D)=, s =0 o) =0

with

L
(r) = b
rni(r) = / r(¢(r),r,v,L)f ( f’b) (1 + 1v2+%<2ﬁ)1r>p[UL]( 2.2 2 dvdL.
b 21

L
_ b
rne(r) = /R2 F(—o(r),r,v,L)f ( rb> (1+ <27L> anﬁM](§+%) dvdL.

b

2

@ Recall that: U(r) = L—2 + &(r), Vi(r) = L o(r), Y = max_9(r),
2r2 2r2
and p[Y](e) :=inf{a€[l,r] : forae s€[ar], ¥(s)<e}

rell,r]
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Analysis of radial solutions

@ We are interested in solving the following 1D elliptic equation:

2
(D)=, s =0 o) =0

with

L
(r) = b
rni(r) = / r(¢(r),r,v,L)f ( f’b) (1 + 1v2+%<2ﬁ)1r>p[UL]( 2.2 2 dvdL.
b 21

L
_ b
rne(r) = /R2 F(—o(r),r,v,L)f ( rb> (1+ <27L> anﬁM](§+%) dvdL.

b

2 2
@ Recall that: U(r) = 2L7 + &(r), Vi(r) = % —¢(r), P = max (r),

rell,r]
and p[Y](e) :=inf{a€[l,r] : forae s€[ar], ¥(s)<e}

@ Parameter A > 0 is the Debye length (width of the sheath).
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Analysis of radial solutions

@ We are interested in solving the following 1D elliptic equation:

2
(D)=, s =0 o) =0

with

L
(r) = b
rni(r) = / r(¢(r),r,v,L)f ( f’b) (1 + 1v2+%<2ﬁ)1r>p[UL]( 2.2 2 dvdL.
b 21

L
_ b
rne(r) = /R2 F(—o(r),r,v,L)f ( rb> (1+ <27L> anﬁM](§+%) dvdL.

b

2 2
@ Recall that: U(r) = 2L7 + &(r), Vi(r) = % —¢(r), P = max (r),

rell,r]
and p[Y](e) :=inf{a€[l,r] : forae s€[ar], ¥(s)<e}

@ Parameter A > 0 is the Debye length (width of the sheath).

@ We focus on the radial case : f?(v, L) = gP(v) d.—0.
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Theorem (M. Badsi, L.G-C., 2022)

Let g,.b :R* — Ry and g2 : R* — R two incoming distribution functions having
the property:

sup |vgb(v)| < +o0, and /gb(v) dv < +oo0.
vER R

Then there exists a solution ¢ € C2[1, rp] to the non-linear Poisson problem, and
(gi, ge, ¢) a measure valued solution to the original Vlasov-Poisson equation.

The proof is similar to the non-radial case.
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Theorem (M. Badsi, L.G-C., 2022)

Let g? : R* — Ry and gf : R* — R two incoming distribution functions having
the property:

sup |vgb(v)| < +o0, and /gb(v) dv < +oo0.
vER R

Then there exists a solution ¢ € C2[1, rp] to the non-linear Poisson problem, and
(gi, ge, ¢) a measure valued solution to the original Vlasov-Poisson equation.

The proof is similar to the non-radial case.

Can we identify a solution that is better than the other ones ? Id est : a
solution that have a good physical meaning...
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Theorem (M. Badsi, L.G-C., 2022)

Let g? : R* — Ry and gf : R* — R two incoming distribution functions having
the property:

sup |vgb(v)| < +o0, and /gb(v) dv < +oo0.
vER R

Then there exists a solution ¢ € C2[1, rp] to the non-linear Poisson problem, and
(gi, ge, ¢) a measure valued solution to the original Vlasov-Poisson equation.

The proof is similar to the non-radial case.

Can we identify a solution that is better than the other ones ? Id est : a
solution that have a good physical meaning...

YES : under physical and technical assumptions.
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Theorem (M. Badsi, L.G-C., 2022)

Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:
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Theorem (M. Badsi, L.G-C., 2022)

Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:

- Maxwellian decay assumptions on g’ and (g?)’.
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Theorem (M. Badsi, L.G-C., 2022)

Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:
- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.
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Theorem (M. Badsi, L.G-C., 2022)

Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:
- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.
b
0 o &(-vV2%) [V d
- A Bohm condition: / g,-b(v)—g < = / (&) (v) i

e v V=20, —co |v]
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Theorem (M. Badsi, L.G-C., 2022)

Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:
- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.

0 gh( —v/—2¢ V=9
- A Bohm condition: / g-b(v)ﬂ < ( p) / p(gf "(v) dv

7+ —_—
LB =235 . Vi

Then, the Poisson problem admits a solution ¢ € C? s.t.
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Theorem (M. Badsi, L.G-C., 2022)

Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:
- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.
s O b adv geb(_ V_2¢p> AN %
- A Bohm condition: / &W)—% < —F——= +/ (g2)' (v)—.
e v V=20, —co |v]
Then, the Poisson problem admits a solution ¢ € C? s.t.

(i) r — ¢a(r) is increasing strongly concave on [1; rp].
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Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:
- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.
s O b adv geb(_ V_2¢p> AN %
- A Bohm condition: / &W)—% < —F——= +/ (g2)' (v)—.
e v V=20, —co |v]
Then, the Poisson problem admits a solution ¢ € C? s.t.

(i) r — ¢a(r) is increasing strongly concave on [1; rp].

(i) As X — 0 we have ¢ — 0 loc. uniformly in (1, rp].
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- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.
oy & (V) L, a
- A Bohm condition: / &W)—% < —F——= +/ (g2)' (v)—.
e v V=20, —co |v]
Then, the Poisson problem admits a solution ¢ € C? s.t.
(i) r — ¢a(r) is increasing strongly concave on [1; rp].

(ii) As X — 0 we have ¢ — 0 loc. uniformly in (1, rp].Moreover,

doy
dr

)\2 rp
2 5

2 ,b
()| rer+5 [ lexnPer = 00,

For some explicit constant a(g,-b, gb) >o.
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doy
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)\2 rp
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()| rer+5 [ lexnPer = 00,

For some explicit constant a(g?, g?) > 0. Quasi-neutral limit: ||rn; — rne||;x — 0.
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Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:
- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.
oy & (V) L, a
- A Bohm condition: / &W)—% < —F——= +/ (g2)' (v)—.
e v V=20, —co |v]
Then, the Poisson problem admits a solution ¢ € C? s.t.
(i) r — ¢a(r) is increasing strongly concave on [1; rp].

(ii) As X — 0 we have ¢ — 0 loc. uniformly in (1, rp].Moreover,

doy
dr

)\2 rp
2 5

2 ,b
()| rer+5 [ lexnPer = 00,

For some explicit constant a(g?, g?) > 0. Quasi-neutral limit: ||rn; — rne||;x — 0.
(iii) There exists C = C(g?,gb) > 0 s.t.
r—1

Vre [l,fb], ¢Pexp<_ C
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- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.
oy & (V) L, a
- A Bohm condition: / &W)—% < —F——= +/ (g2)' (v)—.
e v V=20, —co |v]
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(ii) As X — 0 we have ¢ — 0 loc. uniformly in (1, rp].Moreover,

doy
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)\2 rp
2 5

2 ,b
()| rer+5 [ lexnPer = 00,

For some explicit constant a(g?, g?) > 0. Quasi-neutral limit: ||rn; — rne||;x — 0.
(iii) There exists C = C(g?,gb) > 0 s.t.

r—1
ﬁ)ﬁm(f)SO.

Vre [l,fb], ¢Pexp<_ C

(iv) The triplet (¢, f;, fe) is a measure-valued solution to the initial problem.
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Let gib,gf in W2L(R) and let ¢p < 0. Assumptions:
- Maxwellian decay assumptions on g’ and (g?)’.

- Electric neutrality of the plasma core.
oy & (V) L, a
- A Bohm condition: / &W)—% < —F——= +/ (g2)' (v)—.
e v V=20, —co |v]
Then, the Poisson problem admits a solution ¢ € C? s.t.
(i) r — ¢a(r) is increasing strongly concave on [1; rp].

(ii) As X\ — 0 we have ¢ — 0 loc. uniformly in (1, rp].Moreover,

doy
dr

)\2 rp
2 5

2 ,b
()| rer+5 [ lexnPer = 00,

For some explicit constant a(g?, g?) > 0. Quasi-neutral limit: ||rn; — rne||;x — 0.
(iii) There exists C = C(g?,g?) > 0 s.t.

r—1
m)ﬁdu(’)SO.

Vre [l,fb], ¢Pexp<_ C

(iv) The triplet (¢, f;, fe) is a measure-valued solution to the initial problem.

Important argument : reduction of the problem to a local equation.
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Numerical investigations

37/48 ovic Godard-Cadillac Bi-species kinetic model for a cylindrical



The numerical method
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Define the Energy associated to this Dirichlet Problem:
2

EWl@) =3 [ | S00] rar + M0,

The function 1 is the parameters for the non-local terms.The natural function space is:
do
d

X = {¢ 1, ] = R . €12 (1) = ¢p, o(rs) = 0}'
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The numerical method

Define the Energy associated to this Dirichlet Problem:
2

EWl@) =3 [ | S00] rar + M0,

The function 1 is the parameters for the non-local terms.The natural function space is:
do
d

X = {¢ 1, ] = R . €12 (1) = ¢p, o(rs) = 0}'

A function ¢ € X is a solution of the parametric critical value problem (Py,)
associated to parameter v if:

Vg E[$](¢) = 0. (Py)

A function ¢ € X is a solution to the initial problem if it is a solution to the
parametric problem (P ) with ¥ = ¢.
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The numerical method

38/48

Define the Energy associated to this Dirichlet Problem:
2

EWl@) =3 [ | S00] rar + M0,

The function 1 is the parameters for the non-local terms.The natural function space is:
do
d

X = {¢ 1, ] = R . €12 (1) = ¢p, o(rs) = 0}'

A function ¢ € X is a solution of the parametric critical value problem (Py,)
associated to parameter v if:
Vg E[$](¢) = 0. (Py)

A function ¢ € X is a solution to the initial problem if it is a solution to the
parametric problem (P ) with ¥ = ¢.

We use a gradient descent approach:

Gny1 = ¢n —p VE[d)n](d)n)
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The numerical method
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The numerical method

We work in Xy, the subspace of piece-wise linear functions on the uniform mesh of
m € N elements.

@ Computation of the integral with standard approximation methods.

@ Fast computation of the non-local terms exploiting monotony properties.
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The numerical method

We work in Xy, the subspace of piece-wise linear functions on the uniform mesh of
m € N elements.

@ Computation of the integral with standard approximation methods.

@ Fast computation of the non-local terms exploiting monotony properties.

Main drawback : It is not a gradient descent algorithm... Not always convergent !
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The numerical method

We work in Xy, the subspace of piece-wise linear functions on the uniform mesh of
m € N elements.

@ Computation of the integral with standard approximation methods.

@ Fast computation of the non-local terms exploiting monotony properties.

Main drawback : It is not a gradient descent algorithm... Not always convergent !

Strategy :

— Solve the radial problem (fully local) with boundary datum g®(v)§;—.
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The numerical method

We work in Xy, the subspace of piece-wise linear functions on the uniform mesh of
m € N elements.

@ Computation of the integral with standard approximation methods.

@ Fast computation of the non-local terms exploiting monotony properties.

Main drawback : It is not a gradient descent algorithm... Not always convergent !

Strategy :
— Solve the radial problem (fully local) with boundary datum g®(v)§;—.
— Solve the quasi-radial problem with boundary datum g®(v) M.(L), where :

M (L) :=

1 ( 12 )
exp| — — ).
V2me? P 22

Take the result of the previous step as initialization of the descent algorithm.
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The numerical method

We work in Xy, the subspace of piece-wise linear functions on the uniform mesh of
m € N elements.

@ Computation of the integral with standard approximation methods.

@ Fast computation of the non-local terms exploiting monotony properties.

Main drawback : It is not a gradient descent algorithm... Not always convergent !

Strategy :
— Solve the radial problem (fully local) with boundary datum g®(v)§;—.
— Solve the quasi-radial problem with boundary datum g®(v) M.(L), where :

M (L) :=

1 ( 12 )
exp — — ).
Vare P\ 22
Take the result of the previous step as initialization of the descent algorithm.

— Similarly : Solve the problem with boundary datum g?(v) Mk+1) (L), using the

result associated to g?(v) My .(L) as initialization.
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We work in Xy, the subspace of piece-wise linear functions on the uniform mesh of
m € N elements.

@ Computation of the integral with standard approximation methods.

@ Fast computation of the non-local terms exploiting monotony properties.

Main drawback : It is not a gradient descent algorithm... Not always convergent !

Strategy :
— Solve the radial problem (fully local) with boundary datum g®(v)§;—.
— Solve the quasi-radial problem with boundary datum g®(v) M.(L), where :

M (L) :=

1 ( 12 )
exp — — ).
Vare2 TP\ 2
Take the result of the previous step as initialization of the descent algorithm.

— Similarly : Solve the problem with boundary datum g?(v) Mk+1) (L), using the
result associated to g?(v) My .(L) as initialization.

— Solve the problem with a boundary datum (v, L) close to g®(v) M (L), with
the associated solution as initialization.
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The numerical method

We work in Xy, the subspace of piece-wise linear functions on the uniform mesh of
m € N elements.

@ Computation of the integral with standard approximation methods.

@ Fast computation of the non-local terms exploiting monotony properties.

Main drawback : It is not a gradient descent algorithm... Not always convergent !

Strategy :
— Solve the radial problem (fully local) with boundary datum g®(v)§;—.
— Solve the quasi-radial problem with boundary datum g®(v) M.(L), where :

M (L) :=

1 ( 12 )
exp — — ).
Vare2 TP\ 2
Take the result of the previous step as initialization of the descent algorithm.

— Similarly : Solve the problem with boundary datum g?(v) Mk+1) (L), using the
result associated to g?(v) My .(L) as initialization.

— Solve the problem with a boundary datum (v, L) close to g®(v) M (L), with
the associated solution as initialization.

We are able to converge as long as € > 0 and k € N are not too large.
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Numerical results
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m(r) for different values of ¢,

$p=-0.6 — %
Gp=-1.4 —o—
~ $p=-3.0 - ®
1 15 2 25 3

me(r) for different values of ¢,

Radial case with satisfied Bohm condition: ionic density rn;(r) (left) and electronic density rn.(r)

(right) for ¢, varying from —0.6 to —3.

r(r) for different values of ¢,
0.5 - : -

me(r) for different values of ¢,

0.5 ‘ :
0.45 1
0.4 1
0.35 A
0.3 k= 1
025 .-~ 77, = 1
02+ [ 1
0.15
0.1} iy
0.08 T ‘ ¢s=_3;0 -

1 15 2 25 3

Radial case with unsatisfied Bohm condition: ionic density rn;(r) (left) and electronic density

rne(r) (right) for ¢, varying from —0.6 to —3.
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@(r) for different values of ¢, m;(r)-rne(r) for different values of ¢,

$p=-0.6 — % -
1 Pp=-1.4 —o—
Pp=-30 - ®
2 ]
: Pp=-0.6 — %~
-25F Pp=-1.4 —o— 1
2 . $p=30 = - -
~A 15 2 25 3 15 2 25 3
r r

Radial case with satisfied Bohm condition: potential ¢(r) (left) and density difference rn;(r) —
rne(r) (right) for ¢, varying from —0.6 to —3.

¢(r) for different values of ¢, r(r)-rne(r) for different values of ¢,
0 . i ' §
-0_5;,_, ----- M= 4__-— - |
A - ’ |
-1.5F |
2+ |
g $p=0.6 —*-
28 Gp=-1.4 —o— 1
an Go=-30 - m
- 1.5 2 25 3
r

Radial case with unsatisfied Bohm condition: potential ¢(r) (left) and density difference rn;(r) —
rne(r) (right) for ¢, varying from —0.6 to —3.
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-¢(r) for different values of ¢, log scale my(r)-rne(r) for different values of ¢y, log scale

1*101I ' ' ' " ! ¢ =_06 —_— -
14100 F "\ tp=-14 —o— 1
1*10°1 $p=-3.0 =
1*102} i
1103} i
%104} {
1105} ]
MO 7 1e 18 2 22 24 O o1 1415 16171819 2
r r

Radial case with satisfied Bohm condition: potential ¢(r) (left) and density difference
rni(r) — rne(r) (right) for ¢p varying from —0.6 to —3. y-log scale.
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Total current density at the probe (ji-je)(=1,p)
250

satisfied Bohm case —-—-
200 4

150 /4
100 s

3 25 =2 45 4 05 0
Pp

Total current density at the probe (ji-j)(=1,¢p)
25 T

unsatisfied Bohm case —-— -
20+ |
/
15+ /
;
10+ /
./l
5 .- -
Qbememe— =TT . .
-3 2.5 -2 -1.5 -1 -0.5 0

Pp

Radial case: total current density at the probe (j; — je)(r = 1.¢,) as a function of the probe
potential, the Bohm condition being satisfied (left) or unsatisfied (right).
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ionic distribution fi(r,v;) for vg=0, T=1.10"
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ionic distribution fi(r,v,) for vg=0.45, T=1.10"!

ionic distribution fi(r,v;) for vg=0.91, T=1.10""
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Thank-you for your attention !

Ludovic Godard-Cadillac Bi-species kinetic model for a cylindrical Langmuir probe.
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